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Abstract In this paper, we derive the KdV equation
from the two-lane lattice hydrodynamic traffic model
considering density difference effect. The soliton solu-
tion is obtained from the KdV equation. Under periodi-
cal boundary, the KdV soliton of traffic flow is demon-
strated by numerical simulation. The numerical simu-
lation result is consistent with the nonlinear analytical
result. Under open system, the density fluctuation of
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the downstream last one lattice is designed to explore
the empirical congested traffic states. A phase diagram
is presented which includes free traffic, moving local-
ized cluster, triggered stop-and-go traffic, oscillating
congested traffic, and homogeneous congested traffic.
Finally, the spatiotemporal evolution of all the traf-
fic states described in phase diagram are reproduced.
Results suggest that the two-lane density difference
hydrodynamic traffic model is suitable to describe the
actual traffic.

Keywords Phase transition · Phase diagram · Traffic
flow · Lattice hydrodynamic model · KdV equation

1 Introduction

Traffic congestion produces significantly negative
effect on urban residents’ daily lives, such as increased
travel time, more energy consumption, excessive air
pollution, etc. The traditional method of alleviating
traffic congestion is to increase road supply. However,
this method doesn’t always work due to either lim-
ited budget or space. Traffic control is an effective
method to relieve congestion. It optimizes the tem-
poral and spatial distribution of traffic flow by reg-
ulating the green ratios of intersections in the net-
work. To this end, it is essential to understand the
formation mechanism of traffic congestion. Phase dia-
gram is a powerful method to investigate the intrin-
sic evolution mechanism. Numerous traffic models
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have been developed to reveal the intrinsic features
of various instability diagrams observed in real traffic.
It would be favorable to take effective control strat-
egy to maximize the network efficiency if the traffic
dynamics could be understood by studying the phase
transition.

Phase transitions under various congested traffic
had been investigated (see, for instance, [1–16]). In
these studies, two kinds of models are applied, that is,
macroscopic models [1–11] and microscopic models
[12–16]. In these models, almost all the observed
spatio-temporal traffic patterns have been reproduced
by varying the inflow of upstream freeway and the bot-
tleneck strength (e.g., on-ramp). The empirical traf-
fic patterns include the moving local clusters (MLC),
the stop-and go waves (SG), the oscillating congested
traffic (OCT), widening synchronized pattern (WSP),
pinned localized cluster (PLC), homogeneous con-
gested traffic (HCT), etc.

Until now, studies mainly focused on the phase
transitions of traffic flow nearby the on-ramp. Traffic
phase transitions under open system are seldom inves-
tigated except for cellular automaton models. Under
the open boundary condition, Nagatani [17] performed
a numerical study on the transitions of traffic states
and density waves by fluctuating a leading car. Tian et
al [18] demonstrated that the single-lane lattice model
could reproduce rich congested traffic patterns. How-
ever, most of the road networks are made up of two-
lane or multi-lane. To our knowledge, it is unknown
whether the empirical observations could be repro-
duced in two-lane density difference lattice hydrody-
namic model under open boundary condition. There-
fore, it is necessary to study the traffic states in the
two-lane lattice model to test the validity of lattice
model.

The remaining context is organized as follows.
The two-lane density difference lattice hydrodynamic
model and its linear stability condition are given in
Sect. 2. Applying the nonlinear method, the KdV
equation is deduced in Sect. 3. Numerical simula-
tions are conducted in Sect. 4. Firstly, we simu-
late the soliton wave under period condition. Then,
under the open boundary condition, we present the
phase diagram including different kinds of traffic
congestion states. Finally, we reproduce the spa-
tial and time evolution of various congested traf-
fic state in detail. Section 5 concludes the whole
study.

