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Abstract The flexural vibration of a symmetrically
laminated composite cantilever beam carrying a sliding
mass under harmonic base excitations is investigated.
An internally mounted oscillator constrained to move
along the beam is employed in order to fulfill a multi-
task that consists of both attenuating the beam vibra-
tions in a resonance status and harvesting this residual
energy as a complementary subtask. The set of nonlin-
ear partial differential equations of motion derived by
Hamilton’s principle are reduced and semi-analytically
solved by the successive application of Galerkin’s and
the multiple-scales perturbation methods. It is shown
that by properly tuning the natural frequencies of the
system, internal resonance condition can be achieved.
Stability of fixed points and bifurcation of steady-
state solutions are studied for internal and external
resonances status. It results that transfer of energy or
modal saturation phenomenon occurs between vibra-
tional modes of the beam and the sliding mass motion
through fulfilling an internal resonance condition. This
study also reveals that absorbers can be successfully
implemented inside structures without affecting their
functionality and encumbering additional space but
can also be designed to convert transverse vibrations
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into internal longitudinal oscillations exploitable in a
straightforward manner to produce electrical energy.

Keywords Internal resonance · Vibration
suppression · Saturation phenomenon · Energy
harvesting

List of symbols

xyz Inertial coordinate system
u(s, t), v(s, t), w(s, t) Beam neutral axis deflec-

tion along x, y and z axes
ξηζ Principle axes coordinate

system of beam cross-
section at position s

ci , i = u, v, w, φ Damping coefficients
r(t) Position of moving mass

from the clamped end
ψ(s, t), θ(s, t), φ(s, t) Beam neutral axis Euler

rotation angles
m Mass of the beam per unit

length l
êi , i = x, y, z, ξ, η, ζ Unit vector along the i axis
Jξ , Jη, Jζ Principal mass moments of

inertia
D11, D22, D33, D13 Bending and stiffness

rigidities
E1, E2, E3G12,G13,G23 Elastic and shear modulus
�Fc Applied force vector to the

moving mass
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ma Moving mass
Qi , i = u, v, w, φ External forces
�vm Velocity vector of the mov-

ing mass
�rm Position vector of the mov-

ing mass
�(s, t) Lagrangian density
ka Controller gain
re Equilibrium position of the

moving mass
ks Nondimensional controller

gain

1 Introduction

As a promising technology, one profile of energy har-
vesting consists of exploiting nonlinear properties of
vibrational structures for capturing useful energies pro-
vided by environmental sources or machines operation.
The specific longitudinal implementation and design
of the companion device is purposed to deviate the
energy transmitted to the main structure into a useful
form. The range of motion can reach large amplitudes
so that nonlinearity get involved in and could improve
efficiency upon other existing harvesters limited to lin-
ear principles. Another attribute of the proposed sys-
tem consists of the feasibility to be compactly installed
inside the framework of the structure and it conse-
quently won’t occupy extra space or interfere in the
main system’s normal operation. By tuning the para-
meters adequately, this system will react to transverse
excitations by transferring the energy to a longitudi-
nal mode of motion. This property is the principle that
we will take advantage through this article. Ambient
energy harvesting has been the subject of numerous
researches purposed for realizing an autonomous solu-
tion to power small-scale electronic mobile devices.
Due to the almost universal presence of mechanical
vibrations from eccentric machine shaking to human
movements and ambient sounds, vibration energy har-
vesting can play a major role in providing an alternate
source of energy. Nonetheless, most approaches are
mainly based on piezoelectric materials or resonant lin-
ear oscillators that are acted on by ambient vibrations
but don’t generate considerable amount of power. Here
is proposed a new method based on the exploitation of
large amplitude oscillations which introduced the study
into the nonlinear domain. More exactly, this research

relies on the saturation phenomenon which will per-
mit to attenuate the vibration of the flexural modes by
translating the energy to the longitudinally mounted
sliding oscillator. There are also potential applications
to such combination of primary and secondary systems;
As vibrations come in a vast variety of forms from
sources as diverse as wind induced movements, one
attempt is to converse this form of energy into electri-
cal one by twisting a coil circuit around the beam pro-
file through which a magnet mass is made to oscillate,
inducing an electrical current in the circuit. Many work-
ing solutions for vibration-to-electricity conversion are
based on oscillating mechanical elements that convert
kinetic energy via capacitive, inductive or piezoelectric
methods. The present method, while suppressing the
vibration of one mode, simultaneously permits electric
power generation via the other useful mode.

1.1 Related works

Many structural elements can be modeled as flexible
beams carrying a moving mass, such as vehicles cross-
ing over bridges, cranes transporting materials along
their boom, to mention a few, and may found appli-
cations as active absorbers sliding along robotic arms
in space missions. Many researchers have investigated
the dynamic and nonlinear response of these elements
in the last few decades which resulted in a considerable
amount of literature. In what follows are enumerated
some aspects of these related works.

Zovandey and Nayfeh [1] investigated the nonlin-
ear response of a cantilever beam carrying a lumped
mass under parametric base excitation. The lumped
mass was located at an arbitrary position and govern-
ing equations was solved using Galerkin method and
the perturbation method of multiple scales. Frequency
and force–responses were obtained from the modula-
tion equations and were in good agreement with the
experimental results carried out by authors. Some of
the linear and nonlinear analyses of beam-mass inter-
action systems are presented in refs. [2–6].

Dynamic stability of continuous systems under
moving loads was presented by Kononov and Borst [4]
and Verichev and Metrikine [5]. In a separate study, Sid-
diqui et al. [6–8] considered a more general case where
the moving mass has an additional degree-of-freedom
instead of prescribed motion. Golnaraghi [9,10] pro-
posed the moving mass as a controller to suppress
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vibrations in a beam. When the natural frequency of
this integrated controller is set to one-half or one-third
of the resonant mode frequency, the nonlinear cou-
pling creates a unidirectional energy-transfer mecha-
nism leading to the response saturation in the excited
mode or suppression of its vibrations via internal res-
onance. Internal resonance may occur in systems if
the linear natural frequencies ωi are commensurate or
nearly commensurate; that is

∑n
i=1 kiωi ≈ 0, where ki

are positive or negative integers. When the nonlinear-
ity in the system is cubic, internal resonance of order
four may occur; that is, ωn ≈ ωm, ωn ≈ 3ωm, ωn ≈
|±2ωm ± ωk | , or ωn ≈ |±ωm ± ωk ± ωl |. When
the nonlinearity is quadratic, third-order internal res-
onances may occur if ωn ≈ 2ωm, ωn ≈ ωm ±ωk [11].

In Ref. [8], large oscillation motion of a cantilever
beam carrying a spring-mass system was investigated
using time-frequency analysis. The equations of planar
motion were solved combining average acceleration
and iterative methods and the system exhibited inter-
nal resonance. In their study, the equations were dis-
cretized using Galerkin method and particular assump-
tions have been made on the moving mass motion about
its equilibrium position. In the works cited earlier [6,7],
the same problem has been investigated using combi-
nation of numerical and perturbation methods. In that
research, the nonlinearities arose merely due to the cou-
pling between the beam and the mass, evaluated near
the equilibrium position of the vibrating mass. Due to
quadratic nonlinear coupling terms, the system exhib-
ited the 2:1 internal resonance condition. Both [6,7]
and [8] investigated free vibrations of the beam.

Mechanical oscillators are usually designed to be
resonantly tuned to the ambient dominant frequency.
One major drawback to the linear energy harvesting
approach is that it assumes most of the ambient vibra-
tion is concentrated at a dominant frequency while in
reality the energy spectra of the available vibration are
commonly spread in a broadband frequency range, with
the prevalence of low frequency components. Tuning
the oscillators is not always possible due to geometri-
cal/dynamical constraint but in recent papers [12–15],
interesting methods have been proposed to increase
harvesters bandwidth, almost all by considering non-
linear oscillators instead of linear resonant ones. Fur-
thermore unlike linear harvesters, nonlinear oscilla-
tors can have multiple stability regions and basins of
attraction that may be exploited for harvesting pur-
poses.

An important question that must be addressed by
any energy harvesting technology is related to the trans-
duction mechanism generating electrical energy from
motion. Such mechanical device is designed with the
aim of maximizing the coupling between the kinetic
energy source and the transduction mechanism which
consists of electromagnetic induction or strain piezo-
electric interaction. Researchers in [13] presented a
nonlinear electromagnetic energy harvesting device
that has a broadly resonant response. The harvester
is modeled using a Duffing-type equation under both
pure-tone and narrow-band random excitations which
showed that in addition to the primary resonance, the
superharmonic resonances of the harvester may be
useful in converting mechanical to electrical energy.
Authors in Ref. [16] modeled the nonlinear behavior
of an electromagnetic harvester sustaining oscillations
through the phenomena of magnetic levitation by Duff-
ing’s equation, and confirmed by direct numerical inte-
gration a broadband frequency response for the nonlin-
ear harvester.

As different forms of extractable energy are avail-
able, [17] exploited the concept of galloping of square
cylinders to harvest wind energy through a piezo-
electric transducer attached to the transverse degree
of freedom. They determined the onset of galloping
which appears as a Hopf bifurcation through linear
analysis. Ref. [18] investigated energy harvesting from
vortex-induced vibrations. Linear analysis determined
the effect of the electrical load resistance of the trans-
ducer on the natural frequency of the cylinder and the
onset region of synchronization between shedding and
the cylinder oscillating frequency. Researchers in Ref.
[19] implemented a velocity feedback to reduce the flut-
ter speed of a rigid airfoil to any desired value, enabling
to produce limit-cycle oscillations at low wind speeds.
The nonlinear spring coefficients were selected so to
produce supercritical Hopf bifurcations, increasing the
amplitudes of the ensuing limit cycles and hence the
harvested power. Researchers in Ref. [20] developed a
nonlinear distributed-parameter model for a piezoelec-
tric cantilever beam with a tip mass as an energy har-
vester under parametric excitation. The method of mul-
tiple scales is used to obtain analytical expressions for
the tip deflection, output voltage, and harvested power
near the first principal parametric resonance. Results
show that a one-mode approximation in the Galerkin
approach is not sufficient to evaluate the performance
of the harvester. In [21], a piezoelectric patch on a ver-
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tically mounted cantilever beam with a tip mass that
is excited in the transverse direction at its base is pro-
posed as an energy harvesting device. By enabling the
beam to buckle by selecting large tip masses, nonlin-
ear behavior in the system dynamics may include mul-
tiple solutions. Jumps between buckled configurations
are exploited as a harvesting mechanism demonstrating
low natural frequencies, a high level of harvested power
and an increased bandwidth over a linear harvester.

