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Abstract This paper presents an approach of achiev-
ing high performance and robustness for matched
uncertain multi-input multi-output linear systems with
external disturbances and multiple state-delays, which
are often encountered in practice and are frequently the
sources of instability. This scheme is based on com-
posite nonlinear feedback and integral sliding mode
control methods. The selection of nonlinear function
and the existence of sliding mode are two important
issues, which have been addressed. The control law
is designed to guarantee the existence of the sliding
mode around the nonlinear surface, and the damping
ratio of the closed-loop system is increased as the out-
put approaches the set-point. Simulation results are
presented to show the effectiveness of the proposed
method as a promising way for controlling similar non-
linear systems.

Keywords Composite nonlinear feedback ·
Integral-type sliding surface · Uncertain linear system ·
Multiple state-delays

1 Introduction

In general, sliding mode control (SMC) follows two
main steps: a switching surface is defined first such
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that the closed-loop system exhibits desired dynamic
behavior during sliding mode, and then sliding mode
controller is employed to derive the system states to
remain on the sliding surface [1,2]. It is a powerful
robust method which has been successfully used for
the control of linear and nonlinear systems [3,4]. In the
conventional sliding mode control, during the reach-
ing phase-controlled system is not robust and even
matched disturbances can affect the system. For solv-
ing this problem, integral sliding mode (ISM) concept
is proposed in [5]. In this method, an integral-type
term is added in sliding surface, and then, it guar-
antees that the reaching phase is eliminated and the
system trajectories start in the surface right from the
beginning.

The composite nonlinear feedback (CNF) control
law was first proposed by Lin et al. [6] to improve
the transient performance for the tracking control of
second-order linear systems with input saturations.
This technique consists of linear and nonlinear feed-
back laws without any switching element [7,8]. The
linear portion yields small damping ratio of the closed-
loop system for a quick response and the nonlinear
portion is used to tune the damping ratio of the closed-
loop system gradually as the system output approaches
the output of the reference model to reduce the over-
shoot caused by the linear portion [9,10]. In the recent
years, this method is developed for more general class
of linear and nonlinear systems. Besides developments
in theory, the CNF method is applied to design vari-
ous servo control systems, such as HDD servo system
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[7,11], helicopter flight control system [12], and posi-
tion servo system [9].

Though the CNF control law is fully investigated for
normal linear and nonlinear systems, the CNF tech-
nique for time-delayed systems is seldom addressed.
The reason may be that the control problems for time-
delayed systems are in general more challenging and
time-delays are sources of instability and poor perfor-
mance for a control system [13,14]. To the best of the
author’s knowledge, there is little work undertaken on
the problem of stabilization and attaining high perfor-
mance and robustness for a class of uncertain dynam-
ical systems with multiple time-delays, which is still
open in the literature.

In this paper, we aim to design a nonlinear integral-
type sliding mode controller combined with CNF
control method for uncertain multi-input multi-output
(MIMO) linear systems with multiple state-delays and
external disturbances such that the resulting controlled
output would track a target reference as fast as possi-
ble without any steady-state bias. The proposed control
method retains the actual structure of CNF controller
in following the reference trajectory within a given
accuracy and the invariance property of ISM method
in rejecting disturbances.

The paper is organized as follows: The design proce-
dure of the robust composite nonlinear feedback con-
troller for guaranteeing the robust tracking and perfor-
mance improvement is developed in Sect. 2. The selec-
tion procedure of the nonlinear function is proposed
in Sect. 3. In Sect. 4, simulation results are illustrated.
Finally, conclusions are provided in Sect. 5.

2 Robust composite nonlinear feedback control

Consider an uncertain MIMO linear system with mul-
tiple time-delays and external disturbances as

ẋ(t) = [A +�A(r(t))] x(t)

+
N1∑

i=1

�Adi (v(t))x(t − τi (t))

+ [B +�B(p(t))] u(t)+ W (q(t)) (1)

y(t) = Cx(t),

where t ∈ [t0,∞), x(t) ∈ Rn is the measurable state
vector, u(t) ∈ Rm is the control input, A, B, C are con-
stant matrices of appropriate dimensions, y(t) ∈ R p

is the output vector, and the matrices �A(.), �B(.),

and �Adi (.), i = 1, . . . , N1 denote the time-varying
matched uncertainties and are continuous in all their
arguments. Moreover, τi (t) ∈ R+ is the time-varying
delay and the vector W (q(t)) ∈ Rn is the external dis-
turbance. The uncertain functions r(t), p(t), v(t), and
q(t) are Lebesgue measurable functions which belong
to a compact bounding set �.