Fig. 1 The schematic model of traffic flow on a two-lane high-
way

2 Extended lattice hydrodynamic model
for two-lane traffic

The lattice hydrodynamic model was firstly pro-
posed by Nagatani [19,20]. Based on the intelli-
gent transportation system, the lattice model has been
extended by considering various influence factors
[21–33]. Nagatani [34] further gave the two-lane lattice
hydrodynamical model. Figure 1 exhibits the schematic
diagram of the traffic flow on a two-lane highway.
If density at the j − 1th site of the second lane is
higher than that at the j th site of the first lane, then
lane changing occurs from the second lane to the first
lane with the rate γ

∣
∣ρ2

0 V ′(ρ0)
∣
∣(ρ2, j−1(t) − ρ1, j (t)),

where γ is a fixed dimensionless coefficient, constant
∣
∣ρ2

0 V ′(ρ0)
∣
∣ is introduced in order to be dimension-

less, ρ0 is the average density, ρ1, j and ρ2, j are the
densities on the first lane and second lane at site j .
Accordingly, the lane-change rate in the opposite case
is γ

∣
∣ρ2

0 V ′(ρ0)
∣
∣(ρ1, j (t) − ρ2, j+1(t)).

The lattice hydrodynamic model for two-lane traf-
fic is formulated by the following equation [34]. The
continuity equation for the first lane is

∂tρ1, j (t) + ρ0(ρ1, j (t)v1, j (t) − ρ1, j−1(t)v1, j−1(t))

= γ

∣
∣
∣ρ

2
0 V ′(ρ0)

∣
∣
∣ (ρ2, j+1(t) − 2ρ1, j (t) + ρ2, j−1(t)).

(1)

Similarly, the continuity equation on the second lane is

∂tρ2, j (t) + ρ0(ρ2, j (t)v2, j (t) − ρ2, j−1(t)v2, j−1(t))

= γ

∣
∣
∣ρ

2
0 V ′(ρ0)

∣
∣
∣ (ρ1, j+1(t) − 2ρ2, j (t) + ρ1, j−1(t)),

(2)

where ρ and v are the local velocity, respectively. To
simplify the expression, time t will be omitted here-
after.
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Then, the continuity equation Eq. (3) for two-lane
traffic is obtained by adding Eq. (1) and Eq. (2) together

∂tρ j + ρ0(ρ jv j − ρ j−1v j−1)

= γ

∣
∣
∣ρ

2
0 V ′(ρ0)

∣
∣
∣ (ρ j+1 − 2ρ j + ρ j−1), (3)

where ρ j = ρ1, j +ρ2, j
2 , ρ jv j = ρ1, j v1, j +ρ2, j v2, j

2 , and

Ve(ρ j ) = V (ρ1, j )+V (ρ2, j )

2 .
Assume the evolution equation of traffic is immune

to lane-change, the evolution equation for two-lane traf-
fic is obtained.

∂t (ρ jv j ) = aρ0Ve(ρ j+1) − aρ jv j . (4)

Due to the significant role of density difference plays
on the traffic stability, we suggest taking the density dif-
ference into Nagatani’s two-lane lattice hydrodynamic
model. Mathematically, the corresponding density dif-
ference model is described below.

∂tρ j + ρ0(ρ jv j − ρ j−1v j−1)

= γ

∣
∣
∣ρ

2
0 V ′(ρ0)

∣
∣
∣ (ρ j+1 − 2ρ j + ρ j−1) and (5)

∂t (ρ jv j ) = aρ0Ve(ρ j+1) − aρ jv j

+ λ(ρ j − ρ j+1)/ρ0, (6)

where λ is the react coefficient of density difference
between the leading and the following lattice.

By eliminating velocity v in Eqs. (5) and (6), we get
the following density equation

∂2
t ρ j + aρ2

0 (Ve(ρ j+1) − Ve(ρ j ))

− aγ

∣
∣
∣ρ

2
0 V ′(ρ0)

∣
∣
∣ (ρ j+1 − 2ρ j + ρ j−1)

+ a∂tρ j − λ(ρ j+1 − 2ρ j + ρ j−1)

− γ

∣
∣
∣ρ

2
0 V ′(ρ0)

∣
∣
∣ (∂tρ j+1 − 2∂tρ j + ∂tρ j−1) = 0.

(7)

In Eq. (7), the optimal velocity function is given by

Ve(ρ)= vmax

2
tanh

(

2

ρ0
− ρ

ρ2
0

− 1

ρc

)

+tanh

(
1

ρc

)

,

(8)

where vmax is the maximal velocity. It can be con-
cluded that Ve(ρ) is the optimal velocity function which
decreases monotonically, bounds upper and inflects the
point at ρ = ρc when ρ0 = ρc. For convenience, we
will simplify Ve(ρ) as V (ρ) hereafter.

