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Abstract Fractional non-relativistic field equations
with the derivatives of non-integer order are consid-
ered. A connection of these equationswithmicroscopic
(lattice) models is discussed. The considered equations
contain non-linear terms and fractional Laplacian in the
Riesz form. Using the background field method and
the mean field method, we obtain corrections to linear
solution and equilibrium solution caused by the weak
non-linearity.

Keywords Fractional field equations · Fractional
derivative · Fractional dynamics · Background field
method · Mean field method

1 Introduction

The theory of integration and differentiation of any
arbitrary real (or complex) orders have a long history
[1–4] and different fractional derivatives and integrals
have been suggested by Riemann, Liouville, Riesz,
Caputo, Grünwald, Letnikov, Marchaud, Weyl, Sonin,
and others [4–7]. The fractional derivatives have a lot of
unusual properties. For example, the fractional deriva-
tives are noncommutative and nonassociative operators
in general [5]. A violation of the usual Leibniz rule
is a characteristic property for all types of fractional
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derivatives [8]. The fractional derivatives of products
of two or more functions are represented as infinite
series with derivatives and integrals of different non-
integer orders [5]. The formula of fractional deriva-
tive of a composite function has a complex form (see
Sect. 2.7.3 in [9]). The different fractional derivatives
are related to each other. For example, the Grünwald–
Letnikov derivatives coincidewith theMarchaud deriv-
atives for wide class of functions (see Sects. 20.2 and
20.3 in [4]) and the fact that the Marchaud deriva-
tives coincide with Liouville derivatives (see Sects. 5.4
in [4]). In applications of fractional calculus, it is very
important the non-commutativity and non-associativity
actions of fractional derivatives and integrals, the vio-
lation of the Leibniz rule, and that fractional time evo-
lution does not satisfy the semigroup property. These
unusual properties of fractional integro-differentiation
allow us to describe the unusual properties of com-
plex systems, media, and processes with non-locality
of power-law type, long-term memory, and fractality.
Despite the difficulties, the fractional calculus has a
wide application in mechanics and physics (for exam-
ple see [10–19]). Moreover the theory of derivatives
and integrals of non-integer orders [4–6] with respect
to coordinates is a very powerful tool to describe the
behavior of distributed systems that are characterized
by non-locality of power-law type and fractality.

Various aspects of the fractional generalization of
the field theory have been actively studied now (see
for example [18,20–23]). In this paper, we consider
non-relativistic field equationswith theRiesz fractional
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derivatives of non-integer order. We demonstrate that
this equation can be derived from microscopic (lat-
tice)models with long-range interaction and non-linear
external fields. Using the background field method and
the mean field method, we obtain corrections to solu-
tions of linear fractional equations and to the equi-
librium solution, which are caused by the weak non-
linearity.

2 Fractional differential equations for scalar fields

Let us consider a classical field model of distributed
system, where states are described by scalar field ϕ(x)
in the n-dimensional space Rn . For example, the field
ϕ(x) can describe the ordered field in the fluctuation
theory of phase transitions [24,25], thermodynamic
field in non-equilibrium thermodynamics [26], or the
field functions in the continuum mechanics [27,28].
Note that nonlinear models in continuum mechanics
has a wide applications [28–34].

Let us consider the nonlinear fractional differential
equation

g((−�)α/2ϕ)(x) + μϕ(x) + εN (ϕ(x)) = j (x)

(α > 0), (1)

where N (ϕ(x)) is the nonlinear function, g is the cou-
pling constant, μ is the scale (or mass) parameter, j (x)
is the external field, ε is a small parameter of non-
linearity. Here (−�)α/2 is the fractional Laplacian in
the Riesz form [5]. As a simple example of the nonlin-
ear function we can consider

N (ϕ) = ϕ3(x). (2)

Equation (1) with (2) is the fractional Ginzburg–
Landau equation (see for example [35–37]). The syn-
chronization effects for non-linear media, which is
described by (1), with the power-law non-locality
defined by long-range inter-particle interaction are con-
sidered in [38–41].

