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Abstract This paper proposes a data-driven stability
criterion for quadratic stabilization of unknown nonlin-
ear discrete-time systems. The novelty of this quadratic
stability criterion lies in the direct use of the time
series of system states, instead of using mathematical
models. The data-driven stability criterion is utilized
to design a control for stabilizing unknown nonlinear
systems using online black-box system identification.
The effectiveness and the adaptability of the proposed
approach are compared with those of adaptive feedback
linearization method with an example of stabilizing a
nonlinear aeroelastic system.

Keywords Data-driven · Quadratic Lyapunov
function · Quadratic stabilization · Unknown system ·
Recurrent neural network

1 Introduction

Quadratic stability and stabilization are important top-
ics in stability analysis and control of dynamical sys-
tems. A system is said to be quadratic stable if there
exists a Quadratic Lyapunov function (QLF) whose
derivative (or first-order difference in discrete time)

F. Zhang (B) · D. Söffker
Chair of Dynamics and Control, University
of Duisburg-Essen, Duisburg, Germany
e-mail:fan.zhang@uni-due.de

D. Söffker
e-mail:soeffker@uni-due.de

along the system trajectories is negative [3]. While in
the beginning of 1990s, the study of quadratic stabil-
ity concentrated on systems with uncertainties [5,15,
20,25,28], in the past decade, this topic has been more
intensively investigated in switched systems [2,13,26,
34] or fuzzy dynamical systems [10,16,19,21].

The main issue in the research of quadratic stability
is the sufficient and necessary condition of the exis-
tence of a QLF. Nevertheless, the existing results about
quadratic stability conditions, such as those mentioned
above, are model-based. These approaches rely on the
accuracy of the mathematical model describing system
dynamics. If a mathematical model is difficult to be
established precisely enough or unavailable, then con-
trollers that are designed based on model-based stabil-
ity conditions may lead to bad control performance or
even failure of stabilization.

Consider a system trajectory starting from the ini-
tial time to an arbitrary time instant. According to the
definition of quadratic stability, a system is quadratic
stable if a QLF exists for arbitrary trajectories. If it can
be known under which condition a QLF exist for the
concerned trajectory, then the system can be controlled
to be quadratic stable, as long as at any time instant the
trajectory of system under control satisfy this condition
of QLF existence. Under this circumstance, the mathe-
matical system model is not necessarily known, and the
model-related stabilization problems mentioned above
can be avoided.

Motivated by these concerns, this paper concen-
trates on the data-driven realization of quadratic sta-
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bility judgment and the corresponding control design
of stabilizing nonlinear discrete-time systems. Firstly,
this paper uses the measured data to construct two poly-
hedral cones, and shows that the condition for QLF
existence is identical to the emptiness of the intersec-
tion between these two polyhedral cones. Secondly, this
data-driven stability condition is used to design control
for stabilization problems in combination with online
system identification.

It should be noticed that the proposed control has
no specific requirement for the choice of system iden-
tification approaches, as long as they can manage one-
step black-box model prediction online. In this paper,
the online system identification method using recur-
rent neural network (RNN) is chosen due to its good
performance in dealing with black-box modeling of an
arbitrary unknown nonlinear system [9,27].

Two assumptions have to be made at present stage
of this contribution: (i) all system states are measur-
able, and (ii) the measurements are free of noise. The
first assumption is made because the quadratic stabil-
ity discussed in this paper is in the sense of Lyapunov
stability, which is defined on the complete observation
of system trajectory (Definition 1 in Sect. 2.1). The
second assumption is made because the proposed data-
driven stability condition is based on system states,
which means that a small variation of true values in
system states may probably lead to intolerable bias in
the geometrical representation of stability conditions
and untrue judgment of system stability.

The paper is organized as follows: at first, the
problem definition of quadratic stability and stabiliza-
tion is introduced in Sect. 2; secondly, the proposed
data-driven quadratic stability criterion is presented in
Sect. 3; after that, the stabilization using the proposed
stability condition is introduced in Sect. 4; in Sect. 5, a
numerical example of stabilizing a nonlinear aeroelas-
tic system is presented; finally, this contribution is con-
cluded in the last section of the paper.

2 Problem definition

2.1 Data-driven quadratic stability

The discrete-time nonlinear system considered for sta-
bility analysis is described by

x(k + 1) = f (x(k)), (1)

where f (·) : Ω → R
n is a smooth mapping from

a compact set Ω ⊂ R
n into R

n and x the state vec-
tor defined in Ω . According to [3], the definition of
quadratic stability for system (1) can be stated as

Definition 1 The system (1) is quadratic stable if
there exists a positive definite matrix P such that
the first-order difference of the function V (x (k)) =
x (k)T P x (k) along the solution of system (1) satis-
fies

�V (x(k)) = V (x(k + 1))− V (x(k))

= V ( f (x(k)))− V (x(k)) < 0.