1.2 Current prototype

In the present work, the forced vibration of a three-
dimensional composite beam carrying an axially mov-
ing mass retained by a spring is investigated throughout
a nonlinear oscillation regime, see Fig. 1. The internal
mass is influenced by the beam acceleration and flex-
ural motion and is restored to equilibrium by a linear
spring along the beam arc length. The specific imple-
mentation of the companion harvesting device along
the structure longitudinal dimension permit to deviate
the transversal vibration energy transmitted from exter-

Fig. 1 Schematic of composite cantilever beam consisting mass-
spring system

nal sources into an exploitable form. By tuning the para-
meters adequately, this system will react to transverse
excitations by transferring the energy to a longitudinal
mode of motion.

Equations of motion for a composite beam obtained
by Pai [22,23] and Arafat [24] are extended here by
considering an additional mass sliding along it. Result-
ing nonlinear partial differential equations of motion
are reduced to a set of ordinary differential equations
using Galerkin method by considering eigenfunctions
of an unequipped composite beam. These equations are
then solved using the approximate perturbation solu-
tion for two-to-one or one-to-one internal resonance
and external resonance conditions. Linear and nonlin-
ear quadratic or cubic terms are evaluated at the equi-
librium position of the moving mass. Three modula-
tion equations describing the dynamics of interacting
modes are obtained. Exchange of energy between the
beam and the moving mass occurring through the inter-
nal resonance and saturation phenomenon are exhibited
in form of frequency response and force response dia-
grams [25]. It is shown how multi-branched nontrivial
response curves exhibit saddle-node and Hopf bifurca-
tions. Moreover, stability and local bifurcation analysis
of the problem is carried out for flapwise and chordwise
excitations.

1.3 Practical issues

As the range of motion can reach large amplitudes,
nonlinearity phenomena will intervene that in turn per-
mits to improve efficiency upon other existing har-
vesters whose functionality is limited to linear ranges of
motion. Another attribute of the proposed system con-
sists of the feasibility to be compactly installed within
the structure framework and as a consequence, to not
occupy extra space or to cause any interference with
the normal operation of primary system (see Fig. 2).

The complexity of the modeled system leads to
concerns regarding the validation of the model and
the assumptions that have been used. For example,
in a practical experiment any useful energy harvest-
ing would be accompanied by significant amounts of
friction as the mass moves along the (deforming) col-
umn. Meanwhile, off-axis motion of the mass (e.g.,
rattling) would be exaggerated due to the deformation.
Using a spherical shaped mass sliding into a cylindrical
tube along the structure length may be considered as a
plausible solution, minimizing friction and not sensi-
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Fig. 2 An example on how proposed absorber may be installed
within the structure framework

tive to the passage curvature. Although increasing the
clearance will provoke more rattling effects, nonethe-
less this will offer a smoother pass of the reciprocating
mass through the tube length. Moreover, the spheri-
cal mass keeps contact to the interior walls along its
circle perimeter, instead of a whole lateral surface in
case a cylindrical mass is used. Actually, the primary
role of this harvester is to function as an absorber for
the transversal vibrations and hence minimizing beam
deflections. Thus, off-axis rattling will not be accentu-
ated by external trembles and eventually a steady state
can be reached. It is, however, not deniable that no
reliable conclusion on the efficiency of proposed appa-
ratus can be achieved without performing actual exper-
iments.

2 Derivation of equations of motion

The nonlinear equations of motion for the system which
is shown in Fig. 1 can be obtained from the extended
Hamilton’s principle,

δ I =
t2∫

t1

(δL + δwe)dt = 0. (2.1)

where δL and δwe present the variation of the Lagran-
gian and virtual work of nonconservative forces,
respectively. The total Lagrangian is composed of three
parts; one part for the composite beam and the other
parts for the moving mass and coil which are presented
as follows

δL(t) = δLbeam(t)+ δLmass(t)+ δLcoil(t), (2.2)

δLbeam(t) =
l∫

0

δ�b(s, t)ds,

�b(s, t) = 1

2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

m
(
u̇2 + ν̇2 + ẇ2

)

+(Jξω2
ξ + Jηω2

η + Jζ ω2
ζ )

−εT [k] ε

+λ
[
1 − (

1 + u′)2 + ν′2 + w′2
]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,

(2.3)

δLmass(t) =
l∫

0

δ

(
1

2
ma �vm .�vm

)

δ(s − r)ds, (2.4)

Lcoil(t) = 1

2
L H q̇2 + αq̇(r − re), δLcoil(t)

= L H q̇δq̇ + αrδq̇ + αq̇δr, (2.5)

In the above terms, the constraint of beam length
inextensibility is enforced into the formulation through
introducing Lagrange’s multiplier λ(s, t). The Lagr-
angian of the moving mass consists of its kinetic energy,
neglecting the rotary inertia, and depends on its current
arc length position s = r(t) along the deflected beam.
The coil portion is computed as Eq. (2.5), in which
α = 2nπRc B, where B designs the magnetic field
intensity, n the number of coil turns, L H the magnetic
induction of the coil and Rc the coil radius. The veloc-
ity vector of the moving mass expressed in the inertial
coordinate is given by

�vm = (u̇(s, t)+ ṙ cos(θ) cos(ψ))s=r(t)êx

+ (v̇(s, t)+ ṙ cos(θ) sin(ψ))s=r(t)êy

+ (ẇ(s, t)− ṙ sin(θ))s=r(t)êz . (2.6)

Virtual-work of the nonconservative forces are obtained
as

δwe =
l∫

0

( �Fc.δ�rmδ(s − r)+ ((Q∗
u − cuu̇)δu

+ (Q∗
v − cvv̇)δv + (Q∗

w − cwẇ)δw)

+ (Q∗
φ − cφφ̇)δφ)ds

− (Rint + Rload)q̇δq (2.7)

where �Fc is the external force vector applied to the
moving mass. Parameters cu, cv, cw, cφ are damping
coefficients and Qu, Qv, Qw, Qφ are external forces
applied to the beam. Rint, Rload are the internal resis-
tance of the coil and the resistance of the external load.
The vector �rm is the position vector of moving mass
in the inertial coordinate system. The vectors �Fc and
�rmare expressed in the following equations as
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�Fc = fc{(cos(θ) cos(ψ))s=r(t)êx

+ (cos(θ) sin(ψ))s=r(t)êy − (sin(θ))s=r(t)êz},
(2.8)

�rm = (r(t)+ u(s, t))s=r(t)êx + (v(s, t))s=r(t)êy

+ (w(s, t))s=r(t)êz, (2.9)

where, in Eq. (2.8), fc = −kar(t) is the spring resti-
tutive force magnitude and ka is the spring constant.
Substituting Eqs. (2.2) and (2.7) in Eq. (2.1) and set-
ting each of the coefficients δu(s, t), δv(s, t), δw(s, t),
δφ(s, t) and δr(t) equal to zero, the governing equa-
tions of motion and boundary conditions are obtained
as

u variation :
[mü − Q∗

u] + {ma(ü + u̇′ṙ)+ mar̈ cos(θ) cos(ψ)

+ maṙ(ṙw′w′′ + ẇ′w′) cos(ψ)

− maṙ(ṙv′v′′ + v̇′v′) cos(θ)

− fc(cos(θ) cos(ψ))}s=r(t) = [λ(1 + u′)]′

+ A11

(

u′ + v′2

2
+ w′2

2

)′
+ B11(φ

′ + v′′w′)

+ B13(v
′′ + φw′′)′ +

+ D22(w
′w′′′)′ + D33(v

′v′′′)′ + D13(v
′φ′′)′

− Jη(w
′ẅ′)′ − Jζ (v

′v̈′)′,
Boundary condition :
at s = 0, u = 0,

at s = L , λ(1 + u′) = −A11

(

u′ + v′2

2
+ w′2

2

)

− B11(φ
′ + v′′w′)

− B13(v
′′ + φw′′)− D22(w

′w′′′)− D33(v
′v′′′)

− D13(v
′φ′′)+ Jη(w

′ẅ′)
+ Jζ (v

′v̈′), (2.10)

v variation:
[mv̈ + cvv̇ + D33v

iv + D13φ
′′′ − Jζ v̈

′′]
+ {ma(v̈ + v̇′ṙ)+ mar̈ cos(θ) sin(ψ)

+ maṙ(w′′w′ + ẇ′w′) sin(ψ)

+ maṙ(ṙv′′ + v̇′) cos(θ)}s=r(t)

− fc(cos(θ) sin(ψ))s=r(t)

= Qv − D11(φ
′w′ + v′′w′2)′′

− (D22 − D33)(φ
2v′′ − φw′′)′′

− D33[v′(v′v′′)′ + v′(w′w′′)′]′

+ D13

[
1

2
(φ′φ2)′ − 2(v′′w′)′ − 1

2
v′2φ′′

−(w′w′′)′φ
]′

+ Jξ
∂

∂t
(φ̇w′ + v̇′w′2)′

− (Jη − Jζ )

[

(v′w′ẅ′)− ∂

∂t
(v̇′φ2 − ẇ′φ)

]′

+ Jζ (v
′v̇′2 + v′ẇ′2)′

− m

2

⎧
⎨

⎩
v′

⎡

⎣

s∫

L

∂2

∂t2

s∫

0

(v′2 + w′2)ds

⎤

⎦ ds

⎫
⎬

⎭

′

−
⎛

⎝v′
s∫

L

Quds

⎞

⎠

′
+ (λv′)′,

Boundary condition :
at s = 0, v = 0, v′ = 0,

at s = L ,

D33v
′′ + D13φ

′ = −D11(v
′′w2 + φ′w′)

− (D22 − D33)(φ
2v′′ − φw′′ − v′w′w′′)

+ D13

(
1

2
φ2φ′ − 1

2
v′2φ′ − φw′w′′ − 2v′′w′

)

,

D33v
′′′ + D13φ

′′ − Jζ v̈
′ = −D11(φ

′w′ + w′2v′′)′

− (D22 − D33)(φ
2v′′ − φw′′)′

− D33[v′(v′v′′)′ + v′(w′w′′)′] + D13

[
1

2
(φ2φ′)

− 1

2
v′2φ′′ − φ(w′w′′)′ − 2(v′′w′)′

]

+ Jξ
∂

∂t
(φ̇w′ + w′2v̇′)+ (Jη − Jζ )

∂

∂t
(φ2v̇′ − φẇ′)

+ Jζ

[

v′ ∂
∂t
(v′v̇′)+ v′ ∂

∂t
(w′ẇ′)

]

, (2.11)

w variation :
[mẅ + cwẇ + D22w

iv − Jηẅ
′′]

