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Abstract In this paper a two competing species har-
vesting model with imprecise biological parameters has
been developed. We have developed a method to handle
these imprecise parameters and discuss the dynamical
behaviour of the model. We have discussed the exis-
tence of various equilibrium points and stability of the
system at these equilibrium points. Also the bionomic
equilibrium of the harvesting model has been analysed.
Next the equilibrium solution of the control problem
has been derived, and then dynamical optimization of
the harvest policy is carried out taking combined har-
vesting effort as a dynamic variable by invoking Pon-
tryagin’s Maximum Principle. Our important analyti-
cal findings are illustrated through computer simulation
using MATLAB followed by discussions and conclu-
sions.
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1 Introduction

Mathematical modeling in theoretical ecology has
gained a lot of importance during the last few decades.
It improves understanding of the natural world by
revealing how the dynamics of species populations
are often based on fundamental biological conditions
and processes. Mathematical modeling also provides
understanding of the mechanisms that influence the
growth of populations and their existence and stability.
The first theoretical treatment of population dynamics
was presented by Malthus [29]. Verhulst [47] formed
a mathematical model based on logistic equation. The
most major advancement in population dynamics was
presented by Lotka [27] and Volterra [48], they first pro-
posed the mathematical model of predator–prey sys-
tem. Many ecologists put greater interest on competi-
tion in population dynamics. There is a classical model
of competition due to Lotka and Volterra. The classi-
cal theory of ecological competition between two or
more species attributed to Lotka-Volterra is an exten-
sion of the basic logistic model of single species growth
that came from Verhulst. The Lotka-Volterra competi-
tion model is an interference competition model: two
species are assumed to diminish each other’s per capita
growth rate by direct interference. Prey–predator mod-
els are also discussed by Erbe [9], Freedman [10–12],
Maiti et al. [30–32], Ruan and Xiao [42], Kuznetsov
[19]. There are many other kind of predator–prey
population models with different kinds of functional
responses [13,17,18,22,23,26,35,44–46].
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Harvesting policy and bio-economic modeling of
multi-species fisheries and wildlife management is
becoming a very important field in population dynam-
ics. These bio-economic models assist natural resource
managers in controling appropriate level of stocks and
catches. Most of the existing literatures of multi-species
fisheries derive from the work of Clark [6,7] who intro-
duced economic and biological aspects of renewable
resource management. He assumed that each species
would follow a logistic growth law in the absence of
harvesting, and the harvesting rate for each species is
proportional to both its stock level and harvesting effort.
His work was extended by Mesterton-Gibbons [33],
who discussed the optimal approach to equilibrium.
There are many other researchers such as Ragozin and
Brown [40], Wilen and Brown [49], etc. who had inves-
tigated the optimal policy for harvesting of predator–
prey model. Chaudhuri [3] had formulated an optimal
control problem for combined harvesting of two com-
peting species. Later it was extended by Mesterton-
Gibbons [34]. Predator–prey model with combined har-
vesting has been also discussed by Hannesson [16],
Chaudhuri and Roy [4], Samanta et al. [43], Chen and
Hsui [5], Palma and Olivares [37], Rebaza [41], Bhat-
tacharya and Begum [2]. Das et al. [8] presented a
predator–prey model in presence of toxicity and dis-
cussed optimal harvesting policy using Pontryagin’s
maximal principle [39]. Li and Wang [24], Li et al. [25]
presented a stochastic logistic population model with
optimal harvesting policy. Recently Zhang et al. [51]
have studied Hopf bifurcation of a predator–prey sys-
tem with predator harvesting and two delays using local
parameterization method of the differential-algebraic
systems. Lv et al. [28] have analysed two Holling type
II predator–prey models with continuous threshold har-
vesting, which represents situations when the harvest-
ing policy needs to be applied only when the harvest
population is above the threshold T .

Most of the researchers in theoretical ecology have
developed their models based on the assumption that
the biological parameters are precisely known. But in
reality the scenario is different. Always the values of all
parameters can not be known precisely for the lack of
information, lack of data, mistakes in the measurement
process and determining the initial conditions. From
this point of view models with imprecise parameters
are more realistic and helpful to overcome the limi-
tations. There are different approaches to handle such
models with imprecise parameters such as stochastic

approach, fuzzy approach, fuzzy-stochastic approach,
etc. In stochastic approach the imprecise parameters
are replaced by random variables with known probabil-
ity distributions. In fuzzy approach the imprecise para-
meters are replaced by fuzzy sets with known mem-
bership functions. In fuzzy-stochastic approach some
parameters are as fuzzy in nature, and rest of the para-
meters are taken as random variables. However, it is
very difficult to construct a suitable membership func-
tion or a suitable probability distribution for each of
the imprecise biological parameters. Some researchers
have introduced fuzzy models in predator–prey popu-
lation biology such as Bassanezi et al. [1], Peixoto et
al. [38], Guo et al. [15], etc. Pal et al. [36] presented an
optimal harvesting predator–prey system with impre-
cise biological parameters and discussed bio-economic
equilibrium and optimal harvesting policy.

In this paper, we have considered a two species com-
petition model with combined harvesting. To make the
model more realistic we have considered imprecise bio-
logical parameters and have tried to develop a method
to discuss the dynamical behaviour of the model. Some
important definitions are discussed in Sect. 2. The con-
struction of our model system is sketched in Sects. 3
and 4. Section 5 deals with the equilibrium points of the
system, their existence and stability analysis. We have
also analysed the bionomic equilibrium of the harvest-
ing model in Sect. 6. Next we have derived the equi-
librium solution of the control problem, and dynamical
optimization of the harvest policy is then carried out
taking combined harvesting effort as a dynamic vari-
able by invoking Pontryagin’s Maximum Principle in
Sect. 7. Our important analytic results are numerically
verified in the Sect. 8. Finally, Sect. 9 contains the gen-
eral discussions of the paper and ecological implica-
tions of our mathematical findings.

2 Basic definitions

We give some basic definitions of the interval num-
ber and interval-valued function which have been used
further in this paper.

Definition 1 (Interval number). An interval number A
is presented by closed interval [al , au] and defined as
A = [al , au] = {x : al ≤ x ≤ au, x ∈ R}, where
R is the set of real numbers, and al , au are the lower
and upper limits of the interval number, respectively.
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We can represent every real number in the terms of
interval number as [a, a] for all a ∈ R.

Some arithmetic operations for any two interval num-
bers A = [al , au] and B = [bl , bu] are defined as
follows:

Addition : A+ B = [al , au] + [bl , bu] = [al + bl , au + bu].
Subtraction : A − B = [al , au] − [bl , bu] = [al − bl , au − bu].
Scalarmulti plication : αA = α[al , au] = [αal , αau].

Definition 2 (Interval-valued function). Let a >0, b>

0 and consider the interval [a, b]. The interval [a, b]
can be represented by a function g(p) = a(1−p)bp

for p ∈ [0, 1]. This function is called interval-valued
function.

