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Abstract A fractional wave equation replaces the
second time derivative by a Caputo derivative of order
between one and two. In this paper, we show that the
fractional wave equation governs a stochastic model
for wave propagation, with deterministic time replaced
by the inverse of a stable subordinator whose index is
one-half the order of the fractional time derivative.
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1 Introduction

The traditional wave equation

∂2

∂t2
p(x, t) = �x p(x, t) (1.1)
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models wave propagation in an ideal conducting
medium. Assume a plane wave solution p(x, t) =
e−iωt+ikx for some frequency ω > 0 and substitute
into (1.1) to see that we must have (−iω)2 = (ik)2

or in other words k = ±ω. This solution is a travel-
ing wave at speed one (justified by a suitable choice of
units), and the general solution to (1.1) can be written
as a linear combination of plane waves.

In a complex inhomogeneous conducting medium,
experimental evidence reveals that soundwaves exhibit
power-law attenuation, with an amplitude that falls off
at an exponential rate α = α(ω) ≈ ωp for some power-
law index p (e.g., see Duck [12] for applications to
medical ultrasound). A variety of modified wave equa-
tions have been proposed to model wave conduction
in complex media [11,14,22,23]. We note here, appar-
ently for the first time, that a simple time-fractional
wave equation
∂γ

∂tγ
p(x, t) = �x p(x, t), 1 < γ < 2, (1.2)

which replaces the second time derivative by a frac-
tional derivative, also exhibits power-law attenuation.
Assuming the same plane wave solution, and using the
well-known formula dγ

dtγ [eat ] = tγ eat (e.g., see [18,
Example 2.6]), we now have (−iω)γ = −k2, and a
little algebra yields k = β(ω) + iα(ω) with attenua-
tion coefficientα(ω) = α0ω

γ/2.Hence, solutions to the
time-fractional wave equation (1.2) also exhibit power-
law attenuation with power-law index p = γ /2.

The goal of this paper is to develop a new stochastic
solution to the time-fractional wave equation (1.2). Our
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stochastic solution is based on limit theory for random
walks and, therefore, provides a simple and illuminat-
ing statistical physics model for wave conduction in
complex media.

2 Background

In one spatial dimension, the general solution to
(1.1) with initial conditions p(x, 0) = φ(x) and
∂
∂t p(x, 0) = ψ(x) is given by the d’Alembert formula

p(x, t) = 1

2
[φ(x + t) + φ(x − t)] +

x+t∫

x−t

ψ(y)dy.

(2.1)

In fact, for all continuous and exponentially bounded
functions φ,ψ the unique solution to the equivalent
integral equation

p(x, t) = φ(x) + tψ(x) +
t∫

0

(t − s)�x p(x, s)ds

(2.2)

is given by the d’Alembert formula. In this paper, we
consider the following integral form of the fractional
wave equation:

p(x, t) = φ(x) + tγ /2


(1 + γ /2)
ψ(x)

+ 1


(γ )

t∫

0

(t − s)γ−1�x p(x, s)ds. (2.3)

The differential form of equation (2.3) employs the
Riemann–Liouville fractional derivative. The
Riemann–Liouville fractional integral of non-integer
order γ > 0 is defined by

I
γ
t f (t) = 1


(γ )

∞∫

0

(t − s)γ−1 f (s)ds. (2.4)

The Riemann–Liouville fractional derivative of non-
integer order γ > 0 is defined by

D
γ
t f (t) = 1


(n − γ )

dn

dtn

∞∫

0

(t − s)n−γ−1 f (s)ds

(2.5)

where n is the smallest integer greater than γ .

Equation (2.3) corresponds to the following frac-
tional differential equation:

D
γ
t p(x, t) − φ(x)

t−γ


(1 − γ )

−ψ(x)
t−γ /2


(1 − γ /2)
= �x p(x, t) (2.6)

with initial conditions

p(x, 0) = φ(x) and
∂γ/2

∂tγ /2 p(x, 0) = ψ(x).

