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Abstract In this paper, active backstepping design
technique is applied to achieve reduced-order hybrid
combination synchronization and reduced-order pro-
jective hybrid combination synchronization of three
chaotic systems consisting of: (i) two third-order
chaotic Josephson junctions as drives and one second-
order chaotic Josephson junction as response system;
(ii) one third-order chaotic Josephson junction as the
drive and two second-order chaotic Josephson junc-
tions as the slaves. Numerical simulations are per-
formed to verify the feasibility and effectiveness of
the analytical results. Reduced-order combination syn-
chronization has more valuable practical applications
to information processing in physical, biological, and
social systems than the normal one master system and
one slave system synchronization scheme.
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1 Introduction

Chaotic dynamics is an interesting topic in nonlin-
ear science which has been intensively studied dur-
ing the last three decades. Chaotic phenomena can be
found in many scientific and engineering fields such
as biological systems, electronic circuits, power con-
verters, chemical systems, and so on [1]. A chaotic
system has complex dynamical behaviors that pos-
sess some special features, such as high sensitivity to
initial conditions, broad spectrums of Fourier trans-
form, bounded and fractal properties of the motion in
the phase space, etc. [2]. Pecora and Carroll in 1990
[3] addressed the synchronization of chaotic systems
using the drive–response concept. Also, in the same
year Ott et al. [4] succeeded in controlling chaos using
OGY method. Several researches have been carried
out theoretically and experimentally on chaos control
and synchronization due to its great potential applica-
tions in many areas like information science, medicine,
biology, economics, social science, engineering, etc.
[5–7]. In search of better methods for chaos control
and synchronization several variety of methods have
been developed for chaos control and chaos synchro-
nization of identical and non identical systems such
as linear feedback [8], optimal control [9], adaptive
control [10], active control [11], active sliding con-
trol [12], passive control [13], impulsive control [14],
backstepping control [15–18], etc. Of the several non-
linear control techniques mentioned above, the back-
stepping technique stands out of these nonlinear con-
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trol methods as a result of its flexibility in the con-
struction of control law and its ability to control chaos,
and to synchronize chaos in identical and non iden-
tical chaotic systems [19,20]. This is our fundamen-
tal reason for choosing backstepping technique in this
work.

As a result of fast growing interest in chaos con-
trol and synchronization various synchronization types
and schemes have been proposed and reported, such
as complete synchronization [21], phase synchroniza-
tion [22], generalized synchronization [23], lag syn-
chronization [24], anti-synchronization [25], projec-
tive synchronization [26], modified projective synchro-
nization [27], function projective synchronization [28],
modified-function projective synchronization [29], and
hybrid synchronization [30–32]. It has been discovered
a few years ago that some other important form of syn-
chronization like the increased-order synchronization
[33] and reduced-order synchronization abound in bio-
logical systems [34].

In hybrid synchronization of chaotic systems [35],
one part of the systems is completely synchronized
and the other part is anti-synchronized so that com-
plete synchronization (CS) and anti-synchronization
(AS) coexist in the systems. The coexistence of
CS and AS is very useful in applications such as
secure communication, chaotic encryption schemes,
etc. [30]. For hybrid projective synchronization of
chaotic systems, one part of the system synchro-
nizes to a positive scaling factor while the other part
synchronizes to a negative scaling factor where the
transformation scaling factors between the drive and
the response state variables are not equal to one.
Hybrid projective synchronization could be used to
achieve higher security than projective synchroniza-
tion in the application to secure communications,
because the unpredictability of the vector function
factor in hybrid synchronization is higher than that
of the same scaling factor in projective synchroniza-
tion [26]. Also, the co-existence of projective synchro-
nization and projective anti-synchronization in hybrid
synchronization offers the opportunity of transform-
ing digital signals through the continuous transforma-
tion between synchronization and anti-synchronization
which will enhance security in communication and
chaotic encryption schemes [36]. Furthermore, the
proportionality between the synchronized dynamical
states could be used to achieve fast communication
[37].