3 Mathematical model

Let us consider the following competition model
between two interacting species:

dx(t)

dt
= x(t)[r1 − b11x(t) − b12 y(t)]

dy(t)

dt
= y(t)[r2 − b22 y(t) − b21x(t)]. (1)

Here x(t) and y(t) denote the population density of the
first species and the second species, respectively.

Here ri , bi j (i, j = 1, 2) are all positive constants,
and ri are the linear birth rates, bii are the co-efficients
of intraspecific competition, bi j (i �= j) measure the
degree to which the presence of species j affects the
growth of species i.

Assuming that there is demand for all the species in
the market so the harvesting of both the species are car-
ried out. Let both the species are subjected to combined
harvesting effort E . Then the previous model becomes

dx(t)

dt
= x(t)[r1 − b11x(t) − b12 y(t)] − q1 Ex(t)

dy(t)

dt
= y(t)[r2−b22 y(t)−b21x(t)]−q2 Ey(t), (2)

where q1 and q2 are the catchability coefficients of two
species, respectively.

4 Imprecise competition model with two species

Now, if any of the parameters ri , bi j (i, j = 1, 2) are
imprecise, i.e. if any parameter is interval number rather
than a single value, then it is not so easy to convert the

equations to the standard form and analyse the dynami-
cal behaviour of the system. For imprecise coefficients,
we represent the system with interval coefficients as
described below.

4.1 Two species competition model with interval
coefficients

Let r̂i , b̂i j (i, j = 1, 2) be the interval counterparts of
ri , bi j (i, j = 1, 2), respectively. Then the two species
competition model with combined harvesting effort E
becomes:
dx

dt
= x(t)[r̂1 − b̂11x(t) − b̂12 y(t)] − q1 Ex(t)

dy

dt
= y(t)[r̂2 − b̂22 y(t) − b̂21x(t)] − q2 Ey(t), (3)

where r̂i = [ril , riu], b̂i j = [bi jl , bi ju] and ril >

0, bi jl > 0 (i, j = 1, 2).

4.2 Two species competition model with parametric
interval coefficients

For fixed m, let us consider the interval-valued func-
tion gm(p) = a(1−p)

m bp
m for p ∈ [0, 1] for an interval

[am, bm]. Since gm(p) is a strictly increasing and con-
tinuous function, the system (3) can be written in the
parametric form as follows:
dx(t; p)

dt
= x(t)[(r1l )

(1−p)(r1u)p − (b11l)
(1−p)(b11u)px(t)

− (b12l )
(1−p)(b12u)p y(t)] − q1 Ex(t)

dy(t; p)

dt
= y(t)[(r2l)

(1−p)(r2u)p − (b22l)
(1−p)(b22u)p y(t)

− (b21l )
(1−p)(b21u)px(t)] − q2 Ey(t), (4)

where p ∈ [0, 1].
The reason behind this is as follows: In a fine-grained

environment, heterogeneity appears as an average, in a
coarse-grained environment as alternatives and hence
uncertainty. Here selection maximizes a(1−p)

m bp
m for

p ∈ [0, 1], the value of p depends on the underlying
environment [21].

5 Equilibrium points: their existence and stability

In this section we will study the existence and stability
behaviour of the system (4) at equilibrium points. The
equilibrium points of the model system (4) are given
below.
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1. Trivial Equilibrium : E0(0, 0).

2. Axial Equilibrium : (a) E1(x̄, 0), where x̄ =
(r1l )

(1−p)(r1u)p−q1 E
(b11l )

(1−p)(b11u)p ,

(b) E2(0, ỹ), where ỹ = (r2l )
(1−p)(r2u)p−q2 E

(b22l )
(1−p)(b22u)p .

3. Interior Equilibrium : E∗(x∗, y∗), where

x∗ = 1

[(b11l)(1−p)(b11u)p(b22l)(1−p)(b22u)p − (b12l)(1−p)(b12u)p(b21l)(1−p)(b21u)p] [{(b22l)
(1−p)(b22u)p

(r1l)
(1−p)(r1u)p − (b12l)

(1−p)(b12u)p(r2l)
(1−p)(r2u)p}

+ E{(b12l)
(1−p)(b12u)pq2 − (b22l)

(1−p)(b22u)pq1}],
y∗ = 1

[(b11l)(1−p)(b11u)p(b22l)(1−p)(b22u)p − (b12l)(1−p)(b12u)p(b21l)(1−p)(b21u)p] [{(b11l)
(1−p)(b11u)p

(r2l)
(1−p)(r2u)p − (b21l)

(1−p)(b21u)p(r1l)
(1−p)(r1u)p}

+ E{(b21l)
(1−p)(b21u)pq1 − (b11l)

(1−p)(b11u)pq2}].

5.1 Trivial equilibrium

Now, the variational matrix of system (4) at E0(0, 0) is
given by

V (E0)

=
(

(r1l )
(1−p)(r1u)p − q1 E 0

0 (r2l )
(1−p)(r2u)p − q2 E

)
.

Therefore, eigenvalues of the characteristic equation
of V (E0) are λ1 = (r1l)

(1−p)(r1u)p − q1 E, λ2 =
(r2l)

(1−p)(r2u)p − q2 E . Now, E0 is stable if λ1 < 0
and λ2 < 0, i.e. (r1l)

(1−p)(r1u)p − q1 E < 0 and
(r2l)

(1−p)(r2u)p − q2 E < 0 which implies that E >

1
q1

(r1l)
(1−p)(r1u)p and E > 1

q2
(r2l)

(1−p)(r2u)p. So,
we come to the following theorem:

Theorem 1 The trivial equilibrium E0(0, 0) of the
system (4) is locally asymptotically stable if E >

max
{

1
q1

(r1l)
(1−p)(r1u)p, 1

q2
(r2l)

(1−p)(r2u)p
}

.

5.2 Axial equilibrium

(a) E1(x̄, 0) exists only when (r1l)
(1−p)(r1u)p−q1 E >

0,, i.e. E < 1
q1

(r1l)
(1−p)(r1u)p. Now, the variational

matrix of system (4) at E1(x̄, 0) is given by

V (E1) =
(−(b11l)

(1−p)(b11u)p x̄ −(b12l)
(1−p)(b12u)p x̄

0 (r2l)
(1−p)(r2u)p − (b21l)

(1−p)(b21u)p x̄ − q2 E

)

Therefore, eigenvalues of the characteristic equation
of V (E1) are λ1 = −(b11l)

(1−p)(b11u)p x̄ < 0, λ2 =

(r2l)
(1−p)(r2u)p−(b21l)

(1−p)(b21u)p x̄−q2 E . It is clear
that λ1 is negative. Now, E1 is stable if λ2 < 0,

i.e. (r2l)
(1−p)(r2u)p − (b21l)

(1−p)(b21u)p x̄ − q2 E <

0 which implies that E > 1
q2

[(r2l)
(1−p)(r2u)p −

(b21l)
(1−p)(b21u)p x̄]. So, we come to the following

theorem:

Theorem 2 The axial equilibrium E1(x̄, 0) of the
system (4) exists and is locally asymptotically sta-
ble if 1

q2
[(r2l)

(1−p)(r2u)p − (b21l)
(1−p)(b21u)p x̄] <

E < 1
q1

(r1l)
(1−p)(r1u)p. Then the trivial equilibrium

E0(0, 0) becomes unstable.