We note that Eq. (1) can be derived by continuous
limit from the lattice models with long-range inter-
actions [42,43]. In [42,43] we prove that the contin-
uum equations with fractional Laplacian in the Riesz
form [4,5] can be directly derived from lattice models
with different types of long-range interactions (see also
[38,39,44]).

The fractional Laplacian (−�)α/2 in the Riesz’s
form, which is used in Eq. (1), can be defined as the

inverse Fourier’s integral transform F−1 of |k|α by

((−�)α/2 f )(x) = F−1
(
|k|α(F f )(k)

)
, (3)

where α > 0 and x ∈ R
n . For α > 0, the fractional

Laplacian in the Riesz’s form usually is defined in the
form of the hypersingular integral by

((−�)α/2 f )(x) = 1

dn(m, α)

∫

Rn

1

|z|α+n
(�m

z f )(z)dz,

where m > α, and (�m
z f )(z) is a finite difference of

order m of a function f (x) with a vector step z ∈ R
n

and centered at the point x ∈ R
n :

(
�m

z f
)
(z) =

m∑
k=0

(−1)k
m!

k!(m − k)! f (x − kz).

The constant dn(m, α) is defined by

dn(m, α) = π1+n/2Am(α)

2αΓ (1 + α/2)Γ (n/2 + α/2) sin(πα/2)
,

where

Am(α) =
m∑
j=0

(−1) j−1 m!
j !(m − j)! jα.

Note that the hypersingular integral ((−�)α/2 f )(x)
does not depend on the choice of m > α. The Fourier
transform F of the fractional Laplacian is given by
(F(−�)α/2 f )(k) = |k|α(F f )(k). This equation is
valid for the Lizorkin space [4] and the space C∞(Rn)

of infinitely differentiable functions on R
n with com-

pact support.

3 Derivation of non-linear fractional field equation
from the lattice model

In this section, we describe a connection of nonlinear
Eq. (1) with microscopic (lattice) models. Let us con-
sider a lattice model where all particles are displaced
in one direction, and we assume that the displacement
of particle from its equilibrium position is determined
by a scalar field. The equations for one-dimensional
lattice system of interacting particles have the form

− g0
M

+∞∑
m=−∞
m �=n

K (n,m)
(
ϕn(t) − ϕm(t)

)
+ μ0

M
ϕn(t)

+ ε0

M
N (ϕn(t)) = jn(t), (4)
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Non-linear fractional field equations 1667

where ϕn(t) = ϕ(n, t) is the displacement of n par-
ticle from its equilibrium position, g0 is the coupling
constant for inter-particle interactions in the lattice, the
terms ε0N characterize an non-linear interaction of the
particles with the external on-site force, μ0ϕn(t) is the
linear external force, jn(t) is the external source. For
simplicity, we assume that all particles have the same
mass M . The elements K (n,m) of Eq. (4) describe
the inter-particle interaction in the lattice. For an
unbounded homogeneous lattice, due to its homogene-
ity K (n,m) has the form K (n,m) = K (n−m). Equa-
tion (4) has the invariance with respect to its displace-
ment of lattice as a whole in case of absence of external
forces. It should be noted that the noninvariant terms
lead to the divergences in the continuous limit [18].

In order to define the operation that transforms the
lattice equations for ϕn(t) into the continuum equation
for a scalar field ϕ(x, t), we use the methods suggested
in [42,43]. We consider ϕn(t) as Fourier series trans-
form F� of some function ϕ̂(k, t) on [−k0/2, k0/2],
then we use the continuous limit (Lim) in the form
k0 → ∞ to get ϕ̃(k, t), and finally we apply the inverse
Fourier integral transformation F−1 to obtain ϕ(x, t).
Diagrammatically this can be written in the following
form:

ϕn(t)
F�−−−−−→ ϕ̂(k, t)

Lim−−−−−→ ϕ̃(k, t)
F−1−−−−−→ ϕ(x, t).