Correspondingly, the function V (x (k)) is called
quadratic Lyapunov function (QLF). If in addition P
is diagonal, then V (x (k)) is called diagonal quadratic
Lyapunov function (DQLF) and the system (1) is diag-
onally quadratic stable.

In the data-driven context, the existence of a QLF
cannot be determined by using the analytical form of
f (x) because it is assumed as unknown. Assume that
the system (1) be fully observable, and the system states
be measured without noise. At the time instant t = r ,
the data set containing r consecutive measurements of
system states can be denoted as

Xr = {x(1), ... , x(r)} . (2)

As mentioned in the introduction section, the data-
driven quadratic stability judgment needs only to judge
the stability of the currently running motion of the con-
cerned system, i.e., the measured states of the running
trajectory, but not the existence of the QLF for the
global state space of the system. Therefore, the objec-
tive of this paper is defined as to determine the exis-
tence of a QLF for the complete system trajectory under
initial condition x(1) = x0. The system is judged as
quadratic stable if and only if a QLF can be found based
on the measured data.

2.2 Stabilization using data-driven stability condition

Consider the nonlinear discrete-time system

x(k + 1) = f (x(k), u(k)), (3)

where x denotes the state vector and u the control input.
The quadratic stabilization problem related to system
(3) is to design a control input
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u(k) = u(x(k), x(k − 1), ... , x(k − l)), (4)

where l is an integer and l < k, such that the origin
x = 0 in the state space of the system (3) with control
input (4) is a uniformly asymptotic stable equilibrium
point [14].

In this paper, the known information at an arbitrary
instant t = r is only the measurement of historical
states, i.e., the vector set Xr defined in Eq. (2). The
structural and physical information of the nonlinear
function f (·) described in (3) is assumed unknown.
The objective is to determine the suitable control input
u(k) online to stabilize the system (3), with the mea-
sured system trajectory being the only utilizable infor-
mation.

3 Data-driven quadratic stability criterion

3.1 Geometrical preliminaries

Necessary geometric concepts used in this paper are
briefly summarized in this subsection. Most of the geo-
metrical definitions are taken from [6].

The convex hull for a vector set C, denoted as
conv C, is defined as the minimal convex set con-
taining C, i.e., conv C = {Σm

i=1θi xi |xi ∈ C, θi ≥
0, Σm

i=1 θi = 1, i = 1, ... , m}. A convex conic hull
of a set C is the smallest convex cone for a vector
set C defined as cone C = {Σm

i=1θi xi |xi ∈ C, θi ≥
0, i = 1, ... m}. The set cone Co, which is defined as
cone Co = { y|xT y ≤ 0, for all x ∈ cone C}, is called
the polar cone of cone C.

A set C is said to be a convex polyhedron if it can
be written as conv C = {x|Ax ≥ b} for some matrix
A and vector b. A set C is a polyhedral cone if it can
be represented by the above form of a polyhedron with
b = 0, denoted as cone(A). A typical example of a
polyhedral cone is the R

n+.
A polyhedral cone has two representation methods:

the H-representation utilizing the form of the set of
inequalities with respect to a matrix A, denoted as
cone(A), and the V-representation utilizing the conic
combination of the vectors within a set C, denoted as
cone C. The Carathéodory theorem [7] shows that if the
set Cp contains the extreme rays of the cone defined by
C, then the polyhedral cone cone Cp is identical the
polyhedral cone cone C.

3.2 The necessary and sufficient condition for one
trajectory

Denote the vector obtained by left-multiplying an
orthogonal matrix Φ to the vector x(k) of the con-
cerned trajectory as x̃(k), x̃(k) = Φx(k). Define a
transformation for every vector x̃(k) as

ṽ(k) = x̃(k + 1) ◦ x̃(k + 1)− x̃(k) ◦ x̃(k, (5)

where ṽ(k) represents the corresponding transformed
vector, and ◦ represents the calculation of Hadamard
product [12] defined by

a ◦ b = [a j b j ], j = 1, ... , n. (6)

In (6), the symbols a and b represent two arbitrary n-
dimensional vectors with a j and b j being their compo-
nents, respectively. Unlike the inner products between
two vectors, the calculation ◦ establish a manipulation
from two vectors to a new vector.

Applying the proposed vector manipulation to all
the elements within the data set Xr defined in Eq. (2)
for r = ∞, a new vector set of ṽ(k) can be obtained.
Denote the complete vector set of ṽ(k), k = 1 , ... , ∞,
as Ṽ∞, and the convex conic hull (the smallest convex
cone) determined by Ṽ∞ as cone Ṽ∞. Correspondingly,
the polar cone of cone Ṽ∞, denoted as cone Ṽo∞, can
be represented as

cone Ṽo∞
=

{
y|ṽT (k) y ≤ 0, ṽ(k) ∈ cone Ṽ∞, y ∈ R

n
}

. (7)

Consider the nonlinear discrete-time system (1) with
an equilibrium point at the origin of its state space. The
necessary and sufficient condition of the existence of a
QLF for the considered system trajectory Xr , r = ∞,
can be given as the following theorem 1.