Specifically, synchronization of nonlinear dynam-
ical systems gives the capability to gain an accu-
rate and deep understanding of collective dynami-
cal behavior in physical, chemical, and biological
systems. The presence of synchronous behavior has
been observed in different mathematical, physical,
sociological, physiological, biological, and other sys-
tems [38]. In general, synchronization of nonlinear
dynamical systems has great practical significance
and potential applications in secure communication,
laser dynamics, neuron systems, biological systems,
chemical systems, power converters, and informa-
tion science [39]. Synchronization of parallel array
of coupled Josephson junctions linked together by
inductors has been used to fabricate highly sensi-
tive detectors [22,40,41]. Also, synchronization of the
superconducting Josephson junction arrays is impor-
tant for the purpose of generating reasonably large
output power [42,43]. Anti-synchronization of chaotic
systems also, has very important applications. For
example anti-synchronization of lasers, may be used
to generate short pulses of high intensity, which gives
some new ways for producing pulses of special shapes
[36]. So, investigation of co-existence of synchroniza-
tion and anti-synchronization known as hybrid syn-
chronization will be an interesting and challenging
subject.

Most researches on chaos synchronization are based
on one drive to one response system, whereas in the
real life situations chaos synchronization also occurs in
more than two systems. Only very few research papers
have been published on combination synchronization
of three or four chaotic systems [44–46]. Combina-
tion synchronization scheme presented in this paper
is generalized in such a way that other forms of syn-
chronization scheme can be achieved from it. So, the
usual one drive system to one response system syn-
chronization scheme is special case of combination
synchronization. As a result, combination synchroniza-
tion scheme is more flexibility and applicability to the
real world systems. In addition, the combination syn-
chronization also gives better insight into the com-
plex synchronization and several pattern formations
that take place in real world systems since synchro-
nization in real world systems are complex. The gen-
eralized reduced-order hybrid projective combination
synchronization scheme presented in this paper could
be used to vary the Josephson junction signal to any
desired level and to achieve a desired synchroniza-
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tion scheme through appropriate choice of the scal-
ing parameters. Moreover, it also gives a more suitable
understanding of synchronization in biological systems
wherein different organs of different dynamical struc-
tures and orders are involved. In general, combination
synchronization enhances the security of information
transmission better than the usual one master to one
slave synchronization. For instance, we split the trans-
mitted signals into several parts, each part loaded in
different systems; or divide time into different inter-
vals, the signals in different intervals loaded in differ-
ent systems. Then, the transmitted signals may have
stronger anti-attack ability and anti-translated capabil-
ity than that transmitted by the usual one drive to one
response secure communication scheme. Furthermore,
Combination synchronization scheme could be use in
a communication network, where many users (slave)
but one control (master) connects different users to one
another. So, the combination synchronization scheme
presented in this paper is an appropriate synchroniza-
tion scheme for these purposes.

The distinctive attribute of reduced-order synchro-
nization in a master–slave configuration is that the
order of the slave is less than the order of the master,
where the number of first-order differential equations
is referred to as order. So reduced-order synchroniza-
tion is achieved if two or more dynamical systems of
different orders in a master–slave arrangement is such
that all the states variables of the slave system are syn-
chronized with the projection of the state variables of
the master. There is increasing interest in the study of
chaotic synchronization with different structures and
different orders due to its wide existence in biological
science and social science [33,35,47–49]. For instance,
the order of the thalamic neurons can be different from
the hippocampal neurons [50]. Another example is the
synchronization that occurs between heart and lungs,
where one can observe that circulatory and respiratory
systems synchronize with different orders [51]. Despite
the excellent application and importance of reduced-
order synchronization only a few research works have
reported [52–55]. In general, reduced-order combina-
tion synchronization gives a more desirable descrip-
tion of synchronization in biological systems wherein
different dynamical structures and orders are involved.
The original reduced-order synchronization is a special
case of the reduced-order combination synchronization
and thus, the original reduced-order synchronization
has limited flexibility and applicability to real world

systems. The reduced-order combination synchroniza-
tion is very interesting because the systems consist of
different complex dynamical structures and orders as
well as parameter mismatches which can further boost
the security of information transmission. To the best
of our knowledge, reduced order hybrid combination
synchronization is not yet investigated.

Meanwhile, Josephson junctions have been used to
reproduce many characteristic behaviors of biological
neurons like action potentials, refractory periods, and
firing thresholds. So Josephson junction can be coupled
in ways that mimic electrical and chemical synapses
[56]. Josephson junction is a good physical model for
the investigation of reduced-order hybrid combination
synchronization for two reasons: (i) the reduced-order
synchronization is a common phenomenon in biolog-
ical systems and Josephson junction could be used to
simulate biological model, (ii) Josephson neurons are
not difficult to design and are not expensive to fab-
ricate; a thousand could be placed on a single chip.
Josephson junctions operate fully in parallel, mean-
ing a single Josephson neuron in isolation would run
just as quickly as a thousand fully interconnected ones
which are several orders of magnitude faster than either
computer simulations of neurons or actual biological
neural network [56]. Motivated by the above discus-
sion, we present generalized reduced-order hybrid syn-
chronization of three chaotic Josephson junctions via
backsteping technique.