(5)

We performed the similar transformation for differ-
ential equations to map the lattice equation into the
equation for the elastic continuum. We can represent
the set of operation in the form of the following dia-
grams.

ϕn(t)
From Particle to Field−−−−−−−−−−−−→ ϕ(x, t)

F�

⏐⏐	

⏐⏐F−1

ϕ̂(k, t) −−−−−−−→
Lim �x→0

ϕ̃(k, t)

(6)

Therefore the transform operation that map our lat-
tice model into a continuummodel is a sequence of the
following three actions (for details see [42,43]):

1. The Fourier series transform F� : ϕn(t) →
F�{ϕn(t)} = ϕ̂(k, t) that is defined by

ϕ̂(k, t) =
+∞∑

n=−∞
ϕn(t) e

−ikxn = F�{ϕn(t)}, (7)

ϕn(t) = 1

k0

+k0/2∫

−k0/2

dk ϕ̂(k, t) eikxn

= F−1
� {ϕ̂(k, t)}, (8)

where xn = n�x and �x = 2π/k0 is the inter-
particle distance. To simplify our consideration we
assume that all lattice particles have the same inter-
particle distance �x .

2. The passage to the limit �x → 0 (k0 → ∞)
denoted by Lim : ϕ̂(k, t) → Lim{ϕ̂(k, t)} =
ϕ̃(k, t). The function ϕ̃(k, t) can be derived from
ϕ̂(k, t) in the limit �x → 0. Note that ϕ̃(k, t) is a
Fourier integral transform of the field ϕ(x, t), and
ϕ̂(k, t) is a Fourier series transform of ϕn(t), where
we use

ϕn(t) = 2π

k0
ϕ(xn, t)

considering xn = n�x = 2πn/k0 → x .
3. The inverse Fourier’s integral transform F−1 :

ϕ̃(k, t) → F−1{ϕ̃(k, t)} = ϕ(x, t) that is defined
by

ϕ̃(k, t) =
+∞∫

−∞
dx e−ikxϕ(x, t)

= F{ϕ(x, t)}, (9)

ϕ(x, t) = 1

2π

+∞∫

−∞
dk eikx ϕ̃(k, t)

= F−1{ϕ̃(k, t)}. (10)

The combinationof these three actionsF−1 Lim F�

allows us to realize the transformation of lattice models
into continuum models [42,43].

In the continuous limit the equations for lattice with
interaction of power-law type [18,42,43] gives the frac-
tional field equation. Note that Eqs. (7) and (8) in the
limit �x → 0 (k0 → ∞) gives the Fourier integral
transform Eqs. (9) and (10), where the sum is changed
by integral.

In the continuous limit �x → 0, the lattice Eq. (4)
with the long-range interaction of power-law type gives
(for details see [18]) the fractional field equation

g ((−�)α/2u)(x, t) + μϕ(x, t)

+ ε N (ϕ(x, t)) = j (x, t), (11)

with the fractional Laplacian (−�)α/2 of order α. Here
the variables x and �x are dimensionless,
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1668 V. E. Tarasov

g = g0 |�x |α
M

, μ = μ0

M
, ε = ε0(�x)2

M
(12)

are the finite parameters.

4 Particular solution of linear fractional equation

Let us derive a particular solution of Eq. (1) with
N (ϕ) = 0. To solve the linear fractional differential
equation

g ((−�)α/2ϕ)(x) + μϕ(x) = j (x), (13)

we apply the Fourier method, which is based on the
relation

F[(−�)α/2ϕ(x)](k) = |k|α ϕ̂(k). (14)

Applying the Fourier transformF to both sides of (13)
and using (14), we have

(Fϕ)(k) = (
g |k|α + μ

)−1
(F j)(k). (15)

The fractional analog of the response function
that can be called the fractional Green function (see
Sect. 5.5.1. in [5]) is given by

Gn
α(x) = F−1

[(
g |k|α + μ

)−1
]
(x)

=
∫

Rn

(
g |k|α + μ

)−1
e+i(k,x) dnk. (16)

The function (16) can be simplified (Lemma 25.1 of
[4]) by using the relation∫

Rn

ei(k,x) f (|k|) dnk

= (2π)n/2

|x|(n−2)/2

∞∫

0

f (λ) λn/2 J(n−2)/2(λ|x|) dλ, (17)

where Jν is the Bessel function of the first kind. As a
result, the Fourier transform of a radial function is also
a radial function.