Theorem 1 The trajectory Xr , r = ∞, of the nonlin-
ear discrete-time system (1) is quadratic stable, if and
only if there exists an orthogonal matrix Φ such that
the following two conditions are satisfied:

1. The convex cone cone Ṽ∞ is a proper cone.
2. The polar cone cone Ṽo∞ defined in (7) satisfies

int
(

cone Ṽo∞ ∩ R
n+
)

= ∅ , (8)

where int (·) represents the interior of a set, and ∅

represents an empty set.
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Proof To prove sufficiency, denote an arbitrary vector
whose entries are real positive numbers as d, d ∈ R

n+,

belongs to the set int
(

cone Ṽo∞ ∩ R
n+
)

. If the convex

cone cone Ṽ∞ is a proper cone, the polar cone cone Ṽo∞
is also proper and has non-empty interior, which indi-
cates that d also belongs to int (cone Ṽo∞).

According to the definition of the polar cone
cone Ṽo∞ in (7), it can be obtained that for all the trans-
formed vectors in the data set Ṽ∞, the following con-
dition holds

〈d, ṽ(k)〉 ≤ 0, d ∈ R
n+, k = 1, ... , ∞, (9)

where 〈·〉 represents the inner product. Because d ∈
int (cone Ṽo∞), where int (cone Ṽo∞) is a convex set,
the above inequality can be specified as

〈d, ṽ(k)〉 < 0, d ∈ R
n+, k = 1, ... , ∞, (10)

Using the definition of ṽ(k) in (5), the inner product
between ṽ(k) and d in (10) can be represented as

〈ṽ(k), d〉 = dT (x̃(k + 1) ◦ x̃(k + 1)− x̃(k) ◦ x̃(k)) .

(11)

Define a diagonal matrix D as D = diag [d]. Obvi-
ously D is positive definite because it is diagonal and
its diagonal elements vector d belongs to R

n+. With
notation that

x̃(k + 1) ◦ x̃(k + 1) = diag [x̃(k + 1)]x̃(k + 1) ,

dT diag[x̃(k + 1)] = x̃T (k + 1) diag[d] , (12)

and the similar relations for d and x̃(k), one can obtain
the following equation by substituting (11) and (12)
into the inequality (10), as

〈ṽ(k), d〉 = x̃T (k + 1) diag [d] x̃(k + 1)

−x̃T (k) diag [d] x̃(k)

= x̃T (k + 1) D x̃(k + 1)

−x̃T (k) D x̃(k) < 0. (13)

Because x̃(k) is defined as x̃(k) = Φx(k), the Eq. (13)
can be represented as

〈ṽ(k), d〉 = xT (k+1) Q x(k+1)−xT (k) Q x(k) < 0,

(14)

where the matrix Q is defined as Q = ΦT DΦ.
Because D is a positive definite diagonal matrix and Φ

is an orthogonal matrix, the matrix Q is also positive
definite. Therefore, according to the definition of QLF it
can be seen that the function V (x(k)) = xT (k) Q x(k)

is a QLF for the concerned trajectory of the nonlinear
discrete-time system (1), because Q is a positive defi-
nite matrix and �V (x(k)) = x(k + 1)T Q x(k + 1)−
x(k)T Q x(k) ≤ 0. This proves the sufficiency of the
proposed theorem.

To prove the necessity, suppose there exist a QLF
for the concerned trajectory, denoted as Vd(x(k)) =
x(k)T Q̂ x(k). The matrix Q̂ can be decomposed as

Q̂ = Φ̂
T

diag [d̂]Φ̂, (15)

with d̂ ∈ R
n+ being the eigenvalues of Q̂ and Φ̂ the

eigenvector matrix. Clearly diag [d̂] is a positive diag-
onal matrix, and Φ̂ is an orthogonal matrix, because Q̂
is positive definite.