The rest of this paper is organized as follows: Sect. 2
gives the description of the systems. Section 3 presents
generalized reduced-order hybrid combination syn-
chronization between two third-order Josephson junc-
tions as the drive and one second order Josephson junc-
tion as the slave via active backstepping technique. In
Sect. 4, we present generalized reduced-order hybrid
combination synchronization between one third-order
Josephson junction as the drive and two second-order
Josephson junction as the slave via active backstepping
technique. Section 5 concludes the paper.

2 Description of Josephson junctions

2.1 Resistive–capacitive–inductive shunted Josephson
junction (RCLSJJ)

The resistive–capacitive–inductive shunted Josephson
junction in dimensionless form is described by the set
of first-order differential equations below
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Fig. 1 Phase portrait of chaotic attractors of resistive–
capacitive–inductive Josephson junction

ẋ = y

ẏ = 1

βC
(i − g(y)y − sin x − z) (1)

ż = 1

βL
(y − z),

where g(y) is the nonlinear damping function approx-
imated by current–voltage relation between the junc-
tions and is defined by

g(y) =
{

0.366 if |y| > 2.9
0.061 if |y| ≤ 2.9

x, y, and z represent the phase difference, the volt-
age in the junction, and the inductive current, respec-
tively. βC and βL are capacitive and inductive constant,
respectively. i is the external direct current. Figure 1
shows the chaotic attractor of the RCL-shunted Joseph-
son junction for the following set of parameters: i =
1 < i < 1.3, βC = 2.6 and βL = 0.707 with the ini-
tial conditions (x, y, z) = (0, 0, 0). The RCL-shunted
Josephson has been found to be more appropriate in
high frequency applications. In RCL Josephson junc-
tion chaotic oscillation has modulated in response to
both the amplitude and frequency of an external sinu-
soidal signal.

2.2 Resistive–capacitive-shunted Josephson junction
(RCSJJ)

The resistive–capacitive Josephson junction under the
external periodic force is given by the second-order
differential equation below
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Fig. 2 Phase portrait of chaotic attractors of resistive–capacitive
Josephson junction

φ̈ = −αφ̇ − sin φ + a + b sin ωt, (2)

where φ is the phase difference between quantum
mechanical wave function of two superconductors
junction separated by some non-superconducting mate-
rial or barrier. α and a are the dimensionless damping
and applied current. b sin ωt is the external periodic
sinusoidal force. b and ω, respectively are the ampli-
tude and frequency of the external periodic sinusoidal
force. The second-order differential equation in (2) can
be transformed into a set of first-order differential equa-
tion as follows.

ẋ = y

ẏ = −αy − sin x + a + b sin ωt.
(3)

Figure 2 shows the chaotic attractor for resistive–
capacitive-shunted Josephson junction using the fol-
lowing parametervalues: α = 0.5, a = 0.89, b = 0.4
and ω = 0.25.

3 Generalized reduced-order hybrid combination
synchronization of two third-order and one
second-order Josephson junctions

3.1 Design of controller via active backstepping
technique

In this section, two third-order Josephson junction in
(4) and (5) are taken as the drive systems, while one
second- order non-autonomous Josephson junction (6)
is taken as the response system in order to achieve
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generalized reduced-order hybrid projective combina-
tion synchronization among the three chaotic Joseph-
son junctions. The first drive system is

ẋ1 = x2

ẋ2 = 1

βC
(i − g(x2)x2 − sin x1 − x3)

ẋ3 = 1

βL
(x2 − x3)

(4)

and the second drive system is

ẏ1 = y2

ẏ2 = 1

βC
(i − g(y2)y2 − sin y1 − y3)

ẏ3 = 1

βL
(y2 − y3),

(5)

while the response system is given as

ż1 = z2 + u1

ż2 = −αz2 − sin z1 + a + b sin ωt + u2,
(6)

where u1, and u2 are the controllers to be designed. We
define the error systems as follows

e1 = γ1z1 − (α1x1 + β1 y1 + α3x3 + β3 y3)

e2 = γ2z2 + (α2x2 + β2 y2)
(7)

Using the error systems defined in (7) with systems
defined in (4)–(6) yields the following error dynamics

ė1 = γ1z2 + γ1u1 − α1x2 − β1 y2

− α3

βL
(x2 − x3) − β3

βL
(y2 − y3)