In this paper, we will show that the solution to (2.3) is

p(x, t) = 1

2
E [φ(x + Et ) + φ(x − Et )]

+ 1

2
E

⎡
⎢⎣

x+Et∫

x−Et

ψ(y)dy

⎤
⎥⎦ (2.7)

where Et is the inverse (hitting time or first passage
time) of a standard stable subordinator with index γ /2.
Then, using the general theory of second-order Cauchy
problems, we will extend this result to a wide variety
of fractional partial differential equations that model
wave-like motions. Finally, we will develop random
walk models that provide a physical explanation for
these fractional wave equations.

3 Fractional wave equations

Let Du be a standard stable subordinator with D0 = 0
a.s. and Laplace transformE[e−sDu ] = e−usβ for some
0 < β < 1. The random variable D1 has a smooth
density function gβ(u). Define the inverse subordinator
(generalized inverse, first passage time, or hitting time)

Et = inf{u ≥ 0 : Du > t} (3.1)

for t ≥ 0. Then, a simple computation [16, Corol-
lary 3.1] shows that Et has a smooth density

u �→ h(u, t) = t

β
u−1−1/βgβ(tu−1/β), u>0, t>0.

(3.2)

Write R+ = [0,∞), let B(R × R
+) denote the set of

real-valued continuous functions p(x, t) on R × R
+

such that |p(x, t)| ≤ AeB(|x |+t) for some constants
A, B > 0, and denote by B(R) the set of real-valued
continuous functions φ(x) on R such that |φ(x)| ≤
AeB|x | for some constants A, B > 0. Denote byBm(R)
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the set of real-valued continuously differentiable func-

tions φ(x) such that d j

dx j φ ∈ B(R) for all integers

0 ≤ j ≤ m and by Bm,0(R × R+) the set of real-
valued functions p(x, t) on R × R

+ continuously dif-

ferentiable in x with d j

dx j p(x, t) ∈ B(R × R+) for all
integers 0 ≤ j ≤ m.

Theorem 3.1 Let �(x) = ∫ x
0 ψ(y)dy. For any φ, ψ

such that φ, � ∈ B2(R), the unique solution to the
fractional wave equation (2.3) in B2,0(R × R

+) with

p(x, 0) = φ(x) and ∂β

∂tβ
p(x, 0) = ψ(x) is given by

the formula (2.7), where Et is the inverse stable subor-
dinator (3.1) with index β = γ /2.

Proof The proof uses a result of Fujita [13] together
with a duality result from [3]. Fujita considers a stable
Lévy process Xγ (t) with characteristic function

E

[
eikXγ (t)

]
= exp

[
−t |k|2/γ e−i(π/2)(2−2/γ ) sgn(k)

]
.

(3.3)

with index 1 < 2/γ < 2 along with its supremum
process

Yγ (t) = sup
0≤u≤t

Xγ (u). (3.4)

Fujita shows that for φ, ψ such that φ, � ∈ B2(R),
the unique solution to (2.3) in B2,0(R × R

+) is

p(x, t) = 1

2
E

[
φ(x + Yγ (t)) + φ(x − Yγ (t))

]

+ 1

2
E

⎡
⎢⎣

x+Yγ (t)∫

x−Yγ (t)

ψ(y) dy

⎤
⎥⎦. (3.5)

Using the parameterization of Samorodnitsky and
Taqqu [21], the characteristic function of a generic sta-
ble process ξ(t) = ξμ,α,σ,θ (t) is

E

[
eikξ(t)

]
= exp

[
ikμ − σα|k|α

× {1 − iθ sgn(k) tan(πα/2)}] .