Assumption 1 There exist continuous and bounded
matrix functions N (.), E(.), Ndi (.), and W̃ (.) of appro-
priate dimensions such that [14]

�A(r(t)) = B N (r(t)),

�B(p(t)) = B E(p(t)),

�Adi (v(t)) = B Ndi (v(t)),

W (q(t)) = BW̃ (q(t)). (2)

This assumption is known as the matching condition on
the uncertainties. For convenience, the following nota-
tions which represent the bounds of the uncertainties
are introduced:

ρr = max
r∈� ‖N (r(t))‖ ,

μ = max
p∈� ‖E(p(t))‖ ,

ρvi = max
v∈� ‖Ndi (v(t))‖ ,

ρq = max
q∈�

∥∥∥W̃ (q(t))
∥∥∥ . (3)

The objective is to design a feedback control law such
that the controlled output y(t) can track step command
input r , in the presence of matched uncertainties and
multiple time-delays without experiencing large over-
shoot. To design a state-feedback CNF law, the follow-
ing assumptions are required [15]:

(1) Pair (A, B) is stabilizable;
(2) (A, B,C) is invertible and has no zeros as s = 0.

In the first step of CNF state-feedback law proce-
dure, a linear feedback control law is designed [7]. In
the second step, the design of nonlinear feedback con-
trol is carried out, and lastly, in the final step, the linear
and nonlinear feedback laws are combined to form the
CNF control law.

The linear feedback control law for system (1) is
designed as [7,8]

uL = Fx(t)+ Glr, (4)

where r is the step command input and F is designed
such that (A + B F) is an asymptotically stable matrix
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and the closed-loop system C (s I − A − B F)−1 B has
small damping ratio. Furthermore, by calculating d.c.
gain from y(t) to r , the matrix Gl is given by

Gl = −
[
C (A + B F)−1 B

]−1
. (5)

Moreover, by finding d.c. gain between x(t) and r , new
steady state value xe is given as

xe = − (A + B F)−1 BGlr. (6)

The nonlinear feedback control law uN is given by

uN = ψ(r, y)BT P(x − xe), (7)

where ψ(r, y) is any nonpositive function locally Lip-
schitz in y(t), which is used to change the damping
ratio of the closed-loop system as the controlled output
approaches the step command input to reduce the over-
shoot caused by the linear part [10]. The real symmet-
ric matrix P > 0 in (7) is the solution of the following
Lyapunov equation:

(A + B F)T P + P(A + B F) = −W, (8)

for some positive definite matrix W . Note that such a
P exists, since A + B F is asymptotically stable.

The linear and nonlinear feedback control laws
obtained in (4) and (7) are now combined to form a
CNF controller as follows:

κ(x, t) = uL + uN

= Fx(t)+ Glr + ψ(r, y)BT P(x − xe), (9)

where this controller does not provide robust perfor-
mance. To achieve a robust CNF controller, the follow-
ing nonlinear integral-type sliding surface is proposed:

s(x, t) = G

⎧
⎨

⎩x(t)− x(0)−
t∫

0

(Ax(τ )+ Bκ(x, τ ))dτ

⎫
⎬

⎭ ,

(10)

where G ∈ Rm×n is a constant matrix, G B is uniformly
invertible, and the additional integral term provides one
more degree of freedom in design than the linear slid-
ing surface. Furthermore, this sliding surface provides
a general framework to eliminate the reaching phase
such that the sliding mode exists from the beginning,

and then the system response is completely invariant
against uncertainties and multiple time-delays.