= γ1

γ2
(e2 − α2x2 − β2 y2) − α1x2 − β1 y2

− α3

βL
(x2 − x3) − β3

βL
(y2 − y3) + γ1u1

ė2 = γ2(−αz2 − sin z1 + a + b sin ωt + u2)

+ α2

βC
(i − g(x2)x2 − sin x1 − x3)

+ β2

βC
(i − g(y2)y2 − sin y1 − y3)

= −α(e2 − α2x2 − β2 y2)

+γ2(− sin z1 + a + b sin ωt + u2)

+ α2

βC
(i − g(x2)x2 − sin x1 − x3)

+ β2

βC
(i − g(y2)y2 − sin y1 − y3).

Thus, the error dynamics of the system can be written
as:

ė1 = γ1

γ2
e2 + γ1u1 + A1 (8)

ė2 = −αe2 + γ2u2 + A2, (9)

where

A1 = −γ1

γ2
(α2x2 + β2 y2) − α1x2

−β1 y2 − α3

βL
(x2 − x3) − β3

βL
(y2 − y3)

A2 = α(α2x2 + β2 y2) + γ2(− sin z1 + a + b sin ωt)

+ α2

βC
(i − g(x2)x2 − sin x1 − x3)

+ β2

βC
(i − g(y2)y2 − sin y1 − y3)

then we have the following results.

Theorem 1 If the controllers are chosen as

U1 = 1

γ1

(
γ1

γ2
(α2x2 + β2 y2) + α1x2 + β1 y2

+ α3

βL
(x2 − x3) + β3

βL
(y2 − y3) − kq1

)

U2 = 1

γ2

(
(α − k)q2 − α(α2x2 + β2 y2)

−γ2(− sin z1 + a + b sin ωt) − γ1

γ2
q1

− α2

βC
(i − g(x2)x2 − sin x1 − x3)

− β2

βC
(i − g(y2)y2 − sin y1 − y3)

)
, (10)

where q1 = e1 and q2 = e2 then, the drive systems (4)
and (5) will achieve generalized reduced-order hybrid
combination synchronization with the response systems
(6).

Proof Our goal is to find the control functions which
will enable the systems (4), (5), and (6) to realize gener-
alized reduced-order hybrid combination synchroniza-
tion via active backstepping technique. The design pro-
cedures includes three steps as shown below:
Step 1

Let q1 = e1, its time derivative is

q̇1 = ė1 = γ1

γ2
e2 + γ1u1 + A1, (11)

where e2 = α1(q1) can be regarded as virtual con-
troller. In order to stabilize q1-subsystem, we choose
the following Lyapunov function v1 = 1

2 q2
1 . The time

derivative of v1 is

v̇1 = q1q̇1 = q1

(
γ1

γ2
α1(q1) + γ1u1 + A1

)
(12)
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Suppose α1(q1) = 0 and the control function u1 is
chosen as

u1 = − 1

γ1
(A1 + kq1) (13)

then v̇1 = −kq2
1 < 0, where k is positive constant

which represent the feedback gain. Then, v̇1 is neg-
ative definite and the subsystem q1 is asymptotically
stable. Since, the virtual controller α1(q1) is estima-
tive, the error between e2 and α1(q1) can be denoted
by q2 = e2 − α1(q1). Thus, we have the following
(q1, q2)-subsystems

q̇1 = γ1

γ2
q2 − kq1

q̇2 = −αq2 + γ2u2 + A2

(14)

Step 2
In order to stabilize subsystem (14), the following

Lyapunov function can be chosen as v2 = v1 + 1
2 q2

2 .
The time derivative of v2 is

v̇2 = −kq2
1 + q2

(
γ1

γ2
q1 − αq2 + γ2u2 + A2

)
(15)

If the control function u2 is chosen as

u2 = 1

γ2

(
−A2 − kq2 + αq2 − γ1

γ2
q1

)
(16)

then v̇2 = −kq2
1 − kq2

2 < 0, where k is a positive
constant which represent the feedback gain. Then, v̇2

is negative definite and the subsystem (q1, q2) (14)
is asymptotically stable. This implies that generalized
reduced-order hybrid combination synchronization of
the drive systems (4) and (5) and the response system
(6) is achieved. Finally, we have the following subsys-
tem

q̇1 = γ1

γ2
q2 − kq1

q̇2 = −γ1

γ2
q1 − kq2

(17)

so this completes the prove. ��
The following Corollaries can easily be obtained

from Theorem 1, the proofs of these Corollaries are
similar to Theorem 1 so, they are omitted.