+ {ma(ẅ + ẇ′ṙ)
+ mar̈ sin(θ)− maṙ(ṙw′′ + ẇ′)+ fc(sin(θ))}

= Qw + D11(φ
′v′′ + v′′2w′)′ + (φ′v′′ + v′′2w′)′

+ (D22 − D33)(φ
2w′′ + φv′′)′′

− D22(w
′(w′w′′))′ − D33(w

′(v′v′′)′)
+ D13[v′′2 − (φφ′)′ − w′(φv′)′′]′
− Jξ (φ̇v̇

′ + v̇′2w′)′ + Jη(w
′ẇ′2)′ + Jζ (w

′v̇′2)′

− (Jη − Jζ )
∂

∂t
[(ẇ′φ2)+ (v̇′φ)]′
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−
⎛

⎝w′
s∫

L

Quds

⎞

⎠

′

− m

2

⎧
⎨

⎩
w′

⎡

⎣

s∫

L

∂2

∂t2

s∫

0

(v′2 + w′2)ds

⎤

⎦ ds

⎫
⎬

⎭

′

+ (λw′)′,
Boundary condition :
at s = 0, w = 0, w′ = 0,

at s = L ,

D22w
′′ = (D22 − D33)(φ

2w′′ + φv′′)
− D13[φφ′ + (φv′)w′],

D22w
′′′ − Jηẅ

′ = D11(w
′v′′2 + v′′φ′)

− D22[w′(w′w′′)′] − D33[w′(v′v′′)′]
+ (D22 − D33)(φ

2w′′ + φv′′)′

− D13[w′(φv′)′′ + (φφ′)′ − v′′2]
− Jξ (w

′v̇′2 + φ̇v̇′)

+ Jη

[

w′ ∂
∂t
(w′ẇ′)

]

+ Jζ

[

w′ ∂
∂t
(v′v̇′)

]

− (Jη − Jζ )
∂

∂t
(φ2ẇ′ + φv̇′), (2.12)

φ variation :
Jξ φ̈ + cφφ̇ − D11φ

′′ − D13v
′′′ = Qφ + D11(v

′′w′)′

+ (D22 − D33)(v
′′w′′ − φv′′2 + φw′′2)

+ D13

[
1

2
(v′2v′′)′ − 1

2
φ2v′′′ + v′(w′w′′)′ + φw′′′

]

− Jξ
∂

∂t
(v̇′w′)

+ (Jη − Jζ )(φv̇
′2 − φẇ′2 − v̇′ẇ′),

Boundary condition :
at s = 0, φ = 0,

at s = L , D11φ
′ + D13v

′′ = −D11(v
′′w′)

+ D13

(
1

2
φ2v′′ − 1

2
v′2v′′ − φw′′ − v′w′w′′

)

,

(2.13)

r variation :
{mar̈ + maü cos(θ) cos(ψ)

+ mau̇ẇ′w′ cos(ψ)− mau̇v̇′v′ cos(θ)

+ ma v̈ cos(θ) sin(ψ)+ ma v̇ẇ
′w′ sin(ψ)

+ ma v̇v̇
′ cos(θ)− maẅ sin(θ)}s=r(t)

− mau̇u̇′ − ma v̇v̇
′

− fc(cos(θ)cos(ψ))s=r(t)

− fc(cos(θ)cos(ψ))s=r(t)u
′

− fc(cos(θ) sin(ψ))s=r(t)v
′

− fc(sin(θ))s=r(t)w
′ − (αq̇) = 0. (2.14)

q variation :
L H q̈ + (Rint + Rload)q̇ + αṙ = 0. (2.15)

It is noteworthy that in the derivation of above equa-
tions, the variation process for variables u, v, w was
obtained through expression

δ�(s, t) = δ�+ ∂�

∂s
δr

∣
∣
∣
∣
s=r(t)

,

� = u, v, w, u̇, v̇, ẇ (2.16)

keeping in mind that it has to reflect the dependence
to s = r(t). Rotation angles θ, ψ are related to beam
deflections through kinematics [24] and Eq. (2.10) is
solved for the Lagrange multiplier λ(s, t). The result is

λ = Jη(w
′ẅ′)+ Jζ (v

′v̈′)− D22(w
′w′′′)

− D33(v
′v′′′)− D13(v

′φ′′)
− B11(φ

′ + v′′w′)− B13(v
′′ + φw′′)

− m

2

⎧
⎨

⎩

s∫

L

∂2

∂t2

s∫

0

(v′2+w′2)ds]ds −
⎛

⎝

s∫

L

Quds

⎞

⎠

+
{

maü + mar̈

(

1 − v′2

2
+ w′2

2

)

− 2maṙ v̇′v′

− fc

(

1 − v′2

2
+ w′2

2

)}

s=r(t)
, (2.17)

Eq. (2.17) is then substituted in the underlined terms of
Eqs. (2.11) and (2.12). In the next section, the equations
are obtained in a nondimensional form.

3 Dimensionless equations

The following dimensionless parameters are defined
for presenting the equations of motion

s∗ = s

l
, c∗
v = cvl2

√
m D33

,

β11 = D11

D33
, J ∗
ξ = Jξ

ml2 , Qv = l3

D33
Qv,

v∗ = v

l
, c∗
w = cwl2

√
m D33

,

β22 = D22

D33
, J ∗
η = Jη

ml2 , Q∗
w = l3

D33
Qw,
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w∗ = w

l
, c∗
φ = cφ√

m D33
,

β13 = D13

D33
, J ∗
ζ = Jζ

ml2 , Q∗
φ = l2

D33
Qφ,

r∗ = r

l
,m∗

s = ma

ml
, k∗

s = kal3

D33
,

t∗ =
√

D33

ml4 t, β33 = 1, Q∗
u = l3

D33
Q,

u

k∗
t = 2nπ, k∗

q = L H

Rint + Rload

√
D33

ml4 ,

k∗
e = 2nπ(Rc B)2l3

D33

1

Rint + Rload

√
D33

ml4 (3.1)

Moreover, the forcing terms, damping terms are assumed
to be O(ε) while (ε � 1) is a small dimensionless
parameter used as a bookkeeping parameter. Neglect-
ing nonlinear rotary inertia terms, the underlined terms
below are those added to the governing equations of
the single beam obtained by Arafat [24], hence show-
ing the effect of the moving mass. For ease of notation,
the superscript (∗) is dropped and a prime and an over
dot is used to denote ∂

∂s∗ and ∂
∂t∗ , respectively. The

nondimensional equations are obtained as

ν̈ + εcν ν̇ + β33ν
iv + β13φ

′′′ − Jζ ν̈
′′ + ms v̈δ(s − r)

= ε

{
Qv (t)− [

ν′ (s − 1)
]′

Qu (t)
+Hν (s, t)+ Hv j (s, t)

}

, (3.2)

ẅ + εcwẇ + β22w
iv − Jηẅ

′′ + msẅδ(s − r)

= ε

{
Qw (t)− [

w′ (s − 1)
]′

Qu (t)
+Hw (s, t)+ Hw j (s, t)

}

, (3.3)

Jξ φ̈ + εcφφ̇ − β11φ
′′ − β13ν

′′′

= ε
{

Qφ (t)+ Hφ (s, t)
}
, (3.4)

msr̈ + ksr − kt q̇ = ε {Hr (t)}, (3.5)

kq q̈ + q̇ + εkeṙ = 0, (3.6)

where Hv j (s, t), Hw j (s, t), Hr (t) in Eqs. (3.2), (3.3)
and (3.5) are defined in the Appendix and the functions
Hv(s, t), Hw(s, t), Hφ(s, t) are the same as Ref. [24].

The corresponding nondimensional boundary con-
ditions are

ν = 0, ν′ = 0, w = 0, w′ = 0 and

φ = 0 at s = 0, (3.7)

β33ν
′′ + β13φ

′ = ε(Bv1 (t)) at s = 1, (3.8)

β33ν
′′′ + β13φ

′′ − Jζ ν̈
′ = ε(Bν2 (t)) at

s = 1, (3.9)

β22w
′′ = ε(Bw1 (t)) at s = 1, (3.10)

β22w
′′′ − Jηẅ

′ = ε(Bw2 (t)) at s = 1, (3.11)

β11φ
′ + β13ν

′′ = ε(Bφ1 (t)) at s = 1, (3.12)

r(0) = r0,
dr

dt

∣
∣
∣
∣
t=0

= 0, (3.13)

where the functions Bv1(t), Bv2(t), Bw1(t), Bw2(t),
Bφ1(t) are defined in Ref. [24].

4 Spatial discretization

The governing Eqs. (3.2)–(3.6) are nonlinear and gener-
ally do not have closed-form solution. Since the bound-
ary conditions given in Eqs. (3.7)–(3.13) are spatial
and independent of time then the Galerkin method is
applied to the equations of motion (3.2)–(3.13) using
the following approximation

v(s, t) = φv(s)V (t), (4.1)

w(s, t) = φw(s)W (t), (4.2)

φ(s, t) = φφ(s)E(t), (4.3)

In expansions (4.1)–(4.3), the shape functions corre-
sponding to the first mode of a cantilever compos-
ite beam without moving mass as used in Ref. [24]
have been considered to be replaced into the variables
v(s, t), w(s, t), φ(s, t). Multiplying Eqs. (3.2)–(3.4)
by weighting functions φv(s), φw(s), φφ(s), respec-
tively, integrating by parts twice, and substituting
boundary condition Eqs. (3.7)–(3.13) gives the follow-
ing semi-discretized equations

(cv1)V̈ + (cv2)V̇ + (cv3)V + (cv4)

E = ε

⎧
⎨

⎩
f (E, V,W, ..)+ 1

2

⎛

⎝

1∫

0

φv(s)ds

⎞

⎠

( fv�
2
v)(e

i�vT0 + e−i�vT0)

⎫
⎬

⎭
, (4.4)

(cw1)Ẅ + (cw2)Ẇ + (cw3)

W = ε

⎧
⎨

⎩
g(E, V,W, . . .)+ 1

2

⎛

⎝

1∫

0

φw(s)ds

⎞

⎠

( fw�
2
w)(e

i�wT0 + e−i�wT0)

⎫
⎬

⎭
, (4.5)

(cφ1)Ë + (cφ2)Ė + (cφ3)E + (cφ4)
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V = ε

⎧
⎨

⎩
h(E, V,W, . . .)+ 1

2

⎛

⎝

1∫

0

φφ(s)ds

⎞

⎠

( fφ�
2
φ)(e

i�φT0 + e−i�φT0)

⎫
⎬

⎭
, (4.6)

msr̈ + ksr − kt q̇ = εk(V,W, . . .) (4.7)

kq q̈ + q̇ + εkeṙ = 0, (4.8)

Coefficients cvi (i = 1..4), cvni (i = 1..8), cwi (i =
1..3), cwni (i = 1..7) and cφi (i = 1..4), cφni (i =
1..4), crni (i = 1..4) in Eqs. (4.4)–(4.7), in addition
to coefficients of nonlinear terms, are defined in the
Appendix. These coefficients are calculated at the equi-
librium position s = re of the moving mass. The
power delivered to the electrical circuit due to induc-
tion is caused by the magnet mass reciprocating along
the beam. The expression for the instantaneous power
transferred to the electrical load through the attached
coil is derived as

P(t) = Rload i2 = Rload(εkeṙ)2 (4.9)

where the current is obtained from Eq. (4.8) by neglect-
ing the inductance effect relative to the circuit resis-
tance in the k∗

q expression in Eq. (3.1).