(b) E2(0, ỹ) exists only when (r2l)
(1−p)(r2u)p −

q2 E > 0, i.e. E < 1
q2

(r2l)
(1−p)(r2u)p. Now, the vari-

ational matrix of system (4) at E2(0, ỹ) is given by

V (E2) =
(

(r1l)
(1−p)(r1u)p − (b12l)

(1−p)(b12u)p ỹ − q1 E 0
−(b21l)

(1−p)(b21u)p ỹ −(b22l)
(1−p)(b22u)p ỹ

)

Therefore, eigenvalues of the characteristic equation of
V (E2) are λ1 = (r1l)

(1−p)(r1u)p − (b12l)
(1−p)(b12u)p

ỹ − q1 E, λ2 = −(b22l)
(1−p)(b22u)p ỹ < 0. It is clear

that λ2 is negative. Now, E2 is stable if λ1 < 0,

i.e. (r1l)
(1−p)(r1u)p − (b12l)

(1−p)(b12u)p ỹ − q1 E <

0 which implies that E > 1
q1

[(r1l)
(1−p)(r1u)p −
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(b12l)
(1−p)(b12u)p ỹ].So, we come to the following the-

orem:

Theorem 3 The axial equilibrium E2(0, ỹ) of the
system (4) exists and is locally asymptotically sta-
ble if 1

q1
[(r1l)

(1−p)(r1u)p − (b12l)
(1−p)(b12u)p ỹ] <

E < 1
q2

(r2l)
(1−p)(r2u)p. Then the trivial equilibrium

E0(0, 0) becomes unstable.

5.3 Interior equilibrium

E∗(x∗, y∗) exists only when

(i)(b11l )
(1−p)(b11u)p(b22l )

(1−p)(b22u)p

> (b12l )
(1−p)(b12u)p(b21l )

(1−p)(b21u)p,

(i i){(b22l )
(1−p)(b22u)p(r1l )

(1−p)(r1u)p

− (b12l )
(1−p)(b12u)p(r2l )

(1−p)(r2u)p}
+ E{(b12l )

(1−p)(b12u)pq2 − (b22l )
(1−p)(b22u)pq1} > 0,

(i i i){(b11l )
(1−p)(b11u)p(r2l )

(1−p)(r2u)p

− (b21l )
(1−p)(b21u)p(r1l )

(1−p)(r1u)p}
+ E{(b21l )

(1−p)(b21u)pq1 − (b11l )
(1−p)(b11u)pq2} > 0,

or

(iv)(b11l )
(1−p)(b11u)p(b22l )

(1−p)(b22u)p

< (b12l )
(1−p)(b12u)p(b21l )

(1−p)(b21u)p,

(v){(b22l )
(1−p)(b22u)p(r1l )

(1−p)(r1u)p

− (b12l )
(1−p)(b12u)p(r2l )

(1−p)(r2u)p}
+ E{(b12l )

(1−p)(b12u)pq2 − (b22l )
(1−p)(b22u)pq1} < 0,

(vi){(b11l )
(1−p)(b11u)p(r2l )

(1−p)(r2u)p

− (b21l )
(1−p)(b21u)p(r1l )

(1−p)(r1u)p}
+ E{(b21l )

(1−p)(b21u)pq1 − (b11l )
(1−p)(b11u)pq2} < 0.

Now, the variational matrix of system (4) at E∗(x∗, y∗)
is given by

V
(
E∗)

=
(−(b11l )

(1−p)(b11u)px∗ −(b12l )
(1−p)(b12u)px∗

−(b21l )
(1−p)(b21u)p y∗ −(b22l )

(1−p)(b22u)p y∗
)

.

Therefore, the characteristic equation of V (E∗) is given
by

λ2 + A1λ + A2 = 0, (5)

where

A1 = (b11l)
(1−p)(b11u)px∗ + (b22l)

(1−p)(b22u)p y∗

and

A2 = [(b11l)
(1−p)(b11u)p(b22l)

(1−p)(b22u)p

− (b12l)
(1−p)(b12u)p(b21l)

(1−p)(b21u)p]x∗y∗.

It is clear that A1 > 0. Now, E∗ is locally asymptoti-
cally stable if A2 > 0, i.e. (b11l)

(1−p)(b11u)p(b22l)
(1−p)

(b22u)p > (b12l)
(1−p)(b12u)p(b21l)

(1−p)(b21u)p.

So, we come to the following theorem:

Theorem 4 The interior equilibrium E∗(x∗, y∗) of the
system (4) exists and is locally asymptotically stable if

(i)(b11l)
(1−p)(b11u)p(b22l)

(1−p)(b22u)p

> (b12l)
(1−p)(b12u)p(b21l)

(1−p)(b21u)p

(i i){(b22l)
(1−p)(b22u)p(r1l)

(1−p)(r1u)p

− (b12l)
(1−p)(b12u)p(r2l)

(1−p)(r2u)p}
+ E{(b12l)

(1−p)(b12u)pq2 − (b22l)
(1−p)(b22u)pq1} > 0

(i i i){(b11l)
(1−p)(b11u)p(r2l)

(1−p)(r2u)p

− (b21l)
(1−p)(b21u)p(r1l)

(1−p)(r1u)p}
+ E{(b21l)

(1−p)(b21u)pq1 − (b11l)
(1−p)(b11u)pq2} > 0.

Observations: Yedavalli and Devarakondathe [50]
have used ‘qualitative stability’ concept in the stan-
dard uncertain matrix theory as a means of achiev-
ing ‘robust stability’ for a complex community com-
posed of many species, numerous interactions take
place. They have studied it as a ‘sufficient condition’
for checking the robust stability of a class of interval
matrices (with the elements being uncertain varying in
some given intervals). Here we have studied ‘robust sta-
bility’ for a two species competition model with com-
bined harvesting using imprecise biological parameter
values r̂i = (ril)

(1−p)(riu)p, b̂i j = (bi jl)
(1−p)(bi ju)p

(i, j = 1, 2) and p ∈ [0, 1] defined in (4). For a partic-
ular value of p ∈ [0, 1] we get the ‘non-robust stability
(classical stability)’ behaviour.

6 Bionomic equilibrium

To discuss the bionomic equilibrium of the imprecise
two species competition model (4), we consider the
following parameters.

c : fishing cost per unit effort,
p1 : price per unit biomass of the first species (x),

p2 : price per unit biomass of the second species
(y).