Let α1 = α2 = α3 = 0, γ1 = γ2 = γ3 = 1, then,
we have Corollary 1.

Corollary 1 If the controllers are chosen as

u1 = β1 y2 + β2 y2 + β3

βL
(y2 − y3)

u2 = (α − k)q2 − q1 − αβ2 y2 + sin z1 − a − b sin ωt

− β2

βC
(i − g(y2)y2 − sin y1 − y3), (18)

where q1 = z1 −β1 y1 −β3 y3, q2 = z2 +β2 y2 then the
drive system (5) achieve reduced-order-modified pro-
jective hybrid synchronization with the response system
(6).

Let γ1 = γ2 = γ3 = 1, β1 = β2 = β3 = 0, then
we obtain Corollary 2.

Corollary 2 If the controllers are chosen as

u1 = α1x2 + α2x2 + α3

βL
(x2 − x3)

u2 = (α − k)q2 − q1 − αα2x2 + sin z1 − a − b sin ωt

− α2

βC
(i − g(x2)x2 − sin x1 − x3), (19)

where q1 = z1 −α1x1 −α3x3, q2 = z2 +α2x2 then the
drive system (4) achieve reduced-order-modified pro-
jective hybrid synchronization with the response system
(6).

Suppose γ1 = γ2 = γ3 = 1, α1 = α2 = α3 =
0, β1 = β2 = β3 = 0, then, we obtain Corollary 3.

Corollary 3 If the controllers are chosen as

u1 = 0

u2 = (α − k)q2 − q1 + sin z1 − a − b sin ωt,
(20)

where q1 = z1, q2 = z2 then the equilibrium point
(0, 0, 0) of the response system (6) is asymptotically
stable.

Suppose γ1 = γ2 = γ3 = 1, β1 = β2 = β3 = 1,
and α1 = α2 = α3 = 1 then, we obtain Corollary 4.

Corollary 4 If the controllers are chosen as

u1 = 1

βL
(x2 − x3 + y2 − y3) + 2(x2 + y2)

u2 = (α − k)q2 − q1 − α(x2 + y2)

+ sin z1−a−b sin ωt+ 1

βC
(g(x2)x2+g(y2)y2

+ sin x1 + sin y1 + x3 + y3 − 2i),

(21)

where q1 = z1−(x1+y1+x3+y3), q2 = z2+(x2+y2)

then, the drive systems (4) and (5) achieve reduced-
order hybrid combination synchronization with the
response system (6).

Let α1 = α2 = α3 = 1, β1 = β2 = β3 = 1, then
we obtain Corollary 5.
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Corollary 5 If the controllers are chosen as

u1 = 1

γ1

(
γ1

γ2
(x2 + y2) + x2 + y2

+ 1

βL
(x2 − x3 + y2 − y3)

)

u2 = 1

γ2
((α − k)q2 − γ1

γ2
q1 − α(x2 + y2)

+ γ2(sin z1 − a − b sin ωt)

− 1

βC
(2i − g(x2)x2 − sin x1 − x3

− g(y2)y2 − sin y1 − y3),

(22)

where q1 = γ z1 − (x1 + y1 + x3 + y3), q2 = γ z2 +
(x2 + y2) then the drive system (4) and (5) achieve
reduced-order-modified hybrid projective combination
synchronization with the response system (6).

3.2 Numerical simulation results

To verify the effectiveness of the designed controllers
we used ode45 fourth-order Runge–Kutta algorithm
run on Matlab. In the numerical simulation procedure
the system parameters are chosen to ensure chaotic
dynamics of the state variables as shown in Figs. 1
and 2. Assume that (i) γ1 = γ2 = γ3 = α1 =
α2 = α3 = β1 = β2 = β3 = 1 in accordance with
Corollary 4. The initial conditions of the drive sys-
tems and response system are given as (x1, x2, x3) =
(0, 0, 0), (y1, y2, y3) = (111), (z1, z2) = (0, 1), thus
we have the initial conditions of the error systems as
(10, 5). Corresponding numerical results are as fol-
lows: Figure 3 shows that reduced order hybrid com-
bination synchronization among systems (4), (5), and
(6) is achieved as indicated by the convergence of the
error state variables to zero as soon as the controllers
are switched on for t ≥ 100. Figure 4 shows the tra-
jectory of drive and the response state variables when
the controllers are activated for t ≥ 100 this again con-
firms reduced-order hybrid combination synchroniza-
tion among systems (4), (5), and (6). (ii) We assume
that γ1 = γ2 = γ3 = 0.5, α1 = α2 = α3 = β1 =
β2 = β3 = 1 in accordance with Corollary 5 with the
same initial conditions as given above and the same
set of system parameters. The corresponding numeri-
cal results are as follows: Figure 5 shows that reduced
order hybrid projective combination synchronization
among systems (4), (5), and (6) is achieved as indi-
cated by the convergence of the error state variables
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Fig. 3 Error dynamics among the drives and the response system
with controllers deactivated for 0 < t < 100 and activated for
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Fig. 4 Dynamics of the drives (dashed line)and the response
(solid line) variables with controllers deactivated for 0 < t <