Because x(k+ 1)T Q̂ x(k+ 1) = d̂
T

diag [Φ̂x(k+
1)]Φ̂x(k + 1) and x(k)T D̂ x(k) = d̂

T
diag [Φ̂x(k)]

Φ̂x(k), the difference of Vd(x(k)) can be expressed as

�Vd(x(k)) = x(k + 1)T D̃ x(k + 1)− x(k)T D̃ x(k)

= d̂
T

(diag [Φ̂x(k + 1)]Φ̂x(k + 1)

−diag [Φ̂x(k)]Φ̂x(k))

= d̂
T
v(k) < 0, (16)

where

v(k) = diag [Φ̂x(k + 1)]Φ̂x(k + 1)

−diag [Φ̂x(k)]Φ̂x(k)

= x̃(k + 1) ◦ x̃(k + 1)− x̃(k) ◦ x̃(k), (17)

with x̃(k) = Φ̂x(k). It is shown in Eq. (16) that the
inner product of the vector v(k) with a vector d̂, d̂ ∈
R

n+, is always less than zero. Due to this fact, the interior
of the polar cone defined in (7) and constructed with the
orthogonal matrix Φ̂ is not empty, which indicates that
the convex cone constructed by v(k), k = 1, ... , ∞ is
also proper. Furthermore, because d̂ ∈ R

n+, the polar
cone has common elements with the real positive space
R

n+.

In [8], it is shown that the complete set of the matrix
P in QLF can be mapped surjectively from the spe-
cial orthogonal group SO(n, R) and the conventional
topology of R

n+. This mapping can be defined as
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(Φ, d) → P : P = ΦT diag [d]Φ, (18)

where Φ is an orthogonal matrix in SO(n, R), and d
is a real vector in R

n+. Because the mapping (18) is
surjective, which is proven in [8], it can be concluded
that no QLF exists if no element over the complete set
SO(n, R)× R

n+ can be found to construct a QLF, and
vice versa, which is also consistent with the sufficiency
and necessity of theorem 1.

Therefore, theorem 1 shows that the existence of a
QLF can be determined by searching through the spe-
cial orthogonal group SO(n, R) and the conventional
topology of R

n+. It does not require explicitly an ana-
lytical form of the nonlinear function f (·) in system
(1), but the complete time history of system state vec-
tors. This fact makes it possible to apply the above
theorem in the data-driven context to judge quadratic
stability.

3.3 Stability condition for finite time measurements

At the time instant t = r , every system vector x(k) ∈
R

n , k = 1, ... , r − 1, can be transformed with one
certain orthogonal matrix � into a new vector ṽ(k) with
use of the mapping defined in Eq. (5). Correspondingly,
these transformed vectors determine a new vector set,
denoted as Ṽr−1 = {ṽ(k)} , k = 1, ... , r − 1.

It should be noted that the vector set Ṽr−1 is dif-
ferent from the set Ṽ∞ in theorem 1. The reason is
that the set Ṽ is obtained by transforming all the states
vectors x(k) within the measured system states, but
due to the finiteness of the measured data, the vec-
tor set Xr is only a subset of Ω where the nonlinear
mapping f (·) is defined. Thus Ṽr−1 = Ṽ is true only
if r →∞.

The polar cone cone Ṽo
r−1 can be determined by sub-

stituting Ṽ∞ with Ṽr−1 into Eq. (7), as

cone Ṽo
r−1 =

{
y|ṽT y ≤ 0, ṽ ∈ cone Ṽr−1, y ∈ R

n
}

.

(19)

By examining (19), it can be seen that cone Ṽo
r−1 is a

convex cone by adding an inequality constraint−ṽ(r−
1)T d > 0 to cone Ṽo

r−2 , which implies that

cone Ṽo
r−1 =

r⋂
l=1

cone Ṽo
l−1 . (20)

Substituting Eq. (20) into the stability condition (8) in
theorem (1), it can be obtained that

int
(

coneṼo∞ ∩ R
n+
)
= int

((∞⋂
l=1

cone Ṽo
l−1

)
∩ R

n+

)

=
∞⋂

l=1

(
int(coneṼo

l−1 ∩ R
n+)

)


= ∅ . (21)

It is shown in Eq. (21) that if cone Ṽo
r−1 ∩R

n+ 
= ∅

at t = r , the intersections between R
n+ and any of

the cones cone Ṽo
l formulated at former time instants

1 ≤ l < r − 1, are inherently nonempty. This fact
implies that if the condition

int
(

cone Ṽo
l−1 ∩ R

n+
)

= ∅ (22)

holds at every time instant, which guarantees that
cone Ṽo

r−1 
= ∅, the concerned trajectory is quadratic
stable, and vice versa.

Therefore, the quadratic stability of the concerned
trajectory can be judged by checking the condition (22),
the constructed convex cone is proper at every time
instant. Hence, theorem 1 can be reformulated for prac-
tical implementation as

Theorem 2 The concerned trajectory of nonlinear
discrete-time system (1) is quadratic stable if and only
if there exists an orthogonal matrix Φ such that at every
time instant t = r , r = 1, ... , ∞, the following two
conditions can be satisfied:

1. The convex cone cone Ṽr−1 constructed by the data
set Xr and the matrix Φ is proper,

2. The polar cone cone Ṽo
r−1 of cone Ṽr−1 follows the

relationship

cone Ṽo
r−1 ∩ R

n+ 
= ∅. (23)

Theorem 2 states that if the intersection between the
set cone Ṽo

r−1 and R
n+ is not empty at every time instant,

the system is quadratic stable. Furthermore, letting d̃
be any vector located within cone Ṽo

r−1 ∩R
n+, r = ∞,

the QLF for this system can be expressed as

V (x) = xT Φ diag [d̃]ΦT x . (24)

The condition (23) must be satisfied at every time
instant for a quadratic stable system. Thus, to give a
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correct stability judgment to the considered trajectory,
this criterion has to be checked at every time instant. If
at any time instant the constructed cone is not proper or
condition (22) cannot be satisfied, then the concerned
trajectory can be judged as not quadratic stable.