As verified in [27], the uniform traffic flow is stable,
if the following condition holds

a > −2ρ2
0 V ′(ρ0)

1 + 2γ
+ 1

ρ2
0 V ′(ρ0)

2λ

1 + 2γ
. (9)

When λ = 0, the stable condition of Nagatani’s two-
lane model is obtained:

a > −2ρ2
0 V ′(ρ0)

1 + 2γ
. (10)

3 Nonlinear stability analysis

We apply the reductive perturbation method to obtain
the KdV equation. By introducing slow scales for space
variable n and time variable t , we define the slow vari-
ables X and T for 0 < ε � 1 below.

X = ε( j + bt), T = ε3t. (11)

Set the density ρ j (t) as

ρ j (t) = ρc + ε2 R(X, T ), (12)

substituting Eqs. (11) and (12) into Eq (7) and making
the Taylor expansions to the sixth order of ε, we obtain
the following expression:

ε3[ab + am]∂X R + ε4
[

b2 + 1

2
am + γ am − λ

]

∂2
X R

+ ε5
[

a∂T R +
(

1

6
am + γ mb

)

∂3
X R + 1

2
as∂X R2

]

+ ε6
(

2b∂X∂T R +
(

1

24
am + 1

12
γ am − 1

12
λ

)

∂4
X R

+ 1

4
as∂2

X R2
)

= 0, (13)

where m = ρ2
0 V ′, n = ρ2

0 V ′′′, s = ρ2
0 V ′′. For sim-

plicity, we rewrite Eq. (13) as the following version

ε3 f1∂X R+ε4 f2∂
2
X R+ε5(∂T R+ f3∂

3
X R + f4 R∂X R)

+ ε6( f5∂X∂T R+ f6∂
4
X R+ f7∂

2
X R2)=0, (14)

where fi (i = 1, 2, · · · , 7) are the coefficients (see
Table 1 for detail formulations).

Table 1 The formulations of coefficient fi (i = 1, 2, · · · , 7)

f1 f2

b + ρ2
0 V ′ b2

a + ( 1
2 + γ )ρ2

0 V ′ − λ
a

f3 f4

( 1
6 + γ b

a )ρ2
0 V ′ 1

2 ρ2
0 V ′′

f5 f6

2b
a

1
24 ρ2

0 V ′(1 + 2γ ) − 1
12a λ

f7
1
4 ρ2

0 V ′′
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Table 2 The formulations of coefficient gi (i = 1, 2, · · · , 5).

g1 g2

( 1
6 + γ b

a )ρ2
0 V ′ ρ2

0 V ′′
2

g3 g4

1
2 b(1 + 2γ ) 1

24 ((1 + 2γ − 8b
a − 48

a2 γ b2)ρ2
0 V ′ − 2λ

a )

g5

1
4 (1 − 4b

a )ρ2
0 V ′′

By eliminating the third- and fourth-order terms of
ε from Eq. (12), we obtain the simplified equation:

ε5[∂T R + g1∂
3
X R + g2∂X R2]

+ ε6[g3∂
2
X R + g4∂

4
X R + g5∂

2
X R2] = 0. (15)

The coefficients gi are listed in Table 2.

ε5
[

∂T R +
(

1

6
m + γ mb

a

)

∂3
X R + 1

2
s∂X R2

]

+ ε6
[

1

2
b(1 + 2γ )∂2

X R +
(

1

24
m + 1

12
γ m − λ

12a

− bm

3a
− 2

a2 γ mb2
)

∂4
X R +

(
s

4
− bs

a

)

∂2
X R2

]

= 0.

(16)

In order to obtain the standard KdV equation, we
make the following transformation T = √

g1T ′, X =√
g1 X ′, R = 1

g2
R′. Then, we obtain the regularized

KdV equation with correction term O(ε) on the right-
hand side of Eq. (16)

∂T ′ R′ + ∂3
X ′ R′ + ∂X ′ R′ + εM[R′] = 0, (17)

where M[R′] = (
g3√
g1

∂2 X ′ R′ + g4
g1

3/2 ∂4
X ′ R′ + g5

g2
√

g1

∂2
X ′ R′2). Ignoring the O(ε) terms in Eq. (17), we get

the KdV equation with the soliton solution

R′
0(X ′, T ′) = Asech2

[√

A

12
(X ′ − A

3
T ′)

]

, (18)

where A is the amplitude of soliton solutions of the
KdV equation. Supposing R′(X ′, T ′) = R′

0(X ′, T ′) +
εR′

1(X ′, T ′), in order to determine A, it is necessary to
consider the solvability condition.