5 Solution using the multiple scales method

Equations (4.4)–(4.8) are solved using the method of
multiple scales. By defining two time scales T0 = t and
T1 = εt , an asymptotic series solution for V,W, E and
r are assumed as

V (t) = V0(T0, T1)+ εV1(T0, T1), (5.1)

W (t) = W0(T0, T1)+ εW1(T0, T1), (5.2)

E(t) = E0(T0, T1)+ εE1(T0, T1), (5.3)

r(t) = r0(T0, T1)+ εr1(T0, T1), (5.4)

q(t) = q0(T0, T1)+ εq1(T0, T1), (5.5)

Using Eqs. (5.1)–(5.5), the Eqs. (4.4)–(4.8) are sim-
plified and coefficients of ε0 and ε1 are set to zero as
follows

Order ε0:

(cv1)D
2
0 V0 + (cv3)V0 + (cv4)E0 = 0, (5.6)

(cw1)D
2
0 W0 + (cw3)W0 = 0 (5.7)

(cφ1)D
2
0 E0 + (cφ3)E0 + (cφ4)V0 = 0, (5.8)

ms D2
0r0 + ksr0 − kt D0q0 = 0, (5.9)

kq D2
0q0 + D0q0 = 0, (5.10)

Order ε1:

(cv1)D
2
0 V1 + (cv3)V1 + (cv4)E1

= f1(V0,W0, E0, r0, . . . ..)

+1

2

⎛

⎝

1∫

0

φv(s)ds)( fv�
2
v

⎞

⎠ (ei�vT0 + e−i�vT0),

(5.11)

(cw1)D
2
0 W1 + (cw3)W1 = g1(W0, V0, E0, r0, . . . .)

+ 1

2

⎛

⎝

1∫

0

φw(s)ds

⎞

⎠ ( fw�
2
w)(e

i�wT0 + e−i�wT0),

(5.12)

(cφ1)D
2
0 E1 + (cφ3)E1 + (cφ4)V1

= h1(E0, V0,W0, . . .)

+ 1

2

⎛

⎝

1∫

0

φφ(s)ds

⎞

⎠ ( fφ�
2
φ)(e

i�φT0 + e−i�φT0),

(5.13)

ms D2
0r1 + ksr1 − kt D0q1 = k1(V0,W0, r0, q0, . . .)

(5.14)

kq D2
0q1 + D0q1 = j1(q0, r0, . . .), (5.15)

which right-hand side terms are appended in the appen-
dix.

By neglecting the magnetic induction (L H =
0 or kq = 0), solutions to Eqs. (5.6) - (5.10) are given
by

V0 = A(T1)e
iωT0 + A(T1)e

−iωT0 , (5.16)

E0 = B(T1)e
iωT0 + B(T1)e

−iωT0 , (5.17)

W0 = C(T1)e
iρT0 + C(T1)e

−iρT0 , (5.18)

q0 = F(T1)+ F(T1), (5.19)

r0 = D(T1)(e
iωr T0)+ D(T1)(e

−iωr T0), (5.20)

where, A(T1), A(T1), B(T1), B(T1) and C(T1),C(T1),

D(T1), D(T1), F(T1), F(T1) denote general complex
variable functions of the higher time scale and their
complex conjugates. The parameterω is the natural fre-
quency of the flapwise-torsional mode, ρ is the natural
frequency of the chordwise mode and ωr is the natural
frequency of the moving mass. Substituting Eqs. (5.16)
and (5.17) in Eqs. (5.5) and (5.8), ω is calculated from
Eq. (5.21) which ensures the existence of nontrivial
solution.
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∣
∣
∣
∣

[
cv3 − ω2cv1cv4

cφ4cφ3 − ω2cφ1

]∣
∣
∣
∣ = 0, (5.21)

[
cv3 − ω2cv1 cv4

cφ4 cφ3 − ω2cφ1

] [
A(T1)

B(T1)

]

= 0, (5.22)

Consequently,

B(T1) = m A(T1),

m = cv3 − ω2cv1

−cv4
= −cφ4

cφ3 − ω2cφ1
. (5.23)

where ρ and ωr are evaluated as follows

ρ =
(

cw3

cw1

) 1
2

, ωr =
(

ks

ms

) 1
2

(5.24)

Substituting Eqs. (5.16)–(5.20) into the right hand sides
of Eqs. (5.11)–(5.15) and substituting D0q1 from Eq.
(5.15) in to Eq. (5.14), the following equations are
obtained

(cv1)D
2
0 V1 + (cv3)V1 + (cv4)E1 = Ĥv(T1)e

iωT0

+ cc + N ST, (5.25)

(cw1)D
2
0 W1 + (cw3)W1 = Ĥw(T1)e

iρT0

+ cc + N ST, (5.26)

(cφ1)D
2
0 E1 + (cφ3)E1 + (cφ4)V1 = Ĥφ(T1)e

iωT0

+ cc + N ST, (5.27)

ms D2
0r1 + ksr1 = Ĥr (T1)e

iωr T0 + cc + N ST, (5.28)

where NST and cc stand for the nonsecular and com-
plex conjugate of the preceding terms, respectively.
Functions Ĥv, Ĥw, Ĥφ and Ĥr are secular terms. These
terms are determined by assumptions which are consid-
ered for internal and external resonances. To eliminate

the secular terms, the coefficients Ĥv, Ĥw, Ĥφ and Ĥr

are set to zero resulting in:

Ĥv = 0, Ĥw = 0, Ĥφ = 0, Ĥr = 0. (5.29)

It is essential to mention that the nonlinearity inher-
ent in the present system will permit the establishment
of the coupling between flapping and axial modes of
vibrations, despite their independence from each other
in the linear regime, as seen in Eqs. (5.6)–(5.10).

6 Modulation equations

Modulation equations governing the dynamics of inter-
acting modes are obtained from Eq. (5.29) for a
graphite-epoxy composite beam with lay-up

[
100

6/450
4/

900
5

]
s which was also considered by Pai [22,23] and

Arafat [24]. The properties of the beam are indicated
in Table 1. In what follows, we derived the modula-
tion equations for two special cases. In the first case,
equations are verified with the equations of the simple
composite beam investigated in Refs. [23] and [24] by
eliminating the moving mass terms. The second case is
considered for the composite beam with a moving mass
under flapwise and chordwise base excitation. Hence,

(i) Flapwise excitation without moving mass
In order to verify the modulation equations for a
composite beam without moving mass, the same
shape functions described in Sect. 4 are employed.
From the first natural frequency of the beam and
Eq. (5.22), the parameter will be found as m = 1.

Table 1 Beam properties

Beam length l=1.5 ft Density ρ0 = 96.1lbm/ f t3

Width b = 0.37526 in Poisson’s ratios
υ12 = υ13 = 0.24
υ23 = 0.49

Thickness h = 0.15 in

Lamina thickness hk = 0.005 in Nondimensional
mass moments
of inertia

jξ = 5.78704 × 10−6

jη = 3.62192 × 10−5

jξ = 4.20062 × 10−5

Damping coefficients cv = 0.07, cw = 0.13, cφ = 0.0003

Bending and torsional rigidities D11 = 436.23lb f .in2

D22 = 5547.2lb f .in2

D33 = 1532.4lb f .in2

D13 = 252.02lb f .in2

Elastic and shear modulus E1 = 1.92 × 107 psi
E2 = E3 = 1.56 × 106 psi
G23 = 5.23 × 105 psi
G13 = G13 = 8.20 × 105 psi
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Table 2 coefficients of
Eqs. (5.20)–(5.22) and
natural frequencies

Present study Ref. [17]

ω = 3.34465975 ρ = 6.68905 ω = 3.34465987 ρ = 6.68906

�1 = −1.000043 �1 = −1.00008 �1 = −1.00005 �1 = −1.00008

�2 = 0.035231 �2 = 0.064994 �2 = 0.035232 �2 = 0.064994

�3 = −41.37863 �3 = −20.68937 �3 = −41.37849 �3 = −20.68924

�4 = −20.78856 �4 = −20.789006 �4 = −20.78901 �4 = −20.78901

�5 = −39.00016 �5 = −9.27943 �5 = −39.00110 �5 = −9.28130

�6 = −0.39148 fv�2
v �6 = −0.39149 fv�2

v

By substituting into Eq. (5.29), we get

Ĥv + Ĥφ = 0, Ĥw = 0, (6.1)

2iω(�1)A
′ = 2iω�2 A − �3 ĀCe2iωδT1

−2�4 ACC̄ − 3�5 A2 Ā − �6eiωσT1 ,

(6.2)

2iρ(�1)C
′ = 2iρ�2C −�3 A2e−2iωδT 1

−2�4 AĀC − 3�5C2C̄, (6.3)

where, the coefficients �i (i = 1..6) and �i (i =
1..5) are defined in the Appendix. For the spe-
cial case, when ms = 0 coefficients of modulation
equations and natural frequencies are compared to
those obtained by Ref. [24] in Table 2. Results show
a good agreement between the numerical findings
of the present study with those reported in Ref. [24].

(ii) Flapwise and Chordwise excitation
The clamped end of the beam is excited harmon-
ically along the v direction (i.e., flapwise excita-
tion) and also along the w direction (i.e., chord-
wise excitation). The detuning parameters σ and δ
are defined for two-to-one and one-to-one internal
resonances in the following cases:

Flapwise exci tation Qv = fv�
2
v cos(�vT0),

Qu = 0, Qφ = 0, Qw = 0,

Chordwise exci tation Qw = fw�
2
w

cos(�wT0), Qu = 0, Qφ = 0, Qv = 0, (6.4)

case 1 �v = ω(1 + εσ ), ωr = 2ω(1 + εδ),

case 2 �w = ρ(1 + εσ ), ωr = 2ρ(1 + εδ),

(6.5)

case 3 �v = ω(1 + εσ ), ωr = ω(1 + εδ),

case 4 �w = ρ(1 + εσ ), ωr = ρ(1 + εδ),

(6.6)

Substituting Eqs. (6.4)–(6.6) into Eq. (5.29) and
using Eq. (6.1), we obtain

2iω(�1)A
′ = 2iω�2 A − 2�3 ADD̄

− 2�4 ACC̄ − 3�5 A2 Ā

− (�6 ĀD2e2iωδT1μ1 + �7 ĀDe2iωδT1μ2

+�8eiωσT1)μF , (6.7)

2iρ(�1)C
′ = 2iρ�2C − 2�3C DD̄

− 2�4 AĀC − 3�5C2C̄

− (�6 D2C̄e2iρδT1μ1 +�7C̄ De2iρδT1μ2

+ �8eiρσT1)μC , (6.8)

2iωr (X1)D
′ = −2X2 AĀD − 2X3 DCC̄

−(X4 A2 D̄e−2iωδT1μ1 + X5 A2e−2iωδT1μ2)μF

−(X6 D̄C2e−2iρδT1μ1 + X7C2e−2iρδT1μ2)μC ,

(6.9)

where, μ1 and μ2 are two tracers identifying the
terms associated with the one-to-one internal reso-
nance and two-to-one internal resonance, respec-
tively. The equality μ1 = 1 implies μ2 = 0,
and vice-versa, μ2 = 1 requires that μ1 = 0.
When μ1 = μ2 = 0, there is no internal reso-
nance. Also, μF and μC are two tracers associ-
ated with flapwise and chordwise excitation terms
such that for flapwise excitation μF = 1, μC = 0
and for chordwise excitation μF = 0, μC = 1.
�i (i = 1..8),�i (i = 1..8),Xi (i = 1..7) are
defined in the Appendix.