Using relation (17), the fractional Green function
(16) can be represented (see Theorem 5.22 in [5]) in
the form of the integral with respect to one parameter
λ by

Gn
α(x) = |x|(2−n)/2

(2π)n/2

∞∫

0

λn/2 J(n−2)/2(λ|x|)
gλα + μ

dλ, (18)

where n = 1, 2, 3 and α > (n − 1)/2, and J(n−2)/2 is
the Bessel function of the first kind.

Using the Theorem 5.22 and Corollary from [5] for
the case μ �= 0 and α > (n − 1)/2, we can state that
Eq. (28) is solvable, and its particular solution is given
by

ϕ(x) = Gn
α ∗ j =

∫

Rn

Gn
α(x − x′) j (x′)dx′, (19)

where Gn
α(x) is defined by (18), and the asterisk (or

star) ∗ is the convolution operation.
For the 3-dimensional case, we can use

J1/2(z) =
√

2

π z
sin(z), (20)

and we have

G3
α(x) = 1

2π2|x|
∞∫

0

λ sin(λ|x|)
gλα + μ

dλ. (21)

For the 1-dimensional case, we use

J−1/2(z) =
√

2

π z
cos(z). (22)

Then we have (see Theorem 5.24 in [5]) the function

G1
α(x) = 1

π

∞∫

0

cos(λ|x|)
gλα + μ

dλ. (23)

Let us consider the fieldϕ(x), appearing fromapoint
source j (x), that is placed to the origin of coordinates,
such that

j (x) = j0δ(x). (24)

In the electrodynamics the point source means that we
consider a point charge in themedia [45]. In continuum
mechanics the point source means that we consider the
Thomson’s problem (1848) [46]. This problems means
that we should determine the deformation of an infinite
continuum, when a force is applied to a small region in
it [47,48].

For the case (24), the scalar field ϕ(x) has a simple
form of the particular solution that is proportional to
the Green’s function

ϕ(x) = j0 G
n
α(x). (25)

As a result, the field for the source at a point (24) has
the form

ϕ(x) = 1

2π2

j0
|x|

∞∫

0

λ sin(λ|x|)
gλα + μ

dλ. (26)

This is the solution of the linear fractional differential
Eq. (18) for n = 3 and the point source of field j (x).
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Non-linear fractional field equations 1669

5 Background field method: deviation from linear
states

Suppose that ϕ(x) = ϕ0(x) is a solution of Eq. (1) with
ε = 0, i.e. ϕ0(x) is a solution of the linear equation

g((−�)α/2ϕ0)(x) + μϕ0(x) = j (x). (27)

This is the linear fractional differential equation. The
solution of this equation has the form (19).

We will seek a solution of nonlinear Eq. (1) with
ε �= 0 in the form

ϕ(x) = ϕ0(x) + ε ϕ1(x) + · · · . (28)

This means that we consider perturbations with respect
to the background field ϕ0(x). It allows us to use the
background field method (in general form this method
is described in [49–51]).