100 and activated for t ≥ 100

to zero as soon as the controllers are switched on for
t ≥ 100. Figure 6 shows the projection of drive and the
response state variables when the controllers are acti-
vated for t ≥ 100 this again confirms reduced-order
hybrid projective combination synchronization among
systems (4), (5), and (6).

4 Generalized reduced-order hybrid combination
synchronization of one third-order and two
second-order Josephson junctions

4.1 Design of controller via active backstepping
technique

In this section, one third-order Josephson junction
in (4) is taken as the drive system while two second-
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Fig. 6 Dynamics of the drives (dashed line) and the response
(solid line) variables with controllers deactivated for 0 < t <

100 and activated for t ≥ 100

order non-autonomous Josephson junction in (23) and
(24) are taken as the response systems in order to
achieve generalized reduced-order hybrid combination
synchronization among the three chaotic Josephson
junctions.

ẏ1 = y2 + u1

ẏ2 = −αy2 − sin y1 + a + b sin ωt + u2,
(23)

ż1 = z2 + u3

ż2 = −αz2 − sin z1 + a + b sin ωt + u4,
(24)

where u1, u2, u3, and u4 are the controllers to be
designed. We define the error systems as follows

e1 = γ1z1 + β1 y1 − (α1x1 + α3x3)

e2 = γ2z2 + (β2 y2 + α2x2)
(25)

Using the error systems defined in (25) with systems
defined in (4), (23), and (24) yields the following error
dynamics

ė1 = γ1z2 + γ1u3 − α1x2 + β1(y2 + u1)

− α3

βL
(x2 − x3)

= γ1

γ2
(e2 − α2x2 − β2 y2) − α1x2 + β1 y2

− α3

βL
(x2 − x3) + γ1u3 + β1u1

ė2 = γ2(−αz2 − sin z1 + a + b sin ωt + u4)

+β2(−αy2 − sin y1 + a + b sin ωt + u2)

+ α2

βC
(i − g(x2)x2 − sin x1 − x3)

= −α(e2 − β2 y2 − α2x2)

+γ2(− sin z1 + a + b sin ωt) + γ2u4

+β2(−αy2 − sin y1 + a + b sin ωt)

+β2u2 + α2

βC
(i − g(x2)x2 − sin x1 − x3)

Thus, the error dynamics of the system can be written
as:

ė1 = γ1

γ2
e2 + U1 + B1 (26)

ė2 = −αe2 + U2 + B2, (27)

where

B1 = −γ1

γ2
(α2x2 + β2 y2) − α1x2

+β1 y2 − α3

βL
(x2 − x3)

B2 = α(β2 y2 + α2x2) + γ2(− sin z1 + a + b sin ωt)

+β2(−αy2 − sin y1 + a + b sin ωt)

+ α2

βC
(i − g(x2)x2 − sin x1 − x3)

U1 = β1u1 + γ1u3

U2 = β2u2 + γ2u4

then we have the following results.
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Theorem 2 If the controllers are chosen as

U1 = γ1

γ2
(α2x2 + β2 y2) + α1x2

−β1 y2 + α3

βL
(x2 − x3)

U2 = (α − k)q2 − γ2(− sin z1 + a + b sin ωt)

−β2(−αy2 − sin y1 + a + b sin ωt)

−α(β2 y2 + α2x2)

− α2

βC
(i − g(x2)x2 − sin x1 − x3) − γ1

γ2
q1, (28)

where q1 = e1 and q2 = e2 then, the drive systems (4)
and (23) will achieve generalized reduced-order hybrid
combination synchronization with the response systems
(24).