The economic rent ( net revenue ) at any time is
given by
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R = (p1q1x + p2q2 y − c)E . (6)

The interior equilibrium solution of the system (4)
occurs at a point on the line given by

x[q1(b21l)
(1−p)(b21u)p − q2(b11l)

(1−p)(b11u)p]
+ y[q1(b11l)

(1−p)(b11u)p

− q2(b12l)
(1−p)(b12u)p] = q1(r2l)

(1−p)(r2u)p

− q2(r1l)
(1−p)(r1u)p (7)

in the first quadrant of the phase plane.
The biological equilibrium line (7) meets the x-axis

and the y-axis at (x̂, 0) and (0, ŷ), respectively, where

x̂ = q1(r2l)
(1−p)(r2u)p − q2(r1l)

(1−p)(r1u)p

q1(b21l)(1−p)(b21u)p − q2(b11l)(1−p)(b11u)p
,

ŷ = q1(r2l)
(1−p)(r2u)p − q2(r1l)

(1−p)(r1u)p

q1(b11l)(1−p)(b11u)p − q2(b12l)(1−p)(b12u)p
.

(8)

Now, x̂ > 0 and ŷ > 0 if

q1(r2l)
(1−p)(r2u)p > q2(r1l)

(1−p)(r1u)p,

q1(b21l)
(1−p)(b21u)p > q2(b11l)

(1−p)(b11u)p,

q1(b11l)
(1−p)(b11u)p > q2(b12l)

(1−p)(b12u)p,

or

q1(r2l)
(1−p)(r2u)p < q2(r1l)

(1−p)(r1u)p,

q1(b21l)
(1−p)(b21u)p < q2(b11l)

(1−p)(b11u)p,

q1(b11l)
(1−p)(b11u)p < q2(b12l)

(1−p)(b12u)p.

The bionomic equilibrium of the imprecise two species
harvesting is given by (7) together with the condition

R = (p1q1x + p2q2 y − c)E = 0, (9)

which is referred to as the ‘zero-profit line’.
As long as (p1q1x + p2q2 y−c) < 0 for all points on

the equilibrium line (7), the fishery remains unexploited
because it fails to produce any positive economic rev-
enue.

To find the bionomic equilibrium, there may arise
three cases:

Case I : When the bionomic equilibrium is estab-
lished at a point (x∞, 0) leading to the complete
extinction of second species. As a result, the fish-
ing of the second species is not practicable, and
only the fishing of first prey is possible (Fig. 1).
Here,

x∞ = c

p1q1

Fig. 1 The ‘biological equilibrium line’ and the ‘zero-profit line’
for Case I

Fig. 2 The ‘biological equilibrium line’ and the ‘zero-profit line’
for Case II

provided that

c = p1q1[q1(r2l)
(1−p)(r2u)p−q2(r1l)

(1−p)(r1u)p]
q1(b21l)(1−p)(b21u)p − q2(b11l)(1−p)(b11u)p

,

with either

q1(r2l )
(1−p)(r2u)p > q2(r1l )

(1−p)(r1u)p,

q1(b21l )
(1−p)(b21u)p > q2(b11l )

(1−p)(b11u)p,

or

q1(r2l )
(1−p)(r2u)p < q2(r1l )

(1−p)(r1u)p,

q1(b21l )
(1−p)(b21u)p < q2(b11l )

(1−p)(b11u)p. (10)

Case II : When the bionomic equilibrium occurs at
a point (0, y∞) resulting in the complete extinction
of first species. As a result, the fishing of the first
species is not practicable, and only the fishing of
first prey is possible (Fig. 2). Here,

y∞ = c

p2q2

provided that,

c= p2q2[q1(r2l)
(1−p)(r2u)p − q2(r1l)

(1−p)(r1u)p]
q1(b11l)(1−p)(b11u)p−q2(b12l)(1−p)(b12u)p

,
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with either

q1(r2l )
(1−p)(r2u)p > q2(r1l )

(1−p)(r1u)p,

q1(b11l )
(1−p)(b11u)p > q2(b12l )

(1−p)(b12u)p,

or

q1(r2l )
(1−p)(r2u)p < q2(r1l )

(1−p)(r1u)p,

q1(b11l )
(1−p)(b11u)p < q2(b12l )

(1−p)(b12u)p. (11)

Case III : When the bionomic equilibrium is estab-
lished at a point (x∞, y∞) where x∞ > 0 and
y∞ > 0. As a result, the fishing of the both species
(first and second) is possible (Fig. 3). Here

x∞ = [p2q2{q1(r2l)
(1−p)(r2u)p − q2(r1l)

(1−p)(r1u)p} − c{q1(b22l)
(1−p)(b22u)p − q2(b12l)

(1−p)(b12u)p}]
[p1q1{q1(b21l)(1−p)(b21u)p − q2(b11l)(1−p)(b11u)p} − p1q1{q1(b22l)(1−p)(b22u)p − q2(b12l)(1−p)(b12u)p}]

provided either

Fig. 3 The ‘biological equilibrium line’ and the ‘zero-profit line’
for Case III

(i)c <
p2

2q2
2 {q1(b21l)

(1−p)(b21u)p − q2(b11l)
(1−p)(b11u)p}{q1(r2l)

(1−p)(r2u)p − q2(r1l)
(1−p)(r1u)p}

p1q1{q1(b22l)(1−p)(b22u)p − q2(b12l)(1−p)(b12u)p}2

or

(i i)c >
p2

2q2
2 {q1(b21l)

(1−p)(b21u)p − q2(b11l)
(1−p)(b11u)p}{q1(r2l)

(1−p)(r2u)p − q2(r1l)
(1−p)(r1u)p}

p1q1{q1(b22l)(1−p)(b22u)p − q2(b12l)(1−p)(b12u)p}2
(12)

and

y∞ = [p1q1{q1(r2l )
(1−p)(r2u)p − q2(r1l )

(1−p)(r1u)p} − c{q1(b21l )
(1−p)(b21u)p − q2(b11l )

(1−p)(b11u)p}]
[p1q1{q1(b22l )

(1−p)(b22u)p − q2(b12l )
(1−p)(b12u)p} − p2q2{q1(b21l )

(1−p)(b21u)p − q2(b11l )
(1−p)(b11u)p}]

provided either

(i i i)c <
p2

1q2
1 {q1(b22l)

(1−p)(b22u)p − q2(b12l)
(1−p)(b12u)p}{q1(r2l)

(1−p)(r2u)p − q2(r1l)
(1−p)(r1u)p}

p2q2{q1(b21l)(1−p)(b21u)p − q2(b11l)(1−p)(b11u)p}2

or

(iv)c >
p2

1q2
1 {q1(b22l)

(1−p)(b22u)p − q2(b12l)
(1−p)(b12u)p}{q1(r2l)

(1−p)(r2u)p − q2(r1l)
(1−p)(r1u)p}

p2q2{q1(b21l)(1−p)(b21u)p − q2(b11l)(1−p)(b11u)p}2
(13)

Thus, we come to the following theorem:

Theorem 5 The bionomic equilibrium point

(i) (x∞, 0) exists when conditions (10) hold,
(ii) (0, y∞) exists when conditions (11) hold and (iii)

(x∞, y∞) exists when conditions (12) and (13)

hold simultaneously.