An elementary calculation (e.g., see [3, p. 1101]) shows
that the process Xγ (t) has stability index α = 2/γ ,
skewness θ = −1, scale σα = −t cos(πα/2) > 0,
and centering constant μ = 0. Hence, Xγ (t) is a spec-
trally negative stable Lévy process, with no positive
jumps. Use the elementary formula (e.g., see [18, Eq.
5.5]) (ik)α = |k|α cos(πα/2)(1+ i sgn(k) tan(πα/2))
to write E

[
eikXγ (t)

] = et (ik)
α
and then set k = −is to

see that

E

[
esXγ (t)

]
= ets

α

for all s ≥ 0 and t ≥ 0. Now, it follows from [7,
Theorem 1, p. 189] that the first-passage time process

Du = inf{t ≥ 0 : Xγ (t) > u}
is a stable subordinator with Laplace transform
E

[
e−sDu

] = e−usβ for all u ≥ 0 and s ≥ 0, where the
stability index β = 1/α = γ /2. Then, the inverse β-
stable subordinator Et in (3.1) is the generalized inverse
of Xγ (t), which equals the supremumof Xγ (t). Hence,
we have Et = Yγ (t) pathwise, see also Proposition 1 in
[9]. Then, the form of the solution follows from (3.5).

The integral form of the fractional wave equation
(2.3) corresponds to the differential form (1.2) with the
initial conditions p(x, 0) = φ(0) andψ = ∂β

∂xβ p(x, t),
β = γ /2. The first initial condition follows directly
from (2.3). As for the second one, note that

1


(γ )

t∫

0

(t − s)γ−1�x p(x, s)ds = I
γ
t �x p(x, t)

and apply the Caputo derivative to both sides of (2.3)
to get

∂β

∂tβ
p(x, t) = ψ(x) + ∂β

∂tβ
I
γ
t �x p(x, t).

Since Caputo and Riemann–Liouville derivatives of
order 0 < β < 1 are related by (e.g., see [18, p. 39])

∂β

∂tβ
f (t) = D

β
t f (x) − f (0)

t−β


(1 − β)
,

and I
γ
t �x p(x, t) evaluated at t = 0 is zero, we have

∂β

∂tβ
I
γ
t �x p(x, t) = D

β
t I

γ
t �x p(x, t) = I

β
t �x p(x, t).

Since p(x, t) ∈ B2,0(R × R
+), |�x p(x, s)| ≤

AeB(|x |+t) for some constants A, B > 0 and0 ≤ s ≤ t .
Therefore,

∣∣∣Iβt �x p(x, t)
∣∣∣ ≤ AeB(|x |+t)


(β)

t∫

0

(t − s)β−1ds

= AeB(|x |+t)


(β + 1)
tβ → 0 as t → 0.

Thus, the initial conditions corresponding to (2.3) are
p(x, 0) = φ(x) and ∂β

∂tβ
p(x, 0) = ψ(x). 	
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In the remainder of this section, we discuss related
results in the literature and give some alternative sto-
chastic representations of the solution.

Remark 3.2 Define the reflected stable process

Zt = Xγ (t) − inf{Xγ (s) : 0 ≤ s ≤ t}, (3.6)

where Xγ (t) is the spectrally negative stable process
with index 1 < γ ≤ 2 and characteristic function
(3.3). Apply [4, Lemma 4.5] to see that Zt has the
same one-dimensional distributions as the inverse (3.1)
of a standard β-stable subordinator with β = γ /2.
Then, it follows from Theorem 3.1 that for any φ, ψ

such that φ,� ∈ B2(R), the unique solution to the
fractional wave equation (1.2) in B2,0(R × R

+) with
p(x, 0) = φ(x) and ∂β

∂tβ
p(x, 0) = ψ(x) is given by

the formula

p(x, t) = 1

2
E [φ(x + Zt ) + φ(x − Zt )]

+ 1

2
E

⎡
⎢⎣

x+Zt∫

x−Zt

ψ(y) dy

⎤
⎥⎦. (3.7)

The advantage to this representation is that Zt is a
Markov process.