As for numerical implementation, the stability con-
dition (23) can be judged by solving a max-min prob-
lem [33]. If the optimized value of the max-min prob-
lem is greater than zero, the interior of the intersection
is not empty and shows that there exists at least one
QLF for the concerned trajectory of the system (1) at
the time instant t = r . If the optimized value of the
max-min problem is positive at every time instant, then
the concerned trajectory is globally quadratic stable; if
at any time instant the optimized value is not positive,
then the concerned trajectory is not quadratic stable.

It should be remarked that the proposed algorithmic
stability judgment is only necessary and sufficient with
respect to the considered trajectory, but not to the whole
system. Nevertheless, the proposed algorithm can still
be used in control problem, if the control design can
be realized online. In this case only the current running
trajectory needs to be considered.

For the purpose of control, if a controller can always
drive the closed-loop system to satisfy the stability con-
dition under arbitrary initial conditions, all the trajec-
tories of the controlled system starting from this neigh-
borhood converges to the equilibrium. This means all
the perturbed motions starting from this neighborhood
shall converge to the considered equilibrium. In this
case the controlled system shall possess a (both suffi-
ciently and necessarily) stable equilibrium and thereby
be stabilized.

In the next section, a preliminary design of control
using this stability criterion is discussed in the problem
of stabilizing unknown nonlinear systems.

4 Application in stabilizing unknown systems

The control input u(k) is considered as a function of
x(k), as shown in Eq. (4). Therefore, the system (3)
under control of u(k) can be expressed as the same
form of (3). Correspondingly, the stability of controlled
system can be discussed by using the proposed data-
driven stability criterion.

The stabilization problem defined in Sect. 2 can be
reformulated as to find a control input u(k) such that the

complete considered trajectory of closed-loop system

X∞ = {x(k), k = 1, ... , ∞}, (25)

satisfies the condition (8) in theorem 1.
Specific to an arbitrary time instant t = r , it means

that to find the value of u(r) such that the trajectory
Xr+1 satisfies the condition (23) in theorem 2, with
Xr+1 being defined as

Xr+1 = Xr∪{x(r+1)} = {x(1), ... , x(r), x(r + 1)} ,
(26)

where x(k + 1) = f (x(k), u(k)), and Xr is defined
in 2.

Due to the fact the nonlinear function f (·) in system
dynamics is unknown, the states x(r+1) in (26) cannot
be calculated directly with use of system equation at an
arbitrary time instant r , even if the value of control input
u(r) is known. Consequentially, the vector set Xr+1

cannot be established and the stability condition (23)
cannot be judged. This problem can be solved by using
the online system identification techniques using RNN.

4.1 Solving the stabilization problem using RNN

The RNN system identification is a well-developed
online system identification method [11,27]. Denote
the identified system dynamics by RNN as

x̂(k + 1) = f̂ (x(k), u(k)), (27)

where f̂ (·) represents the identified dynamics of f̂ (·)
in (3), and x̂(k+ 1) represents the one-step prediction
of the future states of the plant at the time instant t = k.
With suitable training algorithms, the RNN can make
a one-step prediction of system states online, and the
error of one-step prediction by RNN is incrementally
precise with time. This means that

lim
k→∞ ‖ em(k + 1) ‖→ 0, (28)

where

em(k + 1) = x̂(k + 1)− x(k + 1), (29)
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with x̂(k + 1) being the one-step prediction at time
instant t = k and x(k + 1) the true system states at
t = k + 1.

The Eq. (28) indicates that if the complete time series
of the predicted states, denoted as

X̂∞ = {x̂(k), k = 1, ... , ∞}, (30)

converges to origin, the trajectory of true system states
X∞ defined in (25) also converges to the origin, because
the error between these two time sequences goes to zero
with time.

Correspondingly, specific to every arbitrary time
instant t = r , if the vector set X̂r+1, defined as

X̂r+1 = X̂r∪{x̂(r+1)} = {
x̂(1), ... , x̂(r), x̂(r + 1)

}
,

(31)

satisfies the condition (23) in theorem 2, the vector
set Xr+1 defined in (26) is also stable in the sense of
theorem 2.