Taking the derivative of the sliding surface (10)
along the trajectories of system (1) yields

ṡ(x, t)

= G {ẋ(t)− Ax(t)− Bκ(x, t)}

= G B

{
N (r(t))x(t)+

N1∑

i=1

Ndi (v(t))x(t − τi (t))

+ [I + E(p(t))] u(t)+ W̃ (q(t))− κ(x, t)
}
.

(11)

The control law using the sliding surface (10) can be
designed as

u(t) =
{
κ(x, t)− ρ(x, t) (G B)T s

‖(G B)T s‖ , if s �= 0

κ(x, t), if s = 0
(12)

where the switching function ρ(x, t) satisfies that

ρ(x, t)

>
ρr ‖x(t)‖+∑N1

i=1 ρvi ‖x(t − τi (t))‖+ρq +μ ‖κ(x, t)‖
1 + μ

.

(13)

Theorem 1 Consider the uncertain time-delay system
(1) and suppose that Assumption 1 is satisfied. Apply-
ing the control law (12) with the switching function
ρ(x, t) chosen as (13), the trajectory of the system (1)
is guaranteed to be kept on the nonlinear integral-type
sliding surface (10) from any initial condition.

Proof Consider the Lyapunov function candidate as

V (x, t) = 1

2
sT (x, t)s(x, t). (14)

Differentiating the Lyapunov function (14) with respect
to time and using (11)–(13) yields

V̇ (x, t) = sT (x, t)ṡ(x, t)

= sT G B

[
N (r(t))x(t)+

N1∑

i=1

Ndi (v(t))x(t − τi (t))

+ W̃ (q(t))− ρ(x, t)
(G B)T s∥∥(G B)T s

∥∥

+ E(p(t))

{
κ(x, t)− ρ(x, t)

(G B)T s∥∥(G B)T s
∥∥

}]
.
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≤
∥∥∥(G B)T s

∥∥∥ {‖N (r(t))‖ ‖x(t)‖

+
N1∑

i=1

‖Ndi (v(t))‖ ‖x(t − τi (t))‖ +
∥∥∥W̃ (q(t))

∥∥∥

+‖E(p(t))‖ ‖κ(x, t)‖ − ρ(x, t) {1 + ‖E(p(t))‖}
}

≤
∥∥∥(G B)T s

∥∥∥

{
ρr ‖x(t)‖ +

N1∑

i=1

ρvi ‖x(t − τi (t))‖

+ ρq + μ ‖κ(x, t)‖ − ρ(x, t) {1 + μ}
}
< 0. (15)

Therefore, the controller (12) using the switching gain
function (13) guarantees that the sliding mode can be
maintained for t ≥ t0. �	

3 Selection of the nonlinear function ψ(r, y)

The selection procedure of nonlinear function ψ(r, y)
is the same as that given in [7]. The freedom of choos-
ing the nonlinear function ψ(r, y) is used to tune the
control law so as to improve the closed-loop system
performance as the output approaches the command
input and should be a smooth nonpositive function of
|r − y|. The main purpose of adding the nonlinear term
to the CNF control law is to speed up the settling time,
or equivalently to contribute an important value to the
linear control input when the tracking error, r − y, is
small. This function needs to be chosen such that it has
the following properties:

(I) When the controlled output y(t) is far away from
the command input, |ψ(r, y)| becomes small, and,
therefore, the effect of the nonlinear part of CNF
control law will be very limited.

(II) When the controlled output y(t) approaches the
command input, |ψ(r, y)| becomes large, and thus
the nonlinear part of the CNF control law will
become effective.

The closed-loop system comprising the uncertain
linear system (1) and the CNF control law (12) can be
expressed as follows:

ẋ(t) = [A + B F] x(t)+ BGlr + Bψ(r, y)BT P(x − xe)

+�A(r(t))x(t)+
N1∑

i=1

�Adi (v(t))x(t − τi (t))

+�B(p(t))u(t)+ W (q(t))

=
[

A + B F + Bψ(r, y)BT P
]

x(t)

+
[

In + Bψ(r, y)BT P(A + B F)−1
]

BGlr

+ B

[
N (r(t))x(t)+

N1∑

i=1

Ndi (v(t))x(t − τi (t))

+ E(p(t))u(t)+ W̃ (q(t))
]
. (16)