Remark 3.3 Mainardi [15, Sect. 6.3] considers a ver-
sion of (1.2) that employs the Caputo fractional deriv-
ative

∂γ

∂tγ
p(x, t) = 1


(2 − γ )

t∫

0

∂2

∂u2
p(x, u)(t − u)1−γ du

(3.8)

of order 1 < γ < 2. Mainardi [15, Sect. 6.4] derives
the fractional wave equation (1.2) from a viscoelas-
tic model with a power-law stress–strain relationship.
He notes that the Green’s function solution to the frac-
tional wave equation (1.2) can be also expressed in
terms of stable densities. He considers the fractional
wave equation (1.2) subject to the initial conditions
p(x, 0) = δ(x) and ∂

∂t p(x, 0) = 0. Since the Caputo
and Riemann-Liouville fractional derivatives of order
1 < γ < 2 are related by (e.g., see [5, p. 11])

∂γ

∂tγ
f (t) = D

γ
t f (t) − f (0)

t−γ


(1 − γ )

− f ′(0) t1−γ


(2 − γ )
, (3.9)

when ∂
∂t p(x, 0) = 0 Eq. (2.6) with initial conditions

p(x, 0) = φ(x) and ∂β

∂tβ
p(x, 0) = 0 has the same

integral form as Eq. (1.2) with p(x, 0) = φ(x) and
∂
∂t p(x, 0) = 0.

Letting Lη
α(x) be the stable probability density func-

tion with characteristic function
∞∫

−∞
eikx Lη

α(x)dx = exp
[
−|k|αei sgn(k)ηπ/2

]

Mainardi shows that

Lα−2
α (x) = 1

α
�1/α(x) for any x ∈ R and 1 < α ≤ 2,

where

�β(z) =
∞∑
n=0

(−z)n

n!
(1 − nβ−β)
, 0 < β < 1 (3.10)

is the Wright function. It follows [15, Eq. 6.37] that
the solution to the fractional wave equation (1.2) with
initial conditions p(x, 0) = δ(x) and ∂

∂t p(x, 0) = 0
can be written in the form

p(x, t) = 1

2βtβ
L(1/β)−2
1/β

( |x |
tβ

)

with β = γ /2. Hence, the solution to the fractional
wave equation (1.2) with initial conditions p(x, 0) =
φ(x) and ∂

∂t p(x, 0) = 0 is given by

p(x, t) =
∞∫

0

1

2

[
φ(x − u) + φ(x + u)

]

× 1

βtβ
L(1/β)−2
1/β

( u

tβ

)
du. (3.11)

The solution (3.11) to the fractionalwave equation (1.2)
involves a stable density with index α = 1/β = 2/γ ,
whereas the solution in Theorem 3.1 uses the inverse of
a stable lawwith index β = γ /2. This can be explained
using the Zolotarev duality formula for stable densities
[3, Theorem 2.1]. Baeumer et al. [3, Theorem 4.1] use
Zolotarev duality to prove that βh(u, t) = q(u, t) for
all t > 0 and u ≥ 0, where h(u, t) is the density (3.2)
of the standard inverse β-stable subordinator on the set
u ≥ 0, q(u, t) is the density of the spectrally negative
stable process Xγ (t) with index 1 < γ ≤ 2 on the
set −∞ < u < ∞, and α = 1/β. For u > 0, the
self-similarity argument shows that the function

q(u, t) = 1

tβ
L(1/β)−2
1/β

( u

tβ
.
)
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Then, the solution (3.11) reduces to a special case of
(2.7) with ψ(x) = 0 since

p(x, t) =
∞∫

0

1

2
[φ(x − u)

+φ(x + u)]
1

βtβ
L(1/β)−2
1/β

( u

tβ

)
du

=
∞∫

0

1

2
[φ(x − u) + φ(x + u)]

q(u, t)

β
du

=
∞∫

0

1

2
[φ(x − u) + φ(x + u)] h(u, t)du.

Theorem 4.1 in [3] also shows that the conditional
distribution of Xγ (t) given Xγ (t) > 0 is identical to
the distribution of Et . Hence, for any φ, ψ such that
φ,� ∈ B2(R), the unique solution to the fractional
wave equation (2.6) in B2,0(R × R

+) with p(x, 0) =
φ(x) and ∂β

∂tβ
p(x, 0) = ψ(x) can be written as

p(x, t) = 1

2
E

⎡
⎢⎣φ(x + Xγ (t)) + φ(x − Xγ (t))

+
x+Xγ (t)∫

x−Xγ (t)

ψ(y)dy

∣∣∣∣ Xγ (t) > 0

⎤
⎥⎦ . (3.12)

An extension of the well-known D. André reflection
principle (see Appendix) shows that P[Yγ (t) ≥ x] =
P[Xγ (t) ≥ x | Xγ (t) ≥ 0], and this together with (3.5)
gives another proof of (3.12).