(R′
0, M[R′

0]) ≡
+∞∫

−∞
d X R′

0 M[R′
0] = 0, (19)

with M[R′
0] = M[R′]. Then, we get A through integral

operation

A = 21g1g2g3

24g1g5 − 5g2g4
. (20)

4 Numerical simulation

In this section, we use the difference form obtained
from Eq. (7) to conduct numerical simulation.

ρ j (t + 2τ) = 2ρ j (t + τ) − ρ j (t)

− aτ 2γρ2
0 V ′(ρ0)(ρ j+1(t) − 2ρ j (t)

+ ρ j−1(t)) − aτ(ρ j (t + τ) − ρ j (t))

+ λτ 2(ρ j+1(t) − 2ρ j (t) + ρ j−1(t))

− τγρ2
0 V ′(ρ0)(ρ j+1(t + τ) − ρ j+1(t)

− 2ρ j (t + τ) + 2ρ j + rho j−1(t + τ)

− ρ j−1(t)) − aτ 2ρ2
0 (V (ρ j+1(t))

− V (ρ j (t))). (21)

4.1 Soliton simulations in metastable region

Under the condition of periodical boundary, the ini-
tial conditions of the numerical simulation are set as
follows: the lattice number N = 100, and the density
is assumed to be a piece-wise function at the average
density.

ρ j (0) = ρ0, j ∈ [1, N ], (22)

ρ j (1) =

⎧

⎪⎪⎨

⎪⎪⎩

ρ0 : j ∈ [1, N ], j �= n1, j �= n2

ρ0 + �ρ : j = n1

ρ0 − �ρ : j = n2

, (23)

where n1 = 49, n2 = 50,�ρ is the initial disturbance.
vmax = 2, ρ0 = 0.2,�ρ = 0.02, a = 1.05, γ =
0.1, λ = 0.1, τ = 0.05. We conduct a numerical sim-
ulation for the traffic to generate the soliton wave in
metastable region. The soliton solution derived from
the KdV equation is different from the kink solution
derived from mKdV equation. When the selected per-
turbation �ρ = 0.02 is added to the uniform traffic
system, the typical soliton density wave is observed
in Fig. 2. The soliton waves propagate backward with
constant velocity. This is consistent with the nonlinear
analysis result. Figure 2b is the density profile corre-
sponding to Fig. 2a.

4.2 Phase diagram of two-lane hydrodynamic traffic
flow model

In the case of open boundary, we investigate the traffic
behavior described in Eqs. (5) and (6). We consider a
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Fig. 2 Schematic phase diagrams for the expected traffic pat-
terns as a function of the upstream traffic density ρup and the
downstream boundary perturbation ρdown .

two-lane section road with one entrance and one exit.
The whole road is composed of N lattices, and the lat-
tice N locates at the downstream exit. The density of
lattice N fluctuates randomly. The system starts with a
homogeneous traffic flow with density ρh . The bound-
ary condition can be described as:

ρ0(t) = ρ1(t), ρN (t) = ρ f + ρ f (2R(t) − 1), (24)

where ρ f is the density of lattice N , R(t) is the ran-
dom number between 0 and 1. ρN (t) is the density
of downstream boundary. The simulation parameters
are a = 0.5, vmax = 2, ρ0 = 0.25, ρc = 0.25, τ =
0.1, γ = 0.1, λ = 0.2, N = 400.

We execute the simulation by varying the initial den-
sity ρh(ρup) and the amplitude of ρ f (ρdown). We derive
the phase diagram in (ρup, ρdown) space. As shown in
Figure 2, the traffic state is not affected by the initial
density ρh . The emergences of MLC, TSG, OCT, and
HCT traffic states only depend on the amplitude of the
lattice N . At first, the traffic is free flow before den-
sity ρ f reaches 0.17. When ρ f = 0.17, a single mov-
ing cluster (MLC) occurs. With the increase of density
ρup, the TSG, OCT, TSG and MLC traffic states appear
one by one. After that, traffic flow achieves another sta-
ble state in high density region, i.e., the homogeneous
congested traffic (HCT).