Complex variables A,C, D in Eqs. (6.7)–(6.9) are con-
verted to polar form using the following equations
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A(T1) = 1

2
a1(T1)e

iβ1(T1),C(T1) = 1

2
a2(T1)e

iβ2(T1),

D(T1) = 1

2
a3(T1)e

iβ3(T1), (6.10)

Substituting Eq. (6.10) in the Eqs. (6.7)–(6.9) and after
some simplifications, we obtain

a′
1 = �2

�1
a1 −

{
�6

8ω�1
a1a2

3 sin(υ1 f )μ1

+ �7

4ω�1
a1a3 sin(υ2 f )μ2 + �8

ω�1
sin(υ f )

}

μF

(6.11)

(a1υ
′
f − a1ωσ)μF = − �3

4ω�1
a1a2

3 − �4

4ω�1
a1a2

2

− 3�5

8ω�1
a3

1 −
{
�6

8ω�1
a1a2

3 cos(υ1 f )μ1

+ �7

4ω�1
a1a3 cos(υ2 f )μ2 + �8

ω�1
cos(υ f )

}

μF

(6.12)

a′
2 = �2

�1
a2 −

{
�6

8ρ�1
a2a2

3 sin(υ1c)μ1

+ �7

4ρ�1
a2a3 sin(υ2c)μ2 + �8

ρ�1
sin(υc)

}

μc

(6.13)

(a2υ
′
c − ρσ)μc = − �3

4ρ�1
a2a2

3 − �4

4ρ�1
a2

1a2

− 3�5

8ρ�1
a3

2 −
{
�6

8ρ�1
a2a2

3 cos(υ1c)μ1

+ �7

4ρ�1
a2a3 cos(υ2c)μ2 + �8

ρ�1
cos(υc)

}

μc

(6.14)

a′
3 =

{
X4

8ωr X1
a3a2

1 sin(υ1 f )μ1

+ X5

4ωr X1
a2

1 sin(υ2 f )μ2

}

μF

+
{

X6

8ωr X1
a3a2

2 sin(υ1c)μ1

+ X7

4ωr X1
a2

2 sin(υ2c)μ2

}

μc (6.15)

−a3

{

(
υ ′

1 f

2
− υ ′

f + ω(σ − δ)μ1

+(υ ′
2 f − 2υ ′

f + 2ω(σ − δ)μ2

}

μF

−a3

{

(
υ ′

1c

2
− υ ′

c + ρ(σ − δ)μ1

+(υ ′
2c − 2υ ′

c + 2ρ(σ − δ)μ2

}
μc = −X2

4ωr X1
a2

1a3

− X3

4ωr X1
a2a3 −

{
X4

8ωr X1
a2

1a3 cos(υ1 f )μ1

+ X5

4ωr X1
a2

1 cos(υ2 f )μ2

}

μF

−
{

X6

8ωr X1
a2

2a3 cos(υ1c)μ1

+ X7

4ωr X1
a2

2 cos(υ2c)μ2

}

μc, (6.16)

where,

υ f = ωσT1 − β1, υc = ρσT1 − β2,

υ1 f = 2β3 − 2β1 + 2ωδT1,

υ2 f = β3 − 2β1 + 2ωδT1,

υ1c = 2β3 − 2β2 + 2ρδT1,

υ2c = β3 − 2β2 + 2ρδT1, (6.17)

Alternatively, we express the A and C, D in the Carte-
sian form as

A(T1) = 1

2
(p1 − iq1)e

iωσT1 ,C(T1)

= 1

2
(p2 − iq2)e

iρσT1 ,

D(T1) = 1

2
(p3 − iq3){(eiω(σ−δ)T1μ1

+ e2iω(σ−δ)T1μ2)μF + (eiρ(σ−δ)T1μ1

+e2iρ(σ−δ)T1μ2)μc}, (6.18)

By separating the real and imaginary parts in Eqs.
(6.7)–(6.9), one obtain

p′
1 = −ωσq1 + �2

�1
p1 + �3

4ω�1
(q1 p2

3 + q1q2
3 )

+ �4

4ω�1
(q1 p2

2 + q1q2
2 )

+ 3�5

8ω�1
(q1 p2

1 + q3
1 )

+
{
�6

8ω�1
(2p1 p3q3 − q1 p2

3 + q1q2
3 )μ1

+ �7

4ω�1
(p1q3 − q1 p3)μ2

}

μF , (6.19)

q ′
1 = ωσ p1 + �2

�1
q1

− �3

4ω�1
(p1 p2

3 + p1q2
3 )

− �4

4ω�1
(p1 p2

2 + p1q2
2 )− 3�5

8ω�1
(p1q2

1 + p3
1)
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−
{
�6

8ω�1
(2q1 p3q3 − p1q2

3 + p1 p2
3)μ1

+ �7

4ω�1
(p1 p3 + q1q3)μ2

}

μF , (6.20)

p′
2 = −ρσq2 + �2

�1
p2 + �3

4ρ�1
(q2 p2

3 + q2q2
3 )

+ �4

4ρ�1
(q2 p2

1 + q2q2
1 )

+ 3�5

8ρ�1
(q2 p2

2 + q3
2 )

+
{
�6

8ρ�1
(2p2 p3q3 − q2 p2

3 + q2q2
3 )μ1

+ �7

4ρ�1
(p2q3 − q2 p3)μ2

}

μc, (6.21)

q ′
2 = ρσ p2 + �2

�1
q2 − �3

4ρ�1
(p2 p2

3 + p2q2
3 )

− �4

4ρ�1
(p2 p2

1 + p2q2
1 )− 3�5

8ρ�1
(p2q2

2 + p3
2)

−
{
�6

8ρ�1
(2q2 p3q3 − p2q2

3 + p2 p2
3)μ1

+ �7

4ρ�1
(p2 p3 + q2q3)μ2 + �8

ρ�1

}

μc,

(6.22)

p′
3 = (−ω(σ − δ)q3μ1 − 2ω(σ − δ)q3μ2)μF

+(−ρ(σ − δ)q3μ1 − 2ρ(σ − δ)q3μ2)μc

X2

4ωr X1
(p2

1q3 + q2
1 q3)+ X3

4ωr X1
(p2

2q3 + q2
2 q3)

+
{

X4

8ωr X1
(q2

1 q3 + 2p1q1 p3 − p2
1q3)μ1

+ X5

2ωr X1
p1q1μ2

}

μF

+
{

X6

8ωr X1
(2p2q2 p3 − q3 p2

2 + q2
2 q3)μ1

+ X7

2ωr X1
(p2q2)μ2

}

μc, (6.23)

q ′
3 = (ω(σ − δ)p3μ1 + 2ω(σ − δ)p3μ2)μF

+(ρ(σ − δ)p3μ1 + 2ρ(σ − δ)p3μ2)μc

− X2

4ωr X1
(q2

1 p3 + p2
1 p3)

− X3

4ωr X1
(p2

2 p3 + q2
2 p3)

−
{

X4

8ωr X1
(p2

1 p3 − q2
1 p3 + 2p1q1q3)μ1

+ X5

4ωr X1
(p2

1 − q2
1 )μ2

}

μF

−
{

X6

8ωr X1
(p3 p2

2 + 2p2q2q3 − q2
2 p3)μ1

+ X7

4ωr X1
(p2

2 − q2
2 )μ2

}

μc, (6.24)

The fixed points of Eqs. (6.11)–(6.16) correspond to
a′

1 = a′
2 = a′

3 = υ ′
f = υ ′

c = υ ′
1 f = υ ′

1c = υ ′
2 f =

υ ′
2c = 0 or p′

1 = q ′
1 = p′

2 = q ′
2 = p′

3 = q ′
3 = 0 for

various cases. A pseudo arc length scheme is used to
trace branches of equilibrium solutions and fixed points
may lose stability due to saddle-point bifurcations or
Hopf bifurcations. Then, the amplitudes a1, a2 and a3

are calculated from ai =
√

p2
i + q2

i . The stability of a
fixed point is ascertained by investigating eigenvalues
of the Jacobian matrix of the right-hand sides of Eqs.
(6.19)–(6.24).

As it concerns the efficiency of this harvesting
device, some approximate calculations permit to give
an evaluation as follows. For the flapwise excitation
case, the input power is derived by calculating the aver-
age work done of the base excitation force in the flap-
wise direction over one time period:

Pi = 1

(2π/�)
=

2π
�∫

0

�∫

0

Qν.ν(x, t)dxdt = �

2π

=
2π
�∫

0

�∫

0

fν�
2 cos(�t)a1(T1)

×cos(ωT0 + β1(T1))ϕν(x)dxdt

= a1 fν�
2

⎛

⎝

�∫

0

ϕν(x)dx

⎞

⎠ cosβ1 (6.25)

The average power delivered to the electrical circuit
is due to induction of the reciprocating magnet mass
along the beam. The expression for the average power
transferred to the electrical load through the attached
coil is derived as

Po = �

2π
=

2π
�∫

0

Rload i2dt = �

2π
=

2π
�∫

0

Rload(εkeṙ)2dt

= �

2π
Rloadεk

2
e

2π
�∫

0

[−a3(T1)ωr sin(ωr T0

+β3(T1))]2dt = 2Rloadε
2k2

e a2
3�

2 (6.26)
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Subsequently one can calculate the power transfer effi-
ciency as:

η � Po

Pi
= 2Rloadε

2k2
e(∫ �

0 ϕν(x)dx
)

cosβ1

· 1

fν
· a2

3

a1
∝ 1

fν
· a2

3

a1

(6.27)

This latter relationship shows how the efficiency may
vary with excitation force. Next through simulations,
enhancement of harvester efficiency while entering the
nonlinear domain will be demonstrated.