4 General wave equations

Given a closed operator L on a Banach space X of
functions, consider the second-order Cauchy problem

∂2

∂t2
p(x, t) = Lp(x, t);

p(x, 0) = φ(x),
∂

∂t
p(x, 0) = ψ(x). (4.1)

The traditional wave equation (1.1) is a special case
where L = �x . Bajlekova [5,6] developed the theory
of fractional order Cauchy problems
∂γ

∂tγ
p(x, t) = Lp(x, t);

p(x, 0) = φ(x),
∂

∂t
p(x, 0) = 0 (4.2)

using a Caputo fractional derivative of order 1 < γ <

2.
The general theory of second-order Cauchy prob-

lems is laid out in [2, Sects. 3.14–3.16]. A strongly
continuous (i.e., continuous in the Banach space norm)
family of linear operators (Cos(t))t≥0 is called a cosine
family if Cos(0) = I and 2Cos(t)Cos(s) = Cos(t +
s)+Cos(t − s) for all s, t ≥ 0. The generator L of the
cosine family is defined by

L f (x) = lim
t↓0

2

t2
[Cos(t) f (x) − f (x)] ,

and the domain Dom(L) is the set of functions f ∈ X
for which this limit exists strongly. If the operator L
in (4.1) is a generator of a cosine family (Cos(t))t≥0,
then for any φ,ψ ∈ X , the unique mild solution to the
second-order Cauchy problem (4.1) is given by

p(x, t) = Cos(t)φ(x) +
t∫

0

Cos(s)ψ(x)ds. (4.3)

That is, we have

p(x, t) = φ(x) + tψ(x) + L

t∫

0

(t − s)p(x, s)ds

for all t ≥ 0, the integrated version of the second-order
Cauchyproblem.Furthermore, (4.3) is the unique (clas-
sical) solution to the second-order Cauchy problem
(4.1) for any φ,ψ ∈ Dom(L) [2, Theorem 3.14.11].

Theorem 4.1 Suppose that the operator L in (4.2) is
a generator of a cosine family (Cos(t))t≥0. Then for
any φ ∈ X, the unique mild solution to the fractional
Cauchy problem (4.2) is given by the formula

p(x, t) = E [Cos(Et )φ(x)] , (4.4)

where Cos(t)φ(x) is the unique mild solution to the
second-order Cauchy problem (4.1) with ψ = 0, and
Et is the inverse (3.1) of the standard stable subor-
dinator with index β = γ /2. Furthermore, equation
(4.4) gives the unique classical solution to (4.2) for
any φ ∈ Dom(L).

Proof Bajlekova [5, Theorem 3.1] proves that if Cos(t)
φ(x) = S2(t)φ(x) solves the second-order Cauchy
problem (4.1) with ψ = 0, then the unique solution
to the fractional Cauchy problem (4.2) is p(x, t) =
Sγ (t)φ(x)where the family of solution operators Sγ (t)
is given by the subordination formula

Sγ (t) =
∞∫

0

S2(s)t
−γ /2�γ/2(st

−γ /2)ds, (4.5)
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using the Wright function defined in (3.10). Recall the
identity (e.g., see [5, Eq. 1.31])

∞∫

0

ezt�β(z)dz = Eβ(t) (4.6)

where the Mittag-Leffler function

Eβ(z) =
∞∑
n=0

zn


(1 + βn)

for β > 0 and z ∈ C. Bingham [8] and Bondesson et al.
[10] show that the inverse Et of a β-stable subordinator
has a Mittag-Leffler distribution with

E(e−sEt ) =
∞∫

0

e−suh(u, t)du = Eβ(−stβ).