Proof Our goal is to find the control functions which
will enable the systems (4), (23), and (24) to realize gen-
eralized reduced-order hybrid combination synchro-
nization via active backstepping technique. The design
procedures includes three steps as shown below:

Step 1
Let q1 = e1, then its time derivative is

q̇1 = ė1 = γ1

γ2
e2 + U1 + B1, (29)

where e2 = α1(q1) can be regarded as virtual con-
troller. In order to stabilize q1-subsystem, we choose
the following Lyapunov function v1 = 1

2 q2
1 . The time

derivative of v1 is

v̇1 = q1q̇1 = q1

(
γ1

γ2
α1(q1) + U1 + B1

)
(30)

Suppose α1(q1) = 0 and the control function U1 is
chosen as

U1 = −(B1 + kq1) (31)

then v̇1 = −kq2
1 < 0 where k is positive constant

which represent the feedback gain. Then, v̇1 is neg-
ative definite and the subsystem q1 is asymptotically
stable. Since, the virtual controller α1(q1) is estima-
tive, the error between e2 and α1(q1) can be denoted
by q2 = e2 − α1(q1). Thus, we have the following
(q1, q2)-subsystems

q̇1 = γ1

γ2
q2 − kq1

q̇2 = −αq2 + U2 + B2.

(32)

Step 2
In order to stabilize system (32), a Lyapunov func-

tion can be chosen as v2 = v1 + 1
2 q2

2 . Its time derivative
is

v̇2 = −kq2
1 + q2

(
γ1

γ2
q1 − αq2 + U2 + B2

)
. (33)

If the control function u2 is chosen as

U2 =
(

−B2 − kq2 + αq2 − γ1

γ2
q1

)
(34)

then v̇2 = −kq2
1 − kq2

2 < 0 where k is a positive con-
stant which represent the feedback gain. Then, v̇2 is
negative definite and the subsystem (q1, q2) in (27) is
asymptotically stable. This implies that the drive sys-
tem (4) and the response systems (23) and (24) achieve
generalized reduced-order hybrid projective combina-
tion synchronization. Finally, we have the following
subsystem

q̇1 = γ1

γ2
q2 − kq1

q̇2 = −γ1

γ2
q1 − kq2.

(35)

This completes the proof. ��
Let α1 = α2 = α3 = 1, β1 = β2 = 0 then, we have

Corollary 6.

Corollary 6 If the controllers are chosen as

u3 = 1

γ1

(
1

βL
(x2 − x3) + γ1

γ2
x2 − kq1

)

u4 = 1

γ2

(
(α − k)q2 − γ1

γ2
q1 − αx2

−γ2(a + b sin ωt − sin z1)

− 1

βC
(i − g(x)x2 − sin x1 − x3)

)
, (36)

where e1 = γ1z1 − (x1 + x3), e2 = γ2z2 + x2 then
the drive system (4) achieve modified projective hybrid
synchronization with the response system (24).

Let α1 = α2 = α3 = 0, β1 = β2 = 0, then we
obtain Corollary 7.

Corollary 7 If the controllers are chosen as

u3 = 1

γ1
(−kq1)

u4 = 1

γ2

(
(α − k)q2 − γ1

γ2
q1

−γ2(a + b sin ωt − sin z1)
)
, (37)
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where e1 = γ1z1, e2 = γ2z2 then the equilibrium
(0, 0, 0) of the response system (24) are asymptotically
stable.

Suppose γ1 = γ2 = 1, α1 = α2 = α3 = 0 and
β1 = β2 = 1 then, we obtain Corollary 8.

Corollary 8 If the controllers are chosen as

u1 = u3 = 1

2
(−kq1)

u1 =u4 = 1

2

(
(α − k)q2−q1−2(a + b sin ωt)

+ sin z1 + sin y1

)
,

(38)

where q1 = z1 + y1, q2 = z2 + y2 then anti-
synchronization is achieved between systems (23) and
(24).

Let α1 = α2 = α3 = 1, β1 = β2 = 1, γ1 = γ2 =
1 then, we have Corollary 9.

Corollary 9 If the controllers are chosen as

u1 = u3 = 1

2

(
1

βL
(x2 − x3) − kq1 + 2x2

)

u2 = u4 = 1

2

(
(α − k)q2 − q1 − αx2

− 2(a + b sin ωt) + sin z1 + sin y1

− 1

βC
(i − g(x)x2 − sin x1 − x3)

)
,

(39)

where q1 = z1 + y1 −(x1 +x3), q2 = z2 + y2 +x2 then
reduced-order hybrid combination synchronization is
achieved among systems (4), (23), and (24).

Let γ1 = γ2 = 1, β1 = β2 = 1 then, we have
Corollary 10.