7 Results

The steady-state behavior of the composite beam car-
rying a moving mass is investigated under flapwise and
chordwise excitation. The mass ratio and equilibrium
position of the moving mass with respect to the beam
are, respectively, set to 0.05 and 0.5. Natural frequen-
cies corresponding to flapwise-torsional and chord-
wise modes are obtained as ω = 3.40293157, ρ =
6.6132826, respectively. Desirable quantities for the
oscillator parameters are determined accordingly to
reproduce the one-to-one and two-to-one internal reso-
nances conditions in flapwise and chordwise excita-
tions. Resulting steady-state solutions are presented
through frequency-response and force–response dia-
grams. In all figures, solid lines indicate stable solu-
tions, dashed lines indicate unstable solutions with at

least one eigenvalue being positive and the dotted lines
indicate the unstable solutions with the real part of a
complex conjugate pair of eigenvalues being positive.

7.1 Flapwise excitation result

Results presented in this section are related to the flap-
wise excitation in Eq. (6.4) and the cases 1 and 3 in
Eqs. (6.5)–(6.6) with the force amplitude fv = 0.01 in
flapwise direction. The chordwise direction can also be
excited alongside the flapwise excitation by a force of
amplitude fw 	= 0, assuming that external resonance
in this direction is not activated. Dimensionless values
of spring stiffness necessary for generating one-to-one
and two-to-one internal resonance are evaluated as ks =
0.578997 and ks = 2.3160, respectively. The numeri-
cal values of parameters proposed in Ref.[16], namely
Rint = 188�, Rload = 1 × 106�, α = 7.752V s/m,
are selected for the simulations. The coil turns per unit
length and coil radius are n = 200, Rc = 0.4in, respec-
tively.

Figure 3a, b show force–response curves of the one-
to-one internal resonance condition for internal and
external detuning parameters δ = 0.01, σ = 0. As
shown in Fig. 3a, b, the input energy is transferred
from the flapwise-torsional mode to the moving mass
at fv1 = 0.00315 through a saddle-node bifurcation
and this mode saturates to a constant value a1. As fv
increases from zero, the a1 amplitude reverses from
point A at fv1 = 0.00315 to point B at fv2=0.00234

Fig. 3 Force–response curves for one-to-one internal resonance and parameters δ = 0.01, σ = 0
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Fig. 4 Force–response curves for one-to-one internal resonance and parameters δ = 0.01, σ = −0.01

as shown in Fig. 3b and the a3 amplitude traces
unstable solution DE as shown in Fig. 3b. Figure 4
shows force–response curves for detuning parameters
δ = 0.01, σ = −0.01. Saturation of flapwise-torsional
mode is shown in this figure as fv is increased from zero
to 0.1. As shown in Fig. 4a, d, fixed points lose their
stability through a Hopf bifurcation at fv1 = 0.0181
resulting in the creation of limit cycles for ampli-
tudes and phases. The response curves in parts (b)
and (c) undergo subcritical pitchfork bifurcations at
points E and G. Furthermore, there is an interval of
the force amplitude fv after fv1 in Fig. 4d in which
no stable fixed point exists. Hence, the response of
the beam in this interval is expected to be aperiodic
including chaotic. In order to verify the claim, phase

plane evolutions of the involved variables have been
depicted, although not necessarily chaotic but present-
ing complex aperiodic behaviors for δ = 0.01, σ =
−0.01, fv = 0.03 as shown in Fig.5, and is completely
periodic for δ = 0.01, σ = −0.01, fv = 0.02 as shown
in Fig.6. The behavior of these operational points is
found out as predicted with perturbation method.

Frequency-response of composite beam carrying a
moving mass is shown in Fig. 7a, b for δ = 0.01 and δ =
−0.01, respectively. Saddle-node bifurcation occurs at
σ = −0.0103 for δ = 0.01 and at σ = −0.0238 for
δ = −0.01. In Fig. 7, a region of frequency detuning
σ appears in which no stable fixed point exists.

The steady-state behavior of the composite beam
carrying a moving mass is investigated in the two-to-
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Fig. 5 Phase plane response two-to-one internal resonance and δ = 0.01, σ = −0.01, fv = 0.03

one internal resonance condition. Figure 8a, b show
the force–response curves when δ = 0.01, σ = 0.
The directly excited mode (a1 amplitude) saturates to
a constant value equal to 0.15 and the input energy is
transferred to the moving mass.

Figures 9 and 10 show the numerical integration for
two points A and B presented in Fig.8a. In these figures,
V (t), E(t),W (t), r(t) are plotted versus time for the
system evaluated at operational points A and B. It is
seen that the response amplitude is very close to the
value predicted by the perturbation method. Figures
9c and 10a show that the saturation of flapwise mode
(modea2) is promoted in numerical solutions.

In order to confirm the output characteristics of the
results, the frequency content of the time signals is

obtained by taking their fast Fourier transform. Tak-
ing into account Nyquist-Shannon theorem, frequency
spectrum V(f),E(f) and r(f), W(f) have been sketched in
Fig.9 in adjacency to their corresponding time histo-
ries, corresponding to operational point A of Fig. 8a.
As shown, in the spectrum peaks appear near first-
mode frequencies and the two-to-one internal reso-
nance condition (ω = 3.4, ωr = 6.8) is confirmed.
Moreover, flapping response amplitude remains con-
stant with respect to force amplitude modulation as pre-
sented in Figs. 9c, 10a, corresponding, respectively, to
point A and B in Fig 8a. As shown, amplitude and fre-
quencies of the oscillations obtained numerically com-
pared well with indicated values resulted from the semi-
analytic perturbation method.
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Fig. 6 Phase plane response two-to-one internal resonance and δ = 0.01, σ = −0.01, fv = 0.02

By referring to Fig.8 which indicates the vibration
amplitudes modulation against base excitation magni-
tude, it is seen that slightly increasing base force fv
causes a multi-fold magnification of a3 amplitude while
a1 amplitude saturates to a constant value, thus enhanc-
ing the harvester efficiency according to relationship
Eq. (6.27). This demonstrates that harvester efficiency
improves as it is progressing further in the nonlinear
domain.

Figures 11a and b, display force–response when
δ = 0.01, σ = −0.01 and the system exhibits satu-
ration phenomenon for the directly excited mode. Fig-
ure 12 shows frequency-response curves when δ =

0.01,−0.01, 0.05,−0.11. As shown in Fig. 12a–c,
when σ is increased, we have a single mode solu-
tion, which is stable, and fixed points experience
a saddle-node bifurcation at σ = −0.00428, σ =
−0.0198, σ = −0.0255, respectively. In Fig. 12d, the
plant exhibits a hardening-type behavior which leads
to a jump dynamic solution.

7.2 Chordwise excitation result

Results presented in this section are related to the
chordwise excitation in Eq. (6.4) and the cases 2
and 4 in Eqs. (6.5)–(6.6) and for the force ampli-
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Fig. 7 Frequency-response curves for one-to-one internal resonance

Fig. 8 Force–response curves for two-to-one internal resonance and δ = 0.01, σ = 0

tude in chordwise direction fw = 0.01. Flapwise
direction can still be excited simultaneously with
chordwise excitation, fv 	= 0, if resonance in this
direction is not approached. Dimensionless values
of spring stiffness for establishing one-to-one and
two-to-one internal resonance are evaluated as ks =
2.1867753 and ks=8.7471, respectively. The coil para-
meters are the same as those selected for flapwise
excitation.

In Fig. 13, the force–response curve is shown for
one-to-one internal resonance when δ = 0.01 and σ =
0,−0.01. As shown in Fig.13a, as fw is increased from

zero, the directly excited mode (a2 amplitude) linearly
increases and the solution undergoes a Hopf bifurcation
at fw1 = 0.00203, leading to a two-mode dynamic
solution for a2 and a3 amplitudes. When f > fw1,
depending on the amplitude of the motion, the response
may be attracted to either a dynamic or a constant solu-
tion. In this case, the plant’s amplitude may saturate at
value a2. Figure 13b shows force–response curve for
δ = 0.01 and σ = −0.01. Fixed points lose stability
through a Hopf bifurcation at fw1=0.00289. Also, sat-
uration of the directly excited mode is presented in this
figure.
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Fig. 9 Time-response curves of vibration amplitude (V,W,E,r) corresponding to operational point A of Fig. 8a with their corresponding
FFTs
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Fig. 10 Time-response curves of vibration amplitude (V, r) corresponding to operational point B of Fig.8a with their corresponding
FFTs

Figure 14 shows frequency-response curves for one-
to-one internal resonance when δ = 0.01 and δ =
−0.01. As shown in Fig. 14a, a Hopf bifurcation occurs
at σ = σ1 = −0.0277 which leads to two branch solu-
tions for a2 and a3 amplitudes. Figure 14b shows the
amplitude of unstable solution of moving mass or a3

amplitude. The response goes through a saddle-node
bifurcation which leads to a jump phenomenon in the
system. Figure 14c, d show the frequency-response
curves when δ = −0.01. Stable and unstable fixed
points correspond to saddle-node bifurcation.

Figure 15a, b are produced for two-to-one internal
resonance case when δ = −0.01. These figures show
force–response curves for δ = −0.01, σ = 0 and δ =
−0.01, σ = 0.01, respectively. The response consists
of the single-mode unstable solution. As f is increased
from zero, the directly excited mode saturates and the
unexcited mode (a3 amplitude) increases.

Figure 16 shows frequency-response curves for two-
to-one internal resonance when δ = 0.01,−0.01, 0.05,
0.11. As shown in Fig. 16a–d, the response consists of
unstable solutions.
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Fig. 11 Force–response curves for two-to-one internal resonance and δ = 0.01, σ = −0.01

Fig. 12 Frequency-response curves for two-to-one internal resonance
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Fig. 13 Force–response curves for one-to-one internal resonance

Fig. 14 Frequency-response curves for one-to-one internal resonance
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Fig. 15 Force–response curves for two-to-one internal resonance

Fig. 16 Frequency-response curves for two-to-one internal resonance
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8 Conclusions

As a widespread and promising technology, one pro-
file of energy harvesting consists of exploiting non-
linear properties of vibrating structures for capturing
useful energies provided by environmental sources or
machines operation. Large amplitude forced vibration
of a composite beam carrying a moving mass alongside
is studied under harmonic base excitation. The moving
mass, reciprocating inside a wire coil, is considered to
act partially as a vibration absorber and also as electric
generator through transforming mechanical into elec-
trical energy. The composite beam is excited along the
v or w directions, which brings induced motion to the
sliding mass along the beam arc length due to second
order effects. By properly applying conditions of inter-
nal resonance, optimal coupling can be set between the
moving mass and the directly excited modes. By con-
ducting bifurcation analyses, it is shown that the sat-
uration phenomenon can be taken into advantage for
diverging energy toward the axial direction and there-
after generating electricity. Present study reveals that
such absorbers can be used successfully in order to
attenuate nonplanar large amplitude beam vibrations
by ingeniously exploiting the often undesired and com-
plicating nonlinearities.