7 Optimal harvesting policy: equilibrium solution
and the dynamic optimization

In this section, our objective is to maximise the objec-
tive functional J of the harvesting model (4) given by

J =
∫ ∞

0
e−δt [p1q1x + p2q2 y − c]E(t)dt (14)

where δ denotes the instantaneous annual rate of dis-
count, subject to the state equations (7) by invoking
Pontryagin’s Maximum Principle [39] and the control
constraints

0 ≤ E(t) ≤ Emax.
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At the optimal level of R the optimal steady state solu-

tion (xδ, yδ) can be computed from
∂ R

∂x
= ∂ R

∂y
= 0 as

xδ = 1

[{(b12l)(1−p)(b12u)p p1 + (b21l)(1−p)(b21u)p p2}2 − 4p1 p2(b11l)(1−p)(b11u)p(b22l)(1−p)(b12u)p]
×[{(b12l)

(1−p)(b12u)p p1 + (b21l)
(1−p)(b21u)p p2}{(r2l)

(1−p)(r2u)p p2

+ (b12l)
(1−p)(b12u)pc1

+ (b22l)
(1−p)(b22u)pc2} − 2(b22l)

(1−p)(b22u)p p2{(r1l)
(1−p)(r1u)p p1

+ (b11l)
(1−p)(b11u)pc1

+ (b21l)
(1−p)(b21u)pc2}]

and

yδ = 1

[{(b12l)(1−p)(b12u)p p1 + (b21l)(1−p)(b21u)p p2}2 − 4p1 p2(b11l)(1−p)(b11u)p(b22l)(1−p)(b12u)p]
×[{(b12l)

(1−p)(b12u)p p1 + (b21l)
(1−p)(b21u)p p2}{(r1l)

(1−p)(r1u)p p1 + (b11l)
(1−p)(b11u)pc1

+ (b21l)
(1−p)(b21u)pc2} − 2(b11l)

(1−p)(b11u)p p1{(r2l)
(1−p)(r2u)p p2 + (b12l)

(1−p)(b12u)pc1

+ (b22l)
(1−p)(b22u)pc2}].

Here, we have taken c = c1q1 + c2q2 so that
c1q1x E = cost of harvesting the x-species at a rate

q1x E and
c2q2 yE = cost of harvesting the y-species at a rate

q2 yE .

Now, (xδ, yδ) lies in the first quadrant of the phase
plane iff

{(b12l )
(1−p)(b12u)p p1 + (b21l )

(1−p)(b21u)p p2}2 > or <

4p1 p2(b11l )
(1−p)(b11u)p(b22l )

(1−p)(b12u)p. (15)

So, we came to the following theorem:

Theorem 6 The optimal steady state solution (xδ, yδ)

lies in the first quadrant of the phase plane iff the con-
dition (15) is satisfied.

Now, the Hamiltonian function for the dynamic opti-
mization problem is

H = λ0e−δt [p1q1x + p − 2q2 y − c]E

+ λ1[x{(r1l)
(1−p)(r1u)p − (b11l)

(1−p)(b11u)px

− (b12l)
(1−p)(b12u)p y} − q1 Ex]

+ λ2[y{(r2l)
(1−p)(r2u)p − (b22l)

(1−p)(b22u)p y

− (b21l)
(1−p)(b21u)px} − q2 Ey] (16)

where λ0, λ1 and λ2 are adjoint variables. All the
adjoint variables must not be zero simultaneously for

the existence of an optimal control E = Eδ(t) and the
corresponding responses x = xδ(t), y = yδ(t). We
will proceed with the case δ = 0 in the subsequent

analysis [3,14].

The adjoint equations are

dλ1

dt
= −∂ H

∂x
= −λ0 p1q1 E − λ1[(r1l)

(1−p)(r1u)p

− 2(b11l)
(1−p)(b11u)px

− (b12l)
(1−p)(b12u)p y − q1 E]

− λ2(b21l)
(1−p)(b21u)p y (17)

and

dλ2

dt
= −∂ H

∂y
= −λ0 p2q2 E − λ1(b12l)

(1−p)(b12u)px

− λ2[(r2l)
(1−p)(r2u)p − 2(b22l)

(1−p)(b22u)p y

− (b21l)
(1−p)(b21u)px − q2 E]. (18)

The optimal control and its responses must satisfy the
following condition [20]:

H(xδ(t), yδ(t), Eδ(t), λ1(t), λ2(t)) = 0. (19)

As the optimal control E∗(t)maximises H(xδ(t), yδ(t),
Eδ(t), λ1(t), λ2(t)) along an optimal trajectory with
respect to all admissible controls, we must have

∂ H

∂ E
= HE > 0 ⇒ Eδ(t) = Emax, (20)

∂ H

∂ E
= HE < 0 ⇒ Eδ(t) = 0. (21)
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The Hamiltonian H is a linear function of E, so the
singular control exists if

HE = λ0[p1q1x + p2q2 y − c]
− λ1q1x − λ2q2 y = 0. (22)

Now,

DHE = λ0 p1q1x{(r1l)
(1−p)(r1u)p

− (b11l)
(1−p)(b11u)px−(b12l)

(1−p)(b12u)p y}
+ λ0 p2q2 y{(r2l)

(1−p)(r2u)p

− (b22l)
(1−p)(b22u)p y−(b21l)

(1−p)(b21u)px}

− λ1q1(b11l)
(1−p)(b11u)px2

− λ2q2(b22l)
(1−p)(b22u)p y2

+[λ1(b12l)
(1−p)(b12u)pq2

+ λ2(b21l)
(1−p)(b21u)pq1]xy, (23)

where D ≡ d
dt .