Corollary 10 If the controllers are chosen as

u1 = u3 = 1

2

(
α3

βL
(x2 − x3) + (α2 + α1)x2 − kq1

)

u2 = u4 = 1

2

(
(α − k)q2 − q1 − αx2

−2(a + b sin ωt) + sin z1 + sin y1

− α2

βC
(i − g(x2)x2 − sin x1 − x3)

)
(40)

where q1 = z1 + y1 − (α1x1 + α3x3), q2 = z2 + y2 +
α2x2 then reduced-order modified projective hybrid
combination synchronization is achieved among sys-
tems (4), (23) and (24).

4.2 Numerical simulation results

To verify the effectiveness of the designed controllers
we used ode45 fourth-order Runge–Kutta algorithm
run on Matlab. In the numerical simulation procedure
the system parameters are chosen to ensure chaotic
dynamics of the state variables as shown in Figs. 1 and
2. Assume that (i) γ1 = γ2 = β1 = β2 = α1 = α2 =
α3 = 1 in accordance with Corollary (9). The initial
conditions of the drive systems and response system
are given as (x1, x2, x3) = (0, 0, 0), (y1, y2, y3) =
(1, 1, 1), (z1, z2) = (0, 1), thus we have the initial
conditions of the error systems as (4, 3). Correspond-
ing numerical results are as follows: Fig. 7 shows
that reduced order hybrid combination synchroniza-
tion among systems (4), (23) and (24) is achieved as
indicated by the convergence of the error state vari-
ables to zero as soon as the controllers are switched
on for t ≥ 0. Figure 8 shows the projection of the
drive state variable on response systems when the con-
trollers are activated for t ≥ 0 which again con-
firm reduced order hybrid combination synchroniza-
tion among systems (4), (23), and (24). (ii) We assumed
that α1 = α2 = α3 = 0.5, γ1 = γ2 = β1 = β2 = 1 in
accordance with Corollary (10) and used the same ini-
tial conditions and system parameters as given above.
The corresponding numerical results are as follows:
Figure 9 shows that reduced order hybrid projective
combination synchronization among systems (4), (23),
and (24) is achieved as indicated by the convergence
of the error state variables to zero as soon as the con-
trollers are switched on for t ≥ 0. Figure 10 shows the
projection of the drive state variable on response sys-
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Fig. 7 Error dynamics among the drive and the response systems
with controllers activated for t ≥ 0, where e1 = z1 − x1 − y1 −
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Fig. 8 Dynamics of the drive (dashed line) and the responses
(solid line) variables with controllers activated for t ≥ 0
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Fig. 9 Error dynamics among the drives and the response system
with controllers activated for t ≥ 0, where e1 = z1+y1−(α1x1+
α3x3), e2 = z2 + y2 − α2x2 and α1 = α2 = α3 = 0.5

tems when the controllers are activated for t ≥ 0 which
again confirm reduced-order hybrid projective combi-
nation synchronization among systems (4), (23), and
(24) with system 4) as the drive systems and systems
(23) and (24) as response systems.

5 Conclusion

The generalized reduced-order hybrid projective com-
bination synchronization discussed in this paper can
be used to improve security of information transmis-
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Fig. 10 Dynamics of the drives (dashed line) and the response
(solid line) variables with controllers activated for t ≥ 0

sion in two ways: (1) a signal f (t) can split up into
two different signals say, f1(t) and f2(t). Each signal
f1(t) and f2(t) is loaded into each first-drive third-
order JJ and, after synchronization has taken place
between the response (second-order) JJ and the two
third-order drive JJs, the message can be retrieved; (2)
another way is to load the split up signals f1(t) into
the first-drive third-order JJ at time t1 and load the sec-
ond signal f2(t) into the second-drive (third-order) JJ at
another time t2 and after each of the drive JJs has under-
gone synchronization with the response JJ, the message
can retrieved and recombined. Reduced-order hybrid
and reduced-order hybrid projective combination syn-
chronization have been achieved for three chaotic sys-
tems consisting of: (i) two third-order chaotic Joseph-
son junctions as drives and one second-order chaotic
Josephson junction as response system; (ii) one third-
order chaotic Josephson junction as the drive and two
second-order chaotic Josephson junctions as the slaves
via active backstepping technique. We showed from the
theoretical analysis that various controllers which are
suitable for different type of synchronization scheme
can be obtained from the general results. The typical
one drive to one response is a special case of com-
bination synchronization hence, it has more potential
applications in physics, biology, electrical engineering,
communication theory, and many other fields.
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