Appendix

The complete form of the equations, referred by their
equation number in the main text:

(cv1)V̈ + (cv2)V̇ + (cv3)V + (cv4)E = ε

⎧
⎨

⎩
(cvn1)r V̈

+ (cvn2)EW + (cvn3)V W + (cvn4)ËW

+ (cvn5)Ė Ẇ + (cvn6)r̈ V − (cvn7ks)r V

+ (cvn8)ṙ V̇ + (cvW 2V )W
2V + (cvE2V )E

2V

+ (cvV 3)V 3 + (cvE3)E3 + (cvEV 2)EV 2

+ (cvEW 2)EW 2 + (cvV̈ W 2)V̈ W 2

+ 2(cv2V̇ Ẇ W )V̇ Ẇ W + (cvr2 V̈ )r
2V̈

+ (cvrṙ V̇ )rṙ V̇ + (cvrr̈ V )rr̈ V + (cvr2V )r
2V

+ (cvṙ2V )ṙ
2V + 2(cvLV )(V

2V̈ + V V̇ 2)

+ 2(cvLW )(V W Ẅ + V Ẇ 2)

+1

2

⎛

⎝

1∫

0

φv(s)ds

⎞

⎠ ( fv�
2
v)(e

i�vT0 + e−i�vT0)

⎫
⎬

⎭
,

(4.4)

(cw1)Ẅ + (cw2)Ẇ + (cw3)W = ε
{
(cwn1)r Ẅ

+ (cwn2)EV + (cwn3)Ė V̇ + (cwn4)E
2

+ (cwn5)V
2 + (cwn6)r̈ W − (cwn7ks)r W

+ (cwr2Ẅ )r
2Ẅ + (cwr2W )r

2W + (cvrr̈ W )rr̈W

+ (cvṙ2W )ṙ
2W + (cwW V 2)W V 2 + (cwW 3)W 3

+ (cwW V̇ 2)W V̇ 2 + (cwE2W )E
2W

+ (cwEV W )EV W + 2(cwLV )(V W V̈

+ W V̇ 2)+ 2(cwLW )(W
2Ẅ + W Ẇ 2)

+1

2

⎛

⎝

1∫

0

φw(s)ds

⎞

⎠ ( fw�
2
w)(e

i�wT0 + e−i�wT0)

⎫
⎬

⎭
,

(4.5)

(cφ1)Ë + (cφ2)Ė + (cφ3)E + (cφ4)V

= ε

⎧
⎨

⎩
(cφn1)V W + (cφn2)EW + (cφn3)V̈ W

+ (cφn4)V̇ Ẇ + (cφE2V )E
2V + (cφV 3)V 3

+ (cφEV 2)EV 2 + (cφEW 2)EW 2

+1

2

⎛

⎝

1∫

0

φφ(s)ds

⎞

⎠ ( fφ�
2
φ)(e

i�φT0 + e−i�φT0)

⎫
⎬

⎭
,

(4.6)

msr̈ + ksr − kt q̇ = ε{(crn1)V V̈ + (crn2)V̇
2

+ (crn3)W Ẅ + (crn4)Ẇ
2 + (crr W 2)r W 2

+ crr V̇ 2(r V̇ 2)+ crr Ẇ 2(r Ẇ 2)

+ crr V V̈ (r V V̈ )+ crr W Ẅ (r W Ẅ )}. (4.7)

kq q̈ + q̇ + εkeṙ = 0, (4.8)

(cv1)D
2
0 V1 + (cv3)V1 + (cv4)E1 = −2(cv1)D0 D1V0

− (cv2)D0V0 + (cvn1)r1 D2
0 V0

+ (cvn2)E0W0 + (cvn3)V0W0 + (cvn4)D
2
0 E0W0

+ (cvn5)D0 E0 D0W0 + (cvn6)D
2
0r0V0

− (cvn7ks)r0V0 + (cvn8)D0r0 D0V0
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+ (cvw2v)W
2
0 V0 + (cvE2v)E

2
0 V0 + (cvV 3)V 3

0

+ (cvE3)E3
0 + (cvEV 2)E0V 2

0 + (cvEW 2)E0W 2
0

+ (cvV̈ W 2)D2
0 V0W 2

0 + 2(cv2V̇ Ẇ W )D0V0 D0W0W0

+ (cvr2 V̈ )r
2
0 D2

0 V + (cvrṙ V̇ )r0 D0r0 D0V0

+ (cvrr̈ V )r0 D2
0r0V0 + (cvr2V )r

2
0 V0

+ (cvṙ2V )(D0r0)
2V0 + 2(cvLV )

+ (V 2
0 D2

0 V0 + V0(D0V0)
2)2(cvLW )

× (V0W0 D2
0 W0 + V0(D0W0)

2)

+ 1

2

⎛

⎝

1∫

0

φv(s)ds

⎞

⎠ ( fv�
2
v)(e

i�vT0 + e−i�vT0),

(5.11)

(cw1)D
2
0 W1 + (cw3)W1 = −2D0 D1W0 − (cw2)D0W0

+ (cwn1)r0 D2
0 W0 + (cwn2)E0V0

+ (cwn3)D0 E0 D0V0 + (cwn4)E
2
0 + (cwn5)V

2
0

+ (cwn6)D
2
0r0W0 − (cwn7ks)r0W0

+ (cwr2Ẅ )r
2
0 D2

0 W0 + (cwr2W )r
2
0 W0

+ (cvrr̈ W )r0 D2
0r0W0 + (cvṙ2W )(D0r0)

2W0

+ (cwW V 2)W0V 2
0 + (cwW 3)W 3

0

+ (cwW V̇ 2)W0(D0V0)
2 + (cwE2W )E

2
0 W0

+ (cwEV W )E0V0W0 + 2(cwLV )(V0W0 D2
0 V0

+ W0(D0V0)
2)+ 2(cwLW )(W

2
0 D2

0 W0 + W0(D0W0)
2)

+ 1

2

⎛

⎝

1∫

0

φw(s)ds

⎞

⎠ ( fw�
2
w)(e

i�wT0 + e−i�wT0),

(5.12)

(cφ1)D
2
0 E1 + (cφ3)E1 + (cφ4)V1 = −2D0 D1 E0

− (cφ2)D0 E0 + (cφn1)V0W0 + (cφn2)E0W0

+ (cφn3)D
2
0 V0W0 + (cφn4)D0V0 D0W0

+ (cφE2V )E
2
0 V0 + (cφV 3)V 3

0 + (cφEV 2)E0V 2
0

+ (cφEW 2)E0W 2
0

+ 1

2

⎛

⎝

1∫

0

φφ(s)ds

⎞

⎠ ( fφ�
2
φ)(e

i�φT0 + e−i�φT0),

(5.13)

ms D2
0r1 + ksr1 − kt D0q1 = (crn1)V0 D2

0 V0

+ (crn2)(D0V0)
2 + (crn3)W0 D2

0 W0

+ (crn4)(D0W0)
2 + (crr W 2)r0W 2

0

+ (crr V̇ 2)(r0(D0V0)
2)+ (crr Ẇ 2)(r0(D0W0)

2)

− 2ms D0 D1r0 − kt D1q0 + (crr W Ẅ )(r0W0 D2
0 W0)

+ (crr V V̈ )(r0V0 D2
0 V0). (5.14)

kq D2
0q1 + D0q1 = −2kq D0 D1q0 − D1q0 − ke D0r0,

(5.15)

Hv j (s, t) = v′′(s, t)

{

msü + msr̈

(

1 − v′2

2
+ w′2

2

)

− 2msṙ v̇′v′ + ksr

(

1 − v′2

2
+ w′2

2

)}

s=r(t)

− {
ms(v̇

′ṙ)+ msr̈v′ + msṙ(ṙv′′ + v̇′)

+ksr(v′ + v′w′2)
}
δ(s − r(t)) (8.1)

Hw j (s, t)=w′′(s, t)

{

msü + msr̈

(

1 − v′2

2
+ w′2

2

)

− 2msṙ v̇′v′ + ksr

(

1 − v′2

2
+ w′2

2

)}

s=r(t)

− {
msṙẇ′ − msr̈w′ − msṙ(ṙw′′ + ẇ′)

− ksr

(

w′ + v′2

2
w′

)}

δ(s − r(t))

(8.2)

Hr (t) = {−msü − 2msu̇ẇ′w′ − ms v̈v
′

− msẅw
′ − ksrw′2}

s=r(t)
(8.3)

cv1 =
1∫

0

φ2
v (s)ds + Jζ

1∫

0

φ′2
v(s)ds + msφv(re), cv2

= cv

1∫

0

φ2
v (s)ds, cv3 = β33

1∫

0

φ′′2
v(s)ds,

cv4 = β13

1∫

0

φ′
φ(s)φ

′′
v (s)ds, cvn1

= −2msφv(re)φ
′
v(re),

cvn2 = {φvβ11(φ
′
φφ

′
w)

′ − φv(β22 − β33)(φφφ
′′
w)

′

− φ′
vβ11(φ

′
φφ

′
w)+ φ′

v(β22 − β33)(φφφ
′′
w)}s=1
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− β11

1∫

0

φv(φ
′
φφ

′
w)

′′ds

+ (β22 − β33)

1∫

0

φv(φφφ
′′
w)

′′ds, cvn3

= {φvβ13(2φ
′′
vφ

′
w)}s=1 − β13

1∫

0

φv(2φ
′′
vφ

′
w)

′′ds,

cvn4 = {−φv Jξ (φφφ
′
w)}s=1

+ Jξ

1∫

0

φv(φφφ
′
w)

′ds, cvn5 = cvn4,

cvn6 = ms

1∫

0

φvφ
′′
vds − msφv(re)φ

′
v(re), cvn7

= −
1∫

0

φvφ
′′
vds + φv(re)φ

′
v(re), cvn8

= −2msφv(re)φ
′
v(re), (8.4)

cw1 =
1∫

0

φ2
w(s)ds + Jη

1∫

0

φ′2
w(s)ds + msφw(re), cw2

= cw

1∫

0

φ2
w(s)ds, cw3 = β22

1∫

0

φ′′2
w(s)ds,

cwn1 = −2msφw(re)φ
′
w(re),

cwn2 = {φwβ11(φ
′
φφ

′′
v )− φw(β22 − β33)(φφφ

′′
v )

′

+ φ′
w(β22 − β33)(φφφ

′′
v )}s=1

+ β11

1∫

0

φw(φ
′
φφ

′′
v )

′ds

+ (β22 − β33)

1∫

0

φw(φφφ
′′
v )

′′ds, cwn3

= {φw Jξ (φφφ
′
v)}s=1 − Jξ

1∫

0

φw(φφφ
′
v)