The eigenvalues of the closed-loop system (16) can
be changed by the nonlinear function ψ(r, y). The
poles of the closed-loop system (16), which are the
functions of the tuning parameter ψ(r, y), start from
the open loop poles, i.e., the eigenvalues of A + B F ,
when ψ(r, y) = 0, and end up at the open loop zeros,
as |ψ(r, y)| becomes larger. The nonlinear function
ψ(r, y) is defined in a diagonal form as [16,17]

ψ(r, y) = diag [ψ1(r, y), · · · , ψm(r, y)] , (17)

where its elements, i.e., ψi (r, y), i = 1, · · · ,m are
nonunique and defined in various forms. For example,
in [6],ψi (r, y) is of the form of an exponential function

ψi (r, y) = −βi e
−αi ‖y−r‖, i = 1, · · · ,m, (18)

where βi > 0 and αi > 0 are tuning parameters.
|ψi (r, y)| tends to zero as |y − r | tends to infinity and
|ψi (r, y)| reaches its maximum value βi when |y − r |
tends to zero. Another possible choice is as follows
[18]:

ψi (r, y) = −βi e
−k(y−r)2 , (19)

where k is a positive scalar which should be large to
ensure a small initial value of ψi (r, y).

4 Simulation results

In this section, the proposed method of this paper is
illustrated to apply on an uncertain system with mul-
tiple time-varying delays. The numerical example is
given by the following differential equations:

ẋ(t) =
⎛

⎝

⎡

⎣
1 −2 3
−4 5 −6
7 −8 9

⎤

⎦ +�A(r(t))

⎞

⎠ x(t)

+
3∑

i=1

�Adi (v(t))x(t − τi (t))
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+
⎛

⎝

⎡

⎣
1 −2
−3 4
5 6

⎤

⎦ +�B(p(t))

⎞

⎠ u(t)+ W (q(t)),

y =
[

1 0 0
0 0 1

]
x(t), (20)

where τi (t)’s are time-delays. The disturbances and
uncertainties have the following bounds: |r1(t)| ≤ 0.5,
|r2(t)| ≤ 1, |p(t)| ≤ 0.5, |q(t)| ≤ 0.5, |v(t)| ≤ 1.5,

and �A(r(t)) =
⎡

⎣
r1(t) −2r2(t) r3(t)
−3r1(t) 4r2(t) −3r3(t)
5r1(t) 6r2(t) 5r3(t)

⎤

⎦,

�B(p(t)) =
⎡

⎣
p(t) −2p(t)
−3p(t) 4p(t)
5p(t) 6p(t)

⎤

⎦, �Ad1(v(t)) =
⎡

⎣
0 v(t) −2v(t)
0 −3v(t) 4v(t)
0 5v(t) 6v(t)

⎤

⎦, �Ad2(v(t)) =
⎡

⎣
v(t) −2v(t) v(t)
−3v(t) 4v(t) −3v(t)
5v(t) 6v(t) 5v(t)

⎤

⎦, �Ad3(v(t)) =
⎡

⎣
−2v(t) 0 v(t)
4v(t) 0 −3v(t)
6v(t) 0 5v(t)

⎤

⎦, W (q(t)) =
⎡

⎣
q(t)
−3q(t)
5q(t)

⎤

⎦.

From (2) and (20), one can obtain: N (r(t)) =[
r1(t) 0 r3(t)
0 r2(t) 0

]
, E(p(t)) = p(t), W̃ (q(t)) =

[
q(t)
0

]
, Nd1(v(t)) =

[
0 v(t) 0
0 0 v(t)

]
, Nd2(v(t)) =

[
v(t) 0 v(t)
0 v(t) 0

]
, Nd3(v(t)) =

[
0 0 v(t)
v(t) 0 0

]
.

Then, from (3), the following parameters are calcu-
lated: ρr = 1, μ = 0.5, ρq = 0.5, ρv1 = ρv3 = 1.5,
ρv2 = 2.12. The constant parameters are selected as

G =
[

0.3 −0.6
−0.3 0.8

]
and αi = βi = 2, i = 1, 2.