In this case, Eq. (27) is an approximation of the zero
order. The first order approximation with respect to ε

gives the equation

g((−�)α/2ϕ1)(x) + μϕ1(x) + N (ϕ0(x)) = 0. (29)

This equation is equivalent to the linear equation

g((−�)α/2ϕ1)(x) + μϕ1(x) = jeff(x) (30)

with the effective external field

jeff(x) = −N (ϕ0(x)). (31)

The solution of Eq. (29) has the form

ϕ(x) = ϕ0(x) + ϕ1(x) = Gn
α ∗ j + εGn

α ∗ jeff

= Gn
α ∗ j − εGn

α ∗ N
(
Gn

α ∗ j
)
, (32)

where the asterisk (or star) ∗ denotes the convolution
operation. As a result, we have

ϕ(x) = Gn
α ∗ j − εGn

α ∗ N
(
Gn

α ∗ j
)
. (33)

For the case of point source (25) Eq. (33) has the form

ϕ(x) = j0G
n
α(x) − ε

(
Gn

α ∗ N
(
j0G

n
α

))
(x). (34)

For the non-linearity (2), we have

ϕ(x) = j0 G
n
α(x) − ε j30

(
Gn

α ∗ (
Gn

α(x)
)3)

(x). (35)

6 Mean field method: deviation from equilibrium
state

Equilibrium value of ϕ0 = const (where (−�)α/2ϕ0 =
0) and j (x) = h = const is defined by the condition

μϕ0 + εN (ϕ0) = h. (36)

For example, if the non-linear function has the form
(2), then we have the equation

μϕ0 + εϕ3
0 = h. (37)

For h �= 0, there is no solution ϕ0 = 0. For μ > 0
and the weak external fields h � hc with respect to
the critical value hc = √

μ3/ε, there exists only one
solution

ϕ0 ≈ h/μ. (38)

Forμ < 0 and in the absence of an external field h = 0,
we have three solution

ϕ0 ≈ ±√|μ|/ε, ϕ0 = 0. (39)

For the values h < (2
√
3/9)hc, also exist three solu-

tions. For strong external fields h � hc, we can neglect
the first term (μ ≈ 0),

εϕ3
0 ≈ h, (40)

and we get

ϕ0 ≈ (h/ε)1/3 = 3
√
h/ε. (41)

In any cases the equilibrium values ϕ0 are solutions of
the algebraic Eq. (36).

Let us consider a deviation ϕ1(x) of the field ϕ(x)
from the equilibrium value ϕ0. For this purpose we will
seek a solution in the form

ϕ(x) = ϕ0 + ϕ1(x). (42)

Since the external field is generally not constant j (x) �=
h, we get the equation for the first approximation

g ((−�)α/2ϕ1)(x)

+
(
μ + ε N ′

ϕ(ϕ0)
)
ϕ1(x) = j (x), (43)

where N ′
ϕ = ∂N (ϕ)/∂ϕ. Equation (43) is equivalent

to the linear fractional differential equation

g((−�)α/2ϕ1)(x) + μeffϕ1(x) = j (x) (44)

with the effective parameter

μeff = μ + εN ′
ϕ(ϕ0). (45)

If N (ϕ) = ϕ3, then

μeff = μ + 3εϕ0.

The solution of Eq. (44) has the form (19), where μ

is replaced by μeff . For the case of point source (25)
Eq. (33) has the form

ϕ(x) = 1

2π2

j0
|x|

∞∫

0

2g λα + μ + μeff

(gλα + μ)(gλα + μeff)

sin(λ|x|)dλ. (46)
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1670 V. E. Tarasov

Let us consider the field ϕ1(x), appearing from a
point source of field j (x) = j0δ(x), that is placed to
the origin of coordinates. The solution of Eq. (42) with
α = 2 for the external field (25) has the form

ϕ1(x) = j0
4πg|x| exp

(
−|x|/rc

)
, (47)

where the value rc is called the correlation radius and

r2c = g

μ + εN ′
ϕ(ϕ0)

. (48)

Note thatϕ1(x) coincideswith correlator 〈ϕ(x)ϕ(x)〉 =
ϕ1(x) in the fluctuation theory of phase transitions [24].
In the electrodynamics the field ϕ1(x) describes the
Coulomb potential with the Debye’s screening. For
fractional differential field equation (α �= 2), we have
the power-law type of screening that is described in
the paper [45]. The electrostatic potential for media
with power-law spatial dispersion differs from the
Coulomb’s potential by the factor

Cα,0(|r|) = 2

π

∞∫

0

λ sin(λ|r|)
gλα + μeff

dλ. (49)

Note that the Debye’s potential differs from the
Coulomb’s potential by the exponential factor CD(|r|)
= exp(−|r|/rD) (for details see [45]).