Here, DHE = 0 gives

λ0 p1q1x{(r1l)
(1−p)(r1u)p − (b11l)

(1−p)(b11u)px

− (b12l)
(1−p)(b12u)p y}

+ λ0 p2q2 y{(r2l)
(1−p)(r2u)p

− (b22l)
(1−p)(b22u)p y − (b21l)

(1−p)(b21u)px}
− λ1q1(b11l)

(1−p)(b11u)px2

− λ2q2(b22l)
(1−p)(b22u)p y2

+[λ1(b12l)
(1−p)(b12u)pq2

+ λ2(b21l)
(1−p)(b21u)pq1]xy = 0. (24)

We take λ0 > 0 and without any loss of generality we
will proceed with λ0 = 1. Now, (22) and (24) can be
written as

λ1q1x + λ2q2 y − A = 0 (25)

and

λ1[q1(b11l)
(1−p)(b11u)px2

− q2(b12l)
(1−p)(b12u)pxy]

− λ2[q2(b22l)
(1−p)(b22u)p y2

− q1(b21l)
(1−p)(b21u)pxy] − B = 0 (26)

where

A = p1q1x + p2q2 y − c

and

B = p1q1x{(r1l)
(1−p)(r1u)p

− (b11l)
(1−p)(b11u)px − (b12l)

(1−p)(b12u)p y}
+ p2q2 y{(r2l)

(1−p)(r2u)p

− (b22l)
(1−p)(b22u)p y − (b21l)

(1−p)(b21u)px}.
Solving (25) and (26), we get

λ1 = A[q2(b22l)
(1−p)(b22u)p y − q1(b21l)

(1−p)(b21u)px] − Bq2

q1[q2(b22l)(1−p)(b22u)p y − q1(b21l)(1−p)(b21u)px] − q2[q1(b11l)(1−p)(b11u)px − q2(b12l)(1−p)(b12u)p y] ,
(27)

λ2 = A[q1(b11l)
(1−p)(b11u)px − q2(b12l)

(1−p)(b12u)p y] − Bq1

q2[q1(b11l)(1−p)(b11u)px − q2(b12l)(1−p)(b12u)p y] − q1[q2(b22l)(1−p)(b22u)p y − q1(b21l)(1−p)(b21u)px] .
(28)

Now,

D2 HE = λ1 K + λ2L + E M + N = 0 (29)

where

K = (b12l )
(1−p)(b12u)px[q2(b22l )

(1−p)(b22u)p y2

− q1(b21l )
(1−p)(b21u)pxy]

+ [q1(b11l )
(1−p)(b11u)px2

− q2(b12l )
(1−p)(b12u)pxy][(r1l )

(1−p)(r1u)p

− 2(b11l )
(1−p)(b11u)px

− (b12l )
(1−p)(b12u)p y]

+ (b12l )
(1−p)(b12u)pq2xy[{(r1l )

(1−p)(r1u)p

+ (r2l )
(1−p)(r2u)p}

− x{(b11l )
(1−p)(b11u)p

+ (b21l )
(1−p)(b21u)p}

− y{(b22l )
(1−p)(b22u)p

+ (b12l )
(1−p)(b12u)p}]

− 2q1(b11l )
(1−p)(b11u)px2[(r1l )

(1−p)(r1u)p

− (b11l )
(1−p)(b11u)px − (b12l )

(1−p)(b12u)p y],
L = (b21l )

(1−p)(b21u)p y[q1(b11l )
(1−p)(b11u)px2

− q2(b12l )
(1−p)(b12u)pxy]

+ [q2(b22l )
(1−p)(b22u)p y2

− q1(b21l )
(1−p)(b21u)pxy][(r2l )

(1−p)(r2u)p

− 2(b22l )
(1−p)(b22u)p y

− (b21l )
(1−p)(b21u)px]

+ (b21l )
(1−p)(b21u)pq1xy[{(r1l )

(1−p)(r1u)p
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+ (r2l )
(1−p)(r2u)p}

− x{(b11l )
(1−p)(b11u)p

+ (b21l )
(1−p)(b21u)p} − y{(b22l )

(1−p)(b22u)p

+ (b12l )
(1−p)(b12u)p}]

− 2q2(b22l )
(1−p)(b22u)p y2[(r2l )

(1−p)(r2u)p

− (b22l )
(1−p)(b22u)p y − (b21l )

(1−p)(b21u)px],
M = (p1 − λ1)q1[q1(b11l )

(1−p)(b11u)px2

− q2(b12l )
(1−p)(b12u)pxy] − λ1(q1 + q2)

× q2(b12l )
(1−p)(b12u)pxy

+ 2λ1q2
1 (b11l )

(1−p)(b11u)px2

+ (p2 − λ2)q2[q2(b22l )
(1−p)(b22u)p y2

− q1(b21l )
(1−p)(b21u)pxy]

− λ2(q1 + q2)q1(b21l )
(1−p)(b21u)pxy

+ 2λ2q2
2 (b22l )

(1−p)(b22u)p y2

− q1x[p1q1(r1l )
(1−p)(r1u)p

− 2p1q1(b11l )
(1−p)(b11u)px]

− q2 y[p2q2(r2l )
(1−p)(r2u)p

− 2p2q2(b22l )
(1−p)(b22u)p y]

+ xy(q1 + q2)[p1q1(b12l )
(1−p)(b12u)p

+ p2q2(b21l )
(1−p)(b21u)p]

and

N = x[(r1l)
(1−p)(r1u)p

− (b11l )
(1−p)(b11u)px

− (b12l )
(1−p)(b12u)p y][p1q1(r1l)

(1−p)(r1u)p

− 2p1q1(b11l)
(1−p)(b11u)px]

+ y[(r2l )
(1−p)(r2u)p

− (b22l )
(1−p)(b22u)p y

− (b21l )
(1−p)(b21u)px]

× [p2q2(r2l)
(1−p)(r2u)p − 2p2q2(b22l)

(1−p)(b22u)p y]
− xy[p1q1(b12l)

(1−p)(b12u)p

+ p2q2(b21l)
(1−p)(b21u)p]

× [{(r1l )
(1−p)(r1u)p + (r2l)

(1−p)(r2u)p}
− x{(b11l)

(1−p)(b11u)p

+ (b21l )
(1−p)(b21u)p} − y{(b22l)

(1−p)(b22u)p

+ (b12l )
(1−p)(b12u)p}].

Hence

(D2 HE )E = p1q2
1 x[(b11l )

(1−p)(b11u)px

+ (b12l )
(1−p)(b12u)p y − (r1l )

(1−p)(r1u)p]
+ p2q2

2 y[(b22l )
(1−p)(b22u)p y

+ (b21l )
(1−p)(b21u)px − (r2l )

(1−p)(r2u)p]
+ 2p1q2

1 (b11l )
(1−p)(b11u)px2

+ 2p2q122(b22l )
(1−p)(b22u)p y2

+ q2
2 y[λ2(b22l )

(1−p)(b22u)p y

− λ1(b12l )
(1−p)(b12u)px]

+ q2
1 x[λ1(b11l )

(1−p)(b11u)px

− λ2(b21l )
(1−p)(b21u)p y]. (30)

In order to ensure the existence of an optimal singular
control, it is required to satisfy the generalised Legen-
dre condition

(D2 HE )E ≥ 0. (31)

Now, the condition (31) will be satisfied if and only if
the following constraints hold:

(i)(b11l)
(1−p)(b11u)px + (b12l)

(1−p)(b12u)p y

− (r1l)
(1−p)(r1u)p ≥ 0,

(i i)(b22l)
(1−p)(b22u)p y + (b21l)

(1−p)(b21u)px

− (r2l)
(1−p)(r2u)p ≥ 0,

(i i i)(b11l)
(1−p)(b11u)p(b22l)

(1−p)(b22u)p

≥ (b12l)
(1−p)(b12u)p(b21l)

(1−p)(b21u)p. (32)

The constraints (i) and (i i) of (32) imply that the bio-
nomic optimal equilibrium solution (xδ, yδ) is estab-
lished at a stage when both the populations exibit a
decelining trend.