This fact shows that if the trajectory of predicted
system states is stable, the trajectory of true system
states is also stable. Therefore, the task of finding u(r)

at t = r such that the vector set Xr+1 satisfies (23) is
identical to find the u(r) that let vector set X̂r+1 satisfy
condition (23).

The function f̂ (·) in the identified dynamics (27)
can be obtained by training the RNN at an arbitrary
time instant t = r . As a result, the prediction x̂(r + 1)

can be obtained if the control input u(r) is known. If a
suitable control input u(r) can be found at every time
instant t = r , for r = 1, ... , ∞, such that the data set
X̂r+1, including the predicted states x̂(r + 1), satisfies
the geometrical condition (23), the data set X̂r+1 is
stable in the sense of theorem 2 and this input u(r) can
also stabilize the system to be controlled.

4.2 Candidates of feasible control inputs

Denote the vector set obtained by applying the trans-
formation defined in (5) to x̂(k), k = 1, ... , r , as
V̂r−1. The elements of V̂r−1 are denoted as v̂(k), k =
1, ... , r − 1,

Consider the problem of determining the control
input u(r) at an arbitrary time instant t = r when the
historical predicted states x̂(k), k = 1, ... , r , satisfy

the proposed stability condition (23). This means that
the following fact

int
(

cone V̂o
r−1 ∩ R

n+
)

= ∅, (32)

is true, where the superscript (·)o denotes the polar
cone, and the symbol cone V̂r−1 represents the convex
conic hull of V̂r−1.

The prediction x̂(k + 1) can be obtained by sub-
stituting u(r) into the identified system (27). A new
transformed vector v̂(r) can be obtained by applying
the transformation (5) of x̂(k) and x̂(k + 1). Defining
the set V̂r as

V̂r = {v̂(r)} ∪ V̂r−1, (33)

the remaining problem is how to determine the value
of u(r), so that the condition

cone V̂o
r ∩ R

n+ 
= ∅, (34)

can be fulfilled.
Assume the condition (34) is true. It can be obtained

from (33) that

cone V̂r = cone V̂r−1 ∪ cone {v̂(r)}, (35)

and correspondingly

cone V̂o
r = cone V̂o

r−1 ∩ cone {v̂(r)}o, (36)

where {v̂(r)} represents the vector set containing only
the vector v̂(r).

Substituting the equation above into (34), it can be
obtained that

int
(

cone {v̂(r)}o ∩ cone V̂o
r−1 ∩ R

n+
)

= ∅. (37)

The Eq. (32) shows that the polyhedral cone V̂o
r−1∩R

n+
is not empty. According to the computational geomet-
rical theory, the Eq. (37) is true if the vector v̂(r) is
not located in the dual cone of cone V̂o

r−1 ∩R
n+, which

contains all the vectors having positive inner products
with elements of cone V̂o

r−1 ∩ R
n+.

In other words, the condition (34) is true if the vector
v̂(r) satisfies

v̂(r) ∈ Λ, (38)

123



884 F. Zhang, D. Söffker

where Λ is the complementary set of the dual cone of
cone V̂o

r−1 ∩ R
n+, denoted as

Λ = R
n\(cone V̂o

r−1 ∩ R
n+)∗. (39)

If the condition (34) is true, the trajectory of pre-
dicted system states x̂(k), k = 1, ... , r, r + 1 is stable
in the sense of theorem 2. As a result, the feasible val-
ues of control input u(r) which can guarantee stability
at t = r are the ones which can make the vector v̂(r)

moved into the set Λ defined in (39).

4.3 Choosing suitable control input from candidates

The discussion about feasible control inputs shows that
the control input u(k) should be chosen from the ones
fulfilling (38). In this paper, the problem of seeking
u(k) at one certain time instant is solved by solving an
optimization problem, as

min
K

. J

s.t. u(k) = −K (k)x(k),

ṽ(r) ∈ R
n\(cone Ṽo

r−1 ∩ R
n+)∗,

(40)

where J is a suitably chosen performance measure
that can be evaluated online with respect to the sys-
tem states. For example, this measure can be chosen as

J =
t1∫

t0

xT Ex + uT Fu dt, (41)

where t0 and t1 are the starting time and the final time of
the evaluation, E and F are positive definite matrices,
which has been used in the classic linear optimal control
as one kind of representation of the input and state
energy.

It should be noted here that to minimize the perfor-
mance measure J is not the primary goal at the current
stage of this research. Instead, it serves as the selecting
measure to obtain one certain control input which can
be used to achieve the primary goal of stabilization.