For the simulation purposes, the uncertain parameters
r j (t), j = 1, 2, 3, p(t), q(t), v(t), and initial condi-
tions are set as follows:

r1(t) = 0.5 sin(3t), r2(t) = cos(3t), r3(t) =
0.5 sin(2t), p(t) = 0.5 cos(2t), q(t) = 0.5 sin(3t),

v(t) = 1 + 0.5 sin(2t), x(0) = [−1 0 0
]T

. The
time-varying delays τ1(t), τ2(t), and τ3(t) are chosen as
shown in Fig. 1, where τ1(t) = τ3(t) = 1+0.5 sin(π t).

The sampling time is set to 10 ms. The eigenvalues of
the system are selected asλ1,2,3 =[−0.29,−0.1,−0.2],
where the gain matrix F is determined as F =[

1.363 −1.673 1.955
0.033 0.068 −0.127

]
. The solution of the Lya-
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Fig. 1 The time-varying delays τ1(t) (dashed) and τ2(t) (solid)
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Fig. 2 Responses of the controlled outputs using a the linear
feedback controller, b the CNF controller

punov equation (8) with W = I3 is P =⎡

⎣
28.18 11.39 12.69
11.39 7.51 5.84
12.69 5.84 7.44

⎤

⎦ . The nonlinear function ele-

mentsψi (r, y) are defined in the form of (18). The final
eigenvalues of the system by applying the nonlinear
functionψ(r, y) areλ1,2,3 = [−787.47,−2.2,−129.9].
Figure 2 shows the controlled outputs using the linear
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Fig. 3 Control inputs u(t). a linear feedback control law, b CNF
controller

feedback control law and the proposed controller. It
demonstrates significantly the importance of adding the
nonlinear functionψ(r, y) for improving the controlled
output. Also, control inputs are shown in Fig. 3. As it
can be seen from the results, the proposed method pro-
vides faster and better transition responses over those
of other method.

The integral of absolute-value of error (IAE) and
integral of time multiplied by absolute-value of error
(ITAE) for the controlled outputs using the proposed
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Fig. 4 Responses of the controlled outputs with 20 % increment
in time-delay values

controller in comparison with linear feedback con-
troller are shown in Table 1. As it can be seen, the IAE
and ITAE performance indices values are much better
when using the proposed controller compared with the
other one.

Furthermore, simulations are performed for differ-
ent values of τi (t) with 20% enhancement. As illus-
trated in Fig. 4, it is clear that increasing the time-delay
values causes the instabilities and bad performance of
the controlled system. Figure 5 shows that for the time-
delay values 1.15 times bigger than the previous ones,
the control input goes to infinity and system becomes
unstable.

In the following, the simulation results of the pro-
posed controller are illustrated in comparison with the
results of [2]. To compare the results with those of [2],
the system is also simulated with the adaptive controller
given in [2]. Figure 6 demonstrates the trajectory of the
controlled outputs. As it can be seen from the results,
the proposed method provides faster and better transi-
tion responses over those of other method. The compar-
ison of the control inputs is illustrated in Fig. 7 which
shows that the control signals of the proposed method

Table 1 Performance
indices values using
proposed controller
compared with linear
controller (without
nonlinear function)

IAE ITAE

y1(t) y2(t) y1(t) y2(t)

Proposed
controller

1.941 3.829 1.735 2.338

Linear
controller

1.207 × 1011 1.281 × 1011 1.075 × 1012 1.146 × 1012
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Fig. 5 Responses of the control inputs with 20 % increment in
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Fig. 7 The responses of the control signals

have much better behavior in comparison with those
of the controller in [2]. However, Fig. 7 shows that the

control signal introduced in [2] contains high frequency
oscillations which are undesirable in practice.

5 Conclusion

This paper discusses robustness and high performance
for matched uncertain MIMO linear systems with mul-
tiple state-delays and external disturbances. For this
purpose, the theory of the combination of CNF and
ISM techniques is presented. The simulation results
demonstrate that the new technique has better IAE and
ITAE performance indices values than the conventional
linear feedback control method. The proposed method
is effective and feasible and can be considered as a
promising way for controlling similar nonlinear sys-
tems.
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