Using (19) and (22), the singular extremal trajectory
obtained as

λ1x[(r1l)
(1−p)(r1u)p

− (b11l)
(1−p)(b11u)px − (b12l)

(1−p)(b12u)p y]
λ2 y[(r2l)

(1−p)(r2u)p

− (b22l)
(1−p)(b22u)p y − (b21l)

(1−p)(b21u)px] = 0.

(33)

Now, the equation

D2 HE = 0 (34)

with (27) and (28) gives the optimal singular control
Eδ(t) in terms of the optimal population levels of the
two species.

8 Numerical simulations

We first consider the case when q1 = 0.2, q2 =
0.5, E = 15, p = 0 with the imprecise biological para-
meter values given in Table 1 and the initial conditions
(x(0), y(0)) = (0.5, 0.5). Then the condition of The-
orem 1 is satisfied, and the trivial equilibrium point
E0(0, 0) is locally asymptotically stable. Using these
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Table 1 Parameter values
for Figs. 4–7 & 8–13

Parameter Value

r1l 2.5

r1u 2.7

r2l 3

r2u 3.5

b11l 0.2

b11u 0.6

b12l 0.3

b12u 0.7

b21l 0.1

b21u 0.5

b22l 0.6

b22u 0.9
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Fig. 4 Time series plot of the two species population (x, y)
using the imprecise parameter values given in Table 1 with
q1 = 0.2, q2 = 0.5, E = 15, p = 0 and initial conditions
(x(0), y(0)) = (0.5, 0.5)

parameter values and the initial condition the dynam-
ics of the model is graphically presented in Fig. 4.
This figure shows that both the species population
(x, y) decline to zero, i.e. approaches the trivial equi-
librium E0, which supports our mathematical result
given in Theorem 1. Next, we consider the case when
q1 = 0.2, q2 = 0.5, E = 10, p = 0 with the imprecise
biological parameter values given in Table 1 and the ini-
tial conditions (x(0), y(0)) = (0.5, 0.5). Then the con-
dition stated in Theorem 2 is satisfied, which implies
that the axial equilibrium E1(x̄, 0) is locally asymp-
totically stable, other axial equilibrium E2(0, ỹ) does
not exist, and the trivial equilibrium E0(0, 0) becomes
unstable. The dynamics of the model according to this
case is graphically presented in Fig. 5, which shows that
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Fig. 5 Time series plot of the two species population (x, y)
using the imprecise parameter values given in Table 1 with
q1 = 0.2, q2 = 0.5, E = 10, p = 0 and initial conditions
(x(0), y(0)) = (0.5, 0.5)

the first species population (x) exists, and the second
species population (y) goes to extinct, i.e. the system
approaches the axial equilibrium E1. This result sup-
ports our analytical results stated in Theorem 2.

Considering q1 = 0.5, q2 = 0.3, E = 6, p = 0
with the imprecise biological parameter values given
in Table 1 and the initial conditions (x(0), y(0)) =
(0.5, 0.5), we find that the condition of Theorem 3 is
satisfied. This implies that using these parameter val-
ues the axial equilibrium E2(0, ỹ) = (0, 2) is locally
asymptotically stable, other axial equilibrium E1(x̄, 0)

does not exist, and the trivial equilibrium E0(0, 0)

becomes unstable. This case is graphically presented in
Fig. 6, which shows that the first species (x) declines
to zero and the second species (y) exists, i.e. the sys-
tem approaches the axial equilibrium E2. This numer-
ical verification is in good agreement with our analyt-
ical result stated in Theorem 3. Finally, we consider
q1 = 0.2, q2 = 0.5, E = 3, p = 0 with the imprecise
biological parameter values given in Table 1 and the
initial condition (x(0), y(0)) = (0.5, 0.5). Using these
values, we find that the conditions given in Theorem 4
are satisfied, which imply that the interior equilibrium
E∗(x∗, y∗) = (7.66667, 1.22222) becomes locally
asymptotically stable. The dynamics of the model is
graphically presented in Fig. 7, which shows that both
the species population (x, y) exist, i.e. the population
tends to the interior equilibrium E∗. This supports our
analytical results stated in Theorem 4.
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Fig. 6 Time series plot of the two species population (x, y)
using the imprecise parameter values given in Table 1 with
q1 = 0.5, q2 = 0.3, E = 6, p = 0 and initial conditions
(x(0), y(0)) = (0.5, 0.5)
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using the imprecise parameter values given in Table 1 with
q1 = 0.2, q2 = 0.5, E = 3, p = 0 and initial conditions
(x(0), y(0)) = (0.5, 0.5)

Next, we consider the imprecise biological para-
meter values given in Table 2 with q1 = 0.5, q2 =
0.6, E = 4.8, p = 0. Using these values, xy-plane
projection of the solution for various initial values
is presented in Fig. 8. This figure shows that all
the four equilibria of the system exist. But only the
axial equilibria E1(x̄, 0) = (0.5, 0) and E2(0, ỹ) =
(0, 0.4) are locally asymptotically stable, and the
trivial equilibrium E0(0, 0) and the interior equilib-
rium E∗(x∗, y∗) = (0.0882353, 0.164706) are unsta-
ble.

Table 2 Parameter values
for Fig. 8

Parameter Value

r1l 2.5

r1u 2.7

r2l 3

r2u 3.5

b11l 0.2

b11u 0.6

b12l 0.5

b12u 0.7

b21l 0.8

b21u 0.9

b22l 0.3

b22u 0.3
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Fig. 8 xy-plane projection of the solution using the imprecise
parameter values given in Table 2 with q1 = 0.5, q2 = 0.6, E =
4.8, p = 0 with various initial conditions