4.3 Phase transitions under open boundary condition
with random fluctuations

In this section, we explore the spatial and temporal
evolution of the traffic flow in detail. The upstream
traffic density takes ρh = 0.1, the other parame-
ters are the same as that in Sect. 4.2. Figure 3 (a–g)
show the space–time evolution of density wave with
ρ f = 0.16, 0.17, 0.18, 0.24, 0.36, 0.38, and 0.39,
respectively.

As displayed in Fig. 4, when ρ f is less than the
critical value ρ f = 0.17, traffic flow is stable, and the
random disturbance of lattice N cannot trigger traffic
congestion. As time proceeds, it is shown from Fig. 4a
that the traffic is still free flow over the whole space
except for the downstream boundary.
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Fig. 3 The solitary wave. a The spatiotemporal evolution after t = 10, 000 s. b Density profile corresponding to (a) at t = 10, 000 s
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Fig. 4 The spatiotemporal evolutions of density for the varia-
tion of ρ f . a The free traffic (FT). b The moving localized cluster
of the compression wave. c, e The triggered stop and go traffic

(TSG). d The oscillating congested traffic (OCT). f The moving
localized cluster of the expansion wave (MLC). g The homoge-
neous congested traffic (HCT)
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When the density ρ f reaches the critical value ρ f =
0.17, the first phase transition between free flow and
congested traffic appears. Then a single moving local
cluster (MLC) of compression wave arises just after the
first phase transition shown in Fig. 4b. The density wave
is a compression wave and propagates backward, which
corresponds to the moving localized clusters observed
by Helbing. The transition of traffic state from MLC to
TSG at ρ f = 0.18. Compared with MLC, TSG (pattern
(c)) has a series of block clusters moving upstream with
free traffic between each other.

The number of density wave increases with respect
toρ f , and the traffic changes from the TSG state to OCT
state. When ρ f reaches a critical value ρ f = 0.24, the
number of density wave reaches the maximum value.
Pattern (d) exhibits one of the OCT traffic state with
the maximum number of density wave. After that, the
number of density wave decreases gradually with ρ f

increases in further. The transition of traffic state occurs
from OCT (see pattern (e)) to TSG at ρ f = 0.36.

The pattern (f) shows the moving localized clusters
(MLC) which occurs just before the transition from
metastable traffic phase to stable traffic phase. This
density wave is a single expansion wave and propa-
gates backward. Pattern (f) is not a compression wave
but an expansion wave, which distinguishes pattern (f)
from pattern (b). After the state transition from con-
gested traffic to stable traffic in high density regimes,
i.e., ρ f > 0.38, the traffic density is high and generally
constant (about ρ = 0.325) over space except for the
neighborhood of the downstream boundary. Accord-
ing to the optimal velocity function Eq. (8), the corre-
sponding velocity is very low (equals about to 0.166).
This traffic state is the homogeneous congested traffic
(HCT). Both the pattern (a) FT and pattern (g) HCT are
stable, but HCT is different from FT since the vehicle
speed is very low in HCT.

5 Conclusions

In this manuscript, we have derived the KdV equation
from two-lane hydrodynamic traffic model. Using the
reductive method, soliton solution near the neutral line
is obtained from the KdV equation. Under periodic
boundary condition, numerical simulations are con-
ducted to verify the nonlinear theoretical result. It can
be found that the simulation results are in good agree-
ment with analytical results.

In further, we presented the phase diagram under
open system through numerical simulation. The traffic
states of MLC, TSG, OCT, and HCT are given in the
phase diagram. From the phase diagram, we have found
that the transitions of traffic states are not related with
the upstream initial density but with the fluctuation of
lattice N .

Finally, we have reproduced the evolution of density
profile of different kinds for different traffic states in
detail. These simulation results show that the lattice
hydrodynamic traffic flow could predict the appearance
of traffic states and transitions between them.
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