But, it follows from (4.6) along with a substitution
z = u/tβ that we also have

∞∫

0

e−su 1

tβ
�β

( u

tβ

)
du =

∞∫

0

e−sztβ �β (z) dz

= Eβ(−stβ)

where β = γ /2. Then, it follows from the uniqueness
of the Laplace transform that the standard inverse β-
stable density (3.2) is related to the Wright function
by

h(u, t) = 1

tβ
�β

( u

tβ

)
. (4.7)

Hence, Bajlekova’s solution (4.5) to the fractionalwave
equation is equivalent to the formula (4.4). 	

Remark 4.2 Mainardi [15, Sect. 6.3] shows that the
solution to the fractional wave equation (1.2) with ini-
tial conditions p(x, 0) = φ(x) and ∂

∂t p(x, 0) = 0 is
given by the convolution formula

p(x, t) =
∞∫

0

1

2
[φ(x−u) + φ(x+u)]

1

tβ
�β

( u

tβ

)
du.

Using (4.7), this reduces to (2.7) with ψ(x) ≡ 0.

Example 4.3 Given an open subset D of Rd , consider
the Laplace operator L = �x on L2(D) with Dirichlet
boundary conditions [2, Example 7.2.1]. For any φ ∈

Dom(L) there exists a unique solution p(x, t) to the
wave equation

∂2

∂t2
p(x, t) = �x p(x, t); p(x, 0) = φ(x);

∂

∂t
p(x, 0) = 0; p(x, t) = 0 ∀x /∈ D

by [2, Theorem 7.2.2]. Then, it follows from The-
orem 4.1 that the function pγ (x, t) = E[p(x, Et )]
solves the corresponding fractional wave equation

∂γ

∂tγ
p(x, t) = �x p(x, t); p(x, 0) = φ(x);

∂

∂t
p(x, 0) = 0; p(x, t) = 0 ∀x /∈ D

on this bounded domain for 1 < γ < 2, where Et is the
inverse stable subordinator (3.1) with index β = γ /2.

Example 4.4 If L = B2, where B is a generator of a
C0-semigroup (A(t))t≥0 on a Banach space of func-
tions, then L is a generator of a cosine family given by

Cos(t) = 1

2
(A(t) + A(−t)) , t ∈ R,

see [2, Example 3.14.15]. When B = ∂
∂x , (A(t))t≥0

is a shift semigroup, and equation (4.1) becomes the
traditional wave equation (1.1). Equation (4.3) giving
the solution becomes the d’Alembert formula (2.1).
Theorem 4.1 gives the solution to the fractional wave
equation (1.2) with the initial conditions p(x, 0) = 0,
∂
∂t p(x, 0) = 0.

Example 4.5 If L is a self-adjoint linear operator on
some Hilbert space such that (Lx, x)H ≤ ω‖x‖2H for
some ω > 0 and all x ∈ Dom(L), then L generates a
cosine family [2, Example 3.14.16], and hence, (4.3) is
the unique classical solution to the wave equation

∂2

∂t2
p(x, t) = Lp(x, t);

p(x, 0) = φ(x); ∂

∂t
p(x, t) = 0

for any φ ∈ Dom(L). Then, Theorem 4.1 implies that
the function pγ (x, t) = E[p(x, Et )] solves the corre-
sponding fractional wave equation

∂γ

∂tγ
p(x, t) = Lp(x, t);

p(x, 0) = φ(x); ∂

∂t
p(x, t) = 0,

where Et is the inverse stable subordinator (3.1) with
index β = γ /2.
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5 Random walk models

In this section, we will develop a random walk model
for the fractional wave equation (1.2). First, we decom-
pose the fractional wave equation into simpler parts.
Using the notation (2.4) for the Riemann–Liouville
fractional integral, the integral form (2.3) of the frac-
tional wave equation with ψ ≡ 0 can be written as

p(x, t) = φ(x) + I
γ
t �x p(x, t). (5.1)