′ds,

cwn4 = {φwβ13(φφφ
′
φ)

′ − φ′
wβ13φφφ

′
φ}s=1

− β13

1∫

0

φw(φφφ
′
φ)

′′ds,

cwn5 = {−φwβ13(φ
′′
v )

2}s=1

+ β13

1∫

0

φw(φ
′′
v )

′2ds, cwn6

= ms

1∫

0

φwφ
′′
wds + msφw(re)φ

′
w(re),

cwn7 = −
1∫

0

φwφ
′′
wds − φw(re)φ

′
w(re), cvn8

= −2msφv(re)φ
′
v(re), (8.5)

cφ1 = Jξ

1∫

0

φ2
φ(s)ds, cφ2 = cφ

1∫

0

φ2
φ(s)ds, cφ3

= β11

1∫

0

φ′2
φ(s)ds,

cφ4 = β13

1∫

0

φ′2
v(s)ds, cφn1 = {−φφβ11φ

′′
vφ

′
w}s=1

+ β11

1∫

0

φφ(φ
′′
vφ

′
w)

′ds + (β22 − β33)

1∫

0

φφ(φ
′′
vφ

′′
w)ds,

cφn2 = {−φφβ13(φφφ
′′
w)}s=1 + β13

1∫

0

φ2
φφ

′′′
w ds, cφn3

= −Jξ

1∫

0

φφφ
′
vφ

′
wds, cφn4 = cφn3, (8.6)

crn1 = ms

⎛

⎝

s∫

0

φ′2
v(s)ds

⎞

⎠

s=re

− ms(φvφ
′
v)s=re , crn2

= ms

⎛

⎝

s∫

0

φ′2
v(s)ds

⎞

⎠

s=re

,

crn3 = ms

⎛

⎝

s∫

0

φ′2
w(s)ds

⎞

⎠

s=re
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− ms(φwφ
′
w)s=re , crn4

= ms

⎛

⎝

s∫

0

φ′2
w(s)ds

⎞

⎠

s=re

, (8.7)

Coefficients of nonlinear cubic terms:

cvW 2V = {φvβ11(φ
′2
wφ

′′
v)

′ + φvβ33(φ
′
v(φ

′
wφ

′′
w)

′)

− φ′
vβ11(φ

′′
vφ

′2
w)+ φ′

v(β22 − β33)φ
′
vφ

′
wφ

′′
w}s=1

− β11

1∫

0

φv(φ
′′
vφ

′2
w)

′′ds

− β33

1∫

0

φv(φ
′
v(φ

′
wφ

′′
w)

′)′ds,

cvE2V = {φv(β22 − β33)(φ
2
φφ

′′
v )

′

− φ′
v(β22 − β33)(φ

2
φφ

′′
v )}s=1

− (β22 − β33)

1∫

0

φv(φ
2
φφ

′′
v )

′′ds,

cvV 3 = {φvβ33(φ
′
v(φ

′
vφ

′′
v )

′)}s=1

− β33

1∫

0

φv(φ
′
v(φ

′
vφ

′′
v )

′)′ds,

cvE3 = {−φvβ13(1/2)(φ
2
φφ

′
φ)

′

+ φ′
vβ13(1/2)(φ

2
φφ

′
φ)}s=1

+ β13(1/2)

1∫

0

φv(φ
2
φφ

′
φ)

′′ds,

cvEV 2 = {φvβ13(1/2)(φ
′2
vφ

′′
φ)

− φ′
vβ13(1/2)(φ

′2
vφ

′
φ)}s=1

− β13(1/2)

1∫

0

φv(φ
′′
φφ

′2
v)

′ds,

cvEW 2 = {φvβ13φφ(φ
′
wφ

′′
w)

′ − φ′
vβ13φφφ

′
wφ

′′
w}s=1

− β13

1∫

0

φv(φφ(φ
′
wφ

′′
w)

′)′ds,

cvV̈ W 2 = {−φv Jξ (φ
′2
wφ

′
v)}s=1

+ Jξ

1∫

0

φv(φ
′2
wφ

′
v)

′ds,cv2V̇ W Ẇ = cvV̈ W 2 ,

cvr2 V̈ = −ms(φ
′2
v)s=re , cvrṙ V̇

= −2ms(φvφ
′′
v + φ′2

v)s=re , cvrr̈ V = (cvrṙ V̇ /2),

cvr2V = −ks(φvφ
′′
v + φ′2

v)s=re , cvṙ2V

= −ms(φvφ
′′
v)s=re ,

cvLv =
1∫

0

φvφ
′′
vds

⎧
⎪⎨

⎪⎩
−ms

2

⎛

⎝

s∫

0

φ′2
vds

⎞

⎠

s=re

⎫
⎪⎬

⎪⎭

− 1

2

1∫

0

φv

⎡

⎣φ′
v

s∫

1

s∫

0

φ′2
vdsds

⎤

⎦

′
ds,

cvLw =
1∫

0

φvφ
′′
vds

⎧
⎪⎨

⎪⎩
−ms

2

⎛

⎝

s∫

0

φ′2
wds

⎞

⎠

s=re

⎫
⎪⎬

⎪⎭

− 1

2

1∫

0

φv

⎡

⎣φ′
v

s∫

1

s∫

0

φ′2
wdsds

⎤

⎦

′
ds, (8.8)

cwr2Ẅ = −ms(φ
′2
w)s=re , cwr2W

= ks(φwφ
′′
w + φ′2

w)s=re , cwrr̈ W = (
ms

ks
)cwr2W ,

cwṙ2W = ms(φwφ
′′
w)s=re , cwW V 2

= {−φwβ11φ
′
wφ

′′2
v + φwβ33φ

′
w(φ

′
vφ

′′
v)

′}s=1

+ β11

1∫

0

φw(φ
′
wφ

′′2
v)

′ds

− β33

1∫

0

φw[φ′
w(φ

′
vφ

′′
v )

′]′ds,

cwW 3 = {φwβ22φ
′
w(φ

′
wφ

′′
w)

′}s=1

− β22

1∫

0

φw[φ′
w(φ

′
wφ

′′
w)

′]′ds,

cwW V̇ 2 = {φw Jξ (φ
′
wφ

′2
v)}s=1− Jξ

1∫

0

φw(φ
′
wφ

′2
v)

′ds,

cwE2W = {−φw(β22 − β33)(φ
2
φφ

′′
w)

′

+ φ′
w(β22 − β33)(φ

2
φφ

′′
w)}s=1
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+ (β22 − β33)

1∫

0

φw(φ
2
φφ

′′
w)

′′ds,

cwEV W ={φwβ13φ
′
w(φφφ

′
v)

′′−φ′
wβ13φ

′
w(φφφ

′
v)

′}s=1

− β13

1∫

0

φw[φ′
w(φφφ

′
v)

′′]′ds,

cwLv =
1∫

0

φwφ
′′
wds

⎧
⎪⎨

⎪⎩
−ms

2

⎛

⎝

s∫

0

φ′2
vds

⎞

⎠

s=re

⎫
⎪⎬

⎪⎭

− 1

2

1∫

0

φw

⎡

⎣φ′
w

s∫

1

s∫

0

φ′2
vdsds

⎤

⎦

′
ds,

cwLw =
1∫

0

φwφ
′′
wds

⎧
⎪⎨

⎪⎩
−ms

2

⎛

⎝

s∫

0

φ′2
wds

⎞

⎠

s=re

⎫
⎪⎬

⎪⎭

− 1

2

1∫

0

φw

⎡

⎣φ′
w

s∫

1

s∫

0

φ′2
wdsds

⎤

⎦

′
ds, (8.9)

cφE2V = {φφ 1

2
β13(φ

2
φφ

′′
v )}s=1

− 1

2
β13

1∫

0

φφ(φ
2
φφ

′′′
v )ds,

cφV 3 = {−φφ 1

2
β13(φ

′2
vφ

′′
v)}s=1

+ 1

2
β13

1∫

0

φφ(φ
′2
vφ

′′
v)

′ds,

cφV W 2 =
{

−φφ 1

2
β13(φ

′
vφ

′
wφ

′′
w)

}

s=1

+ β13

1∫

0

φφφ
′
v(φ

′
wφ

′′
w)

′ds,

cφEV 2 = −(β22 − β33)

1∫

0

φ2
φφ

′′2
vds,cφEW 2

= (β22 − β33)

1∫

0

φ2
φφ

′′2
wds, (8.10)

crr W 2 = −ks(φ
′2
w)s=re , crr V̇ 2 = ms(φ

′2
v)s=re ,

crr Ẇ 2 = ms(φ
′2
v)s=re ,

crr V V̈ = −ms(φvφ
′′
v)s=re , crr W Ẅ

= −ms(φwφ
′′
w)s=re , (8.11)

Coefficients of modulation equations:

�1 = −cv1 − αcφ1,

�2 = (cv2 + αcφ2)

2
,

�3 = −ω2cvr2 V̈ − ω2
r cvrr̈ V + cvr2V + ω2

r cvṙ2V ,

�4 = cvW 2V + αcvEW 2 − ω2cvV̈ W 2

+ cφV W 2 + αcφEW 2 ,

�5 = α2cvE2V + cvV 3 + α3cvE3 + αcvEV 2

− (4/3)ω2cvLV + α2cφE2V + cφV 3 + αcφEV 2 ,

�6 = −ω2cvr2 V̈ + ωωr cvrṙ V̇

− ω2
r cvrr̈ V + cvr2V − ω2

r cvṙ2V ,

�7 = −ω2cvn1 − ω2
r cvn6 − kscvn7 + ωωr cvn8,

�8 = (1/2) fv�
2
v

1∫

0

φv(s)ds, (8.12)

�1 = −cw1,�2 = (cw2)

2
,�3 = −ρ2cwr2Ẅ

+ cwr2W − ω2
r cwrr̈ W + ω2

r cwṙ2W ,

�4 = cwW V 2 + ω2cwW V̇ 2 + α2cwE2W

+ αcwEV W ,�5 = cwW 3 − (4/3)ρ2cwLW ,

�6 = −ρ2cwr2Ẅ + cwr2W − ω2
r cwrr̈ W

− ω2
r cwṙ2W ,�7 = −ρ2cwn1 − ω2

r cwn6 − kscwn7,

�8 = fw�2
w

2

1∫

0

φw(s)ds, (8.13)

X1 = −ms,X2 = ω2crr V̇ 2 − ω2crr V V̈ ,X3

= ρ2crr Ẇ 2 + crr W 2 − ρ2crr W Ẅ ,

X4 = −ω2crr V̇ 2 − ω2crr V V̈ ,X5

= −ω2crn1 − ω2crn2,

X6 = −ρ2crr Ẇ 2 + crr W 2 − ρ2crr W Ẅ ,X7

= −ρ2crn3 − ρ2crn4, (8.14)
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