One possible algorithm to find the suboptimal solu-
tion to the optimization problem (40) is shown in Algo-
rithm 1. In this example algorithm, a finite set of the
feedback gain matrix K is given and denoted as Ξ . The
example algorithm calculates the value J of the cost
function defined in the optimization problem (40) for

input : current system state x(k);
searching region Ξ ;
identified plant dynamics at t = k
x̂(k + 1) = f̂ (x(k), u(k));
data set X̂k = {x̂(0), ... , x̂(k)};

output : feedback gain matrix K ;

initialize: set value i ← 0, j ← 0;
set value J ←∞;
set value n, number of elements of Ξ

while i ≤ n do
set value K ← K i with K i ∈ Ξ ;
calculate ui (k) = −K x(k);

calculate x̂i (k + 1) = f̂ (x(k), ui (k));
for j ← 1 to k do

calculate X̂k+1 with x̂(k + 1);
calculate ṽ( j) ; // according to the
equation (5)

end
calculate Λ = R

n\(cone Ṽo
r−1 ∩ R

n+)∗ ;
// feasible region for ṽ( j)
if ṽ(r) ∈ Λ then

calculate Ji ;
if Ji < J then

calculate J = Ji
end
calculate i = i + 1;

else
calculate i = i + 1;

end
end

Algorithm 1: Solving optimization task given in (40)

every K (k) in Ξ , determines the one which possesses
the smallest J , and additionally, make the sequence of
the predicted states satisfy the stability condition. So
a suitable feedback gain K can be defined to stabilize
the plant at the time instant t = r . Although this K (k)

is only optimal for the present time instant, it can be
applied to construct the suitable control input u(k) and
applied to the plant to fulfill the goal of control.

5 Numerical example of stabilizing a nonlinear
aeroelastic system

In this paper, a nonlinear aeroelastic system [23] is used
as a benchmark example to show the effectiveness and
flexibility of the proposed control approach. The con-
trol of this benchmark system has been widely studied
with different control approaches [24,26,29–32].
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Fig. 1 2-D Wing-flap aeroelastic model

5.1 Configuration of the aeroelastic system

The configuration of the considered 2-D nonlinear
aeroelastic wing section is shown in Fig. 1. The two
degrees of freedom, the pitching movement and the
plunging one, are respectively restrained by a pair of
springs attached to the elastic axis (EA) of the airfoil.
A single trailing-edge control surface is used to control
the air flow, thereby providing more maneuverability to
suppress instability. This model is accurate for airfoils
at low velocity and has been confirmed by both com-
putational tests [4] and wind tunnel experiments [22].

According to [23], the equations of motion govern-
ing the aerolastic system are given as
[

mT mW xαb
mW xαb Iα

] [
ḧ
α̈

]
+

[
ch 0
0 cα

] [
ḣ
α̇

]

+
[

kh 0
0 kα

] [
h
α

]
=

[−L
M

]
,

(42)

where plunging and pitching displacement are denoted
as h and α, respectively. In Eq. (42), mW denotes the
mass of the wing, mT represents the total mass of the
wing and its support structure, b the semi-chord of the
wing, Iα the moment of inertia, xα the non-dimensional
distance from the center of mass to the elastic axis,
cα and ch the pitch and plunge damping coefficients,
respectively, kα and kh the pitch and plunge spring con-
stants, respectively, and M and L denote the quasi-
steady aerodynamic lift and moment. In the case when
the quasi-steady aerodynamics is considered, M and L
should be written as

⎧⎨
⎩

L = ρU 2bclα

[
α + ḣ

U + ( 1
2 − a)b α̇

U

]
+ ρU 2bclβ β

M = ρU 2b2cmα

[
α+ ḣ

U +( 1
2 − a)b α̇

U

]
+ ρU 2b2cmβ β

,

(43)

Table 1 Denotation list of aerodynamic coefficients

Symbols Representations

ρ Density of air

a Nondimensional distance from mid chord to
elastic axis

b Semi-chord of the wing

ch , cα Pressure coefficients

clα , cmα Lift and moment coefficients per angle of
attack

clβ , cmβ Lift and moment coefficients per angle of
control surface deflection

U Free stream velocity

xα Distance from elastic axis to mass center

where β represents the flap angle, and the other deno-
tations of aerodynamic coefficients are explained in
Table 1.

The structural nonlinearity is supposed to exist in
the pitching spring constant kα , which is assumed as to
be a polynomial of α, shown as

kα =
4∑

i=0

kαi α
i . (44)

The control objective is to drive the flap angle β prop-
erly so that the instability caused by structural nonlin-
earities can be suppressed in the vicinity of the nominal
system flutter speed with smaller control errors and less
input energy.

5.2 Problem settings and specific tasks of control

As pointed in [18], a stable pitch motion of the 2-D
wing section leads at the same time to a stable plunging
motion, and vice versa. If a control law can stabilize the
pitch motion, the plunging motion as well as the whole
system is also stable.