7 Some applications in physics

Let us briefly describe the possible applications of the
suggested method for physical models.

The Ising model can be defined by the Hamiltonian

Hl = I

2

∑
x,a

(
ϕ(x)−ϕ(x+a)

)2+λ
∑
x

(
ϕ2(x)−ϕ2

0

)2
.

(50)

Continuum analog of the Ising model is defined by the
Hamiltonian

Hc =
∫

dx
( c
2

(∇ϕ)2 + λ′(ϕ2 − ϕ2
0

)2)

=
∫

dx
( c
2

(∇ϕ)2
b

2
ϕ2 + λ′ϕ4 + const, (51)

where

c = I a2−n, b = −2λϕ2
0 a

−n, λ′ = λa−n

Here a = |a| is the lattice constant, n is the dimension
of the space. For n > 2 exists the phase transition [24].

Fractional generalizations of continuum Isingmodel
(51) allows us to take into account a power-law non-
locality which is caused by long-range interactions of
lattice particles. For fractional continuum Ising model
with external forces, we should use the mean field
method and the solutions that are defined by (46).

We can consider the Landau theory of phase transi-
tions with the free energy functional [24]

F{ϕ} = F{ϕ0}1
2

∫
dnx

(
c (∇ϕ)2

+ bϕ2 + c

2
ϕ4 − 2hϕ

)
(52)

where ϕ describes the field of order parameters. A frac-
tional generalization of the Landau theory of phase
transitions to describe transition for non-local contin-
uum. Using themean fieldmethod, we can get the solu-
tions that have the form (46).

To study non-local effect for wide class of magnetic
materials, we can consider the fractional generalization
of Ginzburg–Landau model, which was devised to pro-
vide a simple general form of the effective Hamiltonian
for magnetic systems (see Chap. 5 in [52]). Note that
fractional generalization of Ginzburg–Landau mod-
els are described in [35,38–40]. For the fractional
Ginzburg-Landau models, the suggested methods can
be applied for the case of the weak non-linearity.

8 Conclusion

A classical field model of distributed system with
power-lawnon-locality andweak non-linearity are sug-
gested. The scalar fieldϕ(x) in the n-dimensional space
R
n can describe the ordered field in the fluctuation the-

ory of phase transitions [24,25], thermodynamic field
in non-equilibrium thermodynamics [26], or the field
functions in the continuum mechanics [27,28].

The suggested fractional nonlinear model can allow
us to describe phase transitions for the non-local media
with power-law long-range interactions in the frame-
work of the fluctuation theory of phase transitions [24].
It allow us to describe non-linear effects in the elas-
ticity and plasticity models of materials with power-
law non-locality [47,48,53]. We also assume that sug-
gested approach allowsus to describe aweaknon-linear
effects in the dielectricmaterials and plasma-likemedia
with power-law spatial dispersion [45]. The suggested
approach can be used for nonlinear generalizations of
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Non-linear fractional field equations 1671

fractional diffusion equations for open quantum sys-
tems [54]. Using the Lorentz invariant definition of the
Riesz fractional derivatives suggested in [55] is possi-
ble to generalize suggested consideration for relativis-
tic field theory. It is important to generalize a controlla-
bility of nonlinear fractional field and distributed sys-
tems [56], where fractional orders of derivatives are
considered as control parameters. For the case x ∈ R

1,
we can consider the coordinate as a time variable x = t ,
and apply the suggested approach to mechanical sys-
tems [57–59]. The suggested fractional field theory can
be generalized on the case of statistical field theory. To
describe fluctuation processes in the distributed non-
local continuum it is important to generalize the pertur-
bation theory and diagram technique in the framework
of the statistical field theory (see for example Sect. 5.4
in [52]).
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