Considering the biological parameters as given in
Table 1, q1 = 0.2, q2 = 0.5, E = 15 and the ini-
tial condition (x(0), y(0)) = (0.5, 0.5), we present
the dynamics of the model for different values of
p (p = 0, 0.3, 0.5, 0.8, 1) in Fig. 9a–e. These fig-
ures show that the trivial equilibrium point E0(0, 0)

always exists for all values of p ∈ [0, 1]. Consider-
ing the parameter values as in the previous case with
E = 10, we present the dynamics of the model for dif-
ferent values of p (p = 0, 0.3, 0.5, 0.8, 1) in Fig. 10a–
e. These figures show that the axial equilibrium E1

exists for all values of p ∈ [0, 1]. But the values are
different for different values of p. Fig. 9f shows that
the value of x species is decreasing with increasing
p.
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Fig. 9 Time series plot of the two species population (x, y) using the imprecise parameter values given in Table 1 with q1 = 0.2, q2 =
0.5, E = 15 and initial conditions (x(0), y(0)) = (0.5, 0.5) for a p = 0, b p = 0.3, c p = 0.5, d p = 0.8 and e p = 1
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Fig. 10 Time series plot of the two species population (x, y)
using the imprecise parameter values given in Table 1 with q1 =
0.2, q2 = 0.5, E = 10 and initial conditions (x(0), y(0)) =
(0.5, 0.5) for a p = 0, b p = 0.3, c p = 0.5, d p = 0.8, e

p = 1 and f Dynamical behaviour of the two species population
(x, y) with respect to p when the values of other parameters are
same
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Fig. 11 Time series plot of the two species population (x, y)
using the imprecise parameter values given in Table 1 with
q1 = 0.5, q2 = 0.3, E = 6 and initial conditions (x(0), y(0)) =

(0.5, 0.5) for a p = 0, b p = 0.3, c p = 0.5, d p = 0.8, e p = 1
and f Dynamical behaviour of the two species population (x, y)
with respect to p when the values of other parameters are same
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Fig. 12 Time series plot of the two species population (x, y)
using the imprecise parameter values given in Table 1 with
q1 = 0.2, q2 = 0.5, E = 3 and initial conditions (x(0), y(0)) =

(0.5, 0.5) for a p = 0, b p = 0.3, c p = 0.5, d p = 0.8, e p = 1
and f. Dynamical behaviour of the two species population (x, y)
with respect to p when the values of other parameters are same
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Fig. 13 Dynamical behaviour of the two species population
(x, y) with respect to E when the imprecise parameter values
given in Table 1 with q1 = 0.2, q2 = 0.5, p = 0 and initial
conditions (x(0), y(0)) = (0.5, 0.5)

In the Fig. 11a–e, we present the dynamics of the
model for different values of p (p = 0, 0.3, 0.5, 0.8, 1)

using the parameter values given in Table 1 with
q1 = 0.5, q2 = 0.3, E = 6 and the initial condition
(x(0), y(0)) = (0.5, 0.5). These figures show that the
axial equilibrium E2 exists for all values of p ∈ [0, 1].
But the values are different for different values of p.

Fig. 10f shows that the value of y species is decreasing
very slowly with increasing p. The dynamics of the
model with q1 = 0.5, q2 = 0.3, E = 3, the impre-
cise biological parameter values given in Table 1 and
the initial conditions (x(0), y(0)) = (0.5, 0.5), is pre-
sented in Fig. 12a–e for different values of p (p =
0, 0.3, 0.5, 0.8, 1). These figures show that the interior
equilibrium E∗ exists for all values of p ∈ [0, 1], but
the values are different for different values of p.Fig. 11f
shows that both the species population decrease with
increasing p, but x species is decreasing rapidly where
as y species is decreasing slowly.

Figure 13 shows the dynamical behaviour of the two
species population (x, y) with respect to the harvesting
effort E considering the biological parameters as given
in Table 1 with q1 = 0.2, q2 = 0.5, p = 0 and the
initial condition (x(0), y(0)) = (0.5, 0.5). This figure
shows that the equilibrium point changes for different
values of E . In this figure, we observe that for small
value of E (0 < E ≤ 6) both the species population
exist. When E takes large values (6 < E ≤ 12.5),

only x species exists and y species goes to extinct.
For higher values of E (E > 12.5) both the species

decline to zero. So, we can conclude that the combined
harvesting effort (E) plays a key role in the stability of
the equilibrium points of our system.

9 Discussions and conclusions

In this Paper, we have developed a two species competi-
tion model with harvesting. The equations of the model
are obtained from the classical equations (Gause’s
Model) using combined harvesting effort E . Most
of the harvesting models are generally based on the
assumption that the biological parameters are pre-
cisely known. But in reality the scenario is different
as always it is not possible to know the values of all
biological parameters precisely. In this paper, we have
developed a method to discuss the dynamical behav-
iour of the two species competition model with har-
vesting using some imprecise parameters. Here, we
have developed the concept of imprecise parameters to
the model by considering the population growth rates
(r1l , r1u, r2l , r2u), the coefficients of intraspecific com-
petition (b11l , b11u, b22l , b22u), the rate at which pres-
ence of the first species affects the growth of the second
species (b21l , b21u), and the rate at which presence of
the second species affects the growth of the first species
(b12l , b12u) are imprecise in nature for the lack of pre-
cise numerical information.

We have discussed the existence and stability of var-
ious equilibrium points of our system. We have also
analysed the bionomic equilibrium of the harvesting
model. It is observed that the exploited system may
have a stable bionomic equilibrium with positive pop-
ulation levels for both the species. There also may exists
a bionomic equilibrium with positive population level
only for first species and another bionomic equilibrium
with positive population level only for second species.
We may also notice that the existence of such a bio-
nomic equilibrium depends critically on the biologi-
cal parameters (r1l , r1u, r2l , r2u, b11l , b11u, b12l , b12u,

b21l , b21u, b22l , b22u), technological parameters (q1,

q2) and the economical parameters (p1, p2, c).
The most important part of this paper is to set up an

optimal control problem with the harvesting effort E(t)
as the control variable so as to maximise the objective
functional J given in (17). We have derived the equilib-
rium solution of the control problem. Dynamical opti-
mization of the harvest policy is then carried out taking
E(t) as a dynamic variable. Next the singular optimal
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control E∗(t) is derived in terms of the optimal popula-
tion levels of the two species by invoking Pontryagin’s
Maximum Principle.

The important mathematical results for the dynam-
ical behaviour of the two species competition model
with harvesting are also numerically verified using
MATLAB with some imprecise parameter values.
The ability of calculating the biological equilibrium
points, bionomic equilibrium points and discussing
their nature, then developing optimal harvesting pol-
icy with some imprecise parameter values and finally
verifying all the mathematical results using numeri-
cal simulation with some imprecise parameters are no
doubt very realistic and helpful in both mathematical
and ecological points of view.

Finally, we conclude that our system of two com-
peting species with combined harvesting exhibits very
interesting dynamics. But the mathematical model pre-
sented in this paper should be treated with circum-
spection due to the assumptions made and the diffi-
culty in the estimation of the model parameters. In this
paper some of the model parameters are taken impre-
cise in nature, which makes the situation more realistic
as always it is not possible to know the parameter values
precisely. In this paper we have considered imprecise-
ness only in the biological parameters. But imprecise-
ness of fishing cost and price per unit biomass of the
two species of the harvesting model are also possible
and reasonable. So, as a part of future work we can
incorporate the impreciseness of the technological and
economic parameters to improve our model.
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