Therefore, the control law of stabilizing the aeroelas-
tic wing section can be designed with only consid-
eration of the pitch motion: to stabilize a subsystem
with pitching angel α and pitching velocity α̇ being its
states and the flapping angle β as its control input. If
this subsystem can be stabilized, then the stability of
whole wing section can be guaranteed. This simplifica-
tion can reduces the problem from four to two dimen-
sions, while the goal of stabilization can be sustained.
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Fig. 2 Open-loop system phase portraits with different nonlinearities

As mentioned in the introduction, the states α and α̇

are assumed as fully measurable and free of noise.
The task of control is to stabilize the system fol-

lowing the above assumptions with two different non-
linearities of the pitching spring stiffness according to
[17] and [1], respectively, as

kα1 =
[

6.8 10.0 667.7 26.6 −5087.9
] [αi ], (45)

and

kα2 =
[

2.8 −62.3 3709.7 −24195.6 48756.9
] [αi ].

(46)

The adaptive feedback linearization control in [17]
is also applied in the simulation to be compared with
the proposed control method. It should be mentioned
that the parameter settings of the both control meth-
ods, including the feedback gains in adaptive feedback
linearization method, are kept as the same in the both
simulations when the nonlinearity kα1 is changed into
kα2, in order to compare the adaptive abilities of the
both control approaches.

5.3 Simulation results

The open-loop responses of the concerned aeroelastic
system with different nonlinearities kα1 and kα2 are
shown in Fig. 2a, b. It can be seen from these two figures

that the structural nonlinearity in the pitching stiffness
leads the system response to the limit cycle oscillation
(LCO).

The system functionality measure in this example
uses the form of the objective function in linear opti-
mal control introduced in Eq. (41). The optimization
problem (40) here is solved by heuristic search (Algo-
rithm 1). The searching space is defined as the varying
region of the flapping motion β, which is detailed as
(−45deg, 45deg).

Simulations of the close-loop system are performed
with wind speed U = 20 m/s and structural para-
meter a = 0.8 (nondimensional distances from mid-
chord to the elastic axis). The initial conditions for the
state variables of the system are selected as α(0) =
5.75 (deg), h(0) = 0.01m, α̇(0) = 0 (deg/s), and
ḣ(0)=0 m/s. The sampling time is set as 1× 10−4 s.

The simulation results of the closed-loop system
with the nonlinearity kα1 and kα2 are given in Figs. 3
and 4, respectively. The red-dashed curves in Figs. 3
and 4 show the simulation results with the proposed
control method, from which it can be seen that in both
cases system trajectories converge to the origin of the
state space with increasing time. From these simulation
results it can be seen that the proposed control method
can stabilize the unknown nonlinear aeroelastic system
with different nonlinearities. This fact shows that the
proposed control strategy cannot only be used to stabi-
lize the unknown nonlinear system, but also adapt the
variation of system dynamics and realize the goal of
stabilizing unknown plants.
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Fig. 3 Closed-loop response with nonlinearity kα1

The simulation results of adaptive feedback lin-
earization control with respect to the two different non-
linearities are shown as the blue solid curves in Fig. 3
and green curves in Fig. 4, respectively. It can be seen
that in the case of kα1 the adaptive feedback lineariza-
tion has better control performance with respect to the
error and settling time than the proposed method. How-
ever, it cannot stabilize the system to the desired posi-
tion (origin in the state space) in the second simula-
tion with kα2, in which case the sytem dynamics are
assumed unknown to feedback linearization control,
and its parameters are kept as the same as those in the
first simulation.

From this comparison, it is shown that the proposed
method possesses higher adaptability than the adap-
tive feedback linearization method when the system
dynamics is unknown.

6 Conclusion

This paper firstly proposes the necessary and sufficient
criterion for the existence of a QLF only for a trajectory
of nonlinear discrete-time systems, without necessity
of knowing the mathematical description of the system.
The proposed criterion firstly transforms the measured
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Fig. 4 Closed-loop response with nonlinearity kα2

system states in the concerned trajectory into a new
data set with use of Hadamard product and orthogo-
nal transformation, and shows that the existence of a
QLF for the considered trajectory can be determined
by examining the existence of a suitable orthogonal
matrix, with which a convex cone can be constructed
and have a non-empty intersection with positive real
space.

Based on the proposed stability criterion, a new con-
trol method is proposed in combination of online black-
box system identification using RNN. The recurrent
neural network is utilized to identify the unknown plant
dynamics. The proposed controller can utilize the iden-

tified model and proposed data-driven stability condi-
tion to find a suitable control input to realize stabiliza-
tion, without knowing any precise physical or structural
information of the plant.

The proposed control method is applied to stabilize a
nonlinear aeroelastic system using only the information
of the measured system states. Simulation results show
that the proposed control can adaptively fulfill the task
of stabilizing unknown systems without changing any
parameters.

It should be noticed that the discussions in this paper
are based on two strong assumptions: the system states
are fully measurable and the measurements are without
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noise, which cannot be fulfilled in real life applications
and will be considered in the further research of this
topic.
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