Using the property D
γ
t = D

n
t I

n−γ
t for the Riemann–

Liouville factional derivative and integral, and the
semigroup property Iαt I

β
t = I

α+β
t , it follows easily that

D
γ
t I

γ
t f (t) = f (t) [5, Theorem 1.5]. Apply the opera-

tor Dγ
t to both sides of (5.1) to get the equivalent form

D
γ
t p(x, t) = �x p(x, t) + D

γ
t φ(x). (5.2)

An easy computation [18, Example 2.8] shows that
D

γ
t 1 = t−γ /
(1 − γ ), and then, (5.2) becomes

D
γ
t p(x, t) − φ(x)

t−γ


(1 − γ )
= �x p(x, t). (5.3)

Since the Caputo and Riemann–Liouville fractional
derivatives of order 1 < γ < 2 are related by (3.9),
Eq. (5.3) is equivalent to the fractional wave equa-
tion (1.2) with initial conditions p(x, 0) = φ(x) and
∂
∂t p(x, 0) = 0.

Now, consider the one way fractional wave equa-
tions

D
γ /2
t p+(x, t) = −∇x p

+(x, t) + 1

2
φ(x)

t−γ /2


(1 − γ /2)

D
γ /2
t p−(x, t) = ∇x p

−(x, t) + 1

2
φ(x)

t−γ /2


(1 − γ /2)
(5.4)

where again 1 < γ < 2. Apply the operator Iγ /2
t to

both sides to obtain the integral forms

(I + I
γ /2
t ∇x )p

+(x, t) = 1

2
φ(x)

(I − I
γ /2
t ∇x )p

−(x, t) = 1

2
φ(x) (5.5)

where I is the identity operator.

Theorem 5.1 For any φ ∈ B1(R), the unique solu-
tions to the one way fractional wave equations (5.5) in
B1,0(R × R

+) are given by the formulae

p+(x, t) = 1

2
E [φ(x − Et )]

p−(x, t) = 1

2
E [φ(x + Et )] (5.6)

where Et is the generalized inverse (3.1) of the stan-
dard stable subordinator with index β = γ /2. Fur-
thermore, the unique solution to the fractional wave
equation (2.3) in B1,0(R × R

+) with p(x, 0) = φ(x)
and ∂

∂t p(x, 0) = ψ(x) ≡ 0 is then given by p(x, t) =
p+(x, t) + p−(x, t).

Proof Fujita [13] proves the same result with Et

replaced by the supremum process (3.4). As noted in
the proof of Theorem 3.1, these two processes have the
same one-dimensional distributions. Then, the result
follows. 	

Remark 5.2 Adirect proof of Theorem5.1 uses an idea
from Fujita [13]. Apply [17, Theorem 4.1] to see that
the density (3.2) of the inverse stable subordinator with
index β = γ /2 solves equation

D
γ /2
t h(x, t) = −∇xh(x, t) + δ(x)

t−γ /2


(1 − γ /2)
.

(5.7)

It follows using the principle of superposition that

p+(x, t) = 1

2
E [φ(x−Et )] = 1

2

∞∫

0

φ(x−u)h(u, t)dy

solves the positive one way fractional wave equa-
tion. Then, a simple change of coordinates shows that
p−(x, t) = E [φ(x + Et )] /2 solves the negative one
way fractional wave equation. Now, write

(I−I
γ
t �x )(p

++ p−) = (I−I
γ /2
t ∇x )(I + I

γ /2
t ∇x )p

+

+ (I + I
γ /2
t ∇x )(I − I

γ /2
t ∇x )p

−

= (I − I
γ /2
t ∇x )

1

2
φ + (I + I

γ /2
t ∇x )

1

2
φ = φ

which is equivalent to the fractionalwave equation (2.3)
with p(x, 0) = φ(x) and ∂

∂t p(x, 0) = 0. One can
also prove Theorem 3.1 in the same manner. Just apply
the same argument again with φ(x) replaced by the
function �(x) = ∫ x

0 ψ(y)dy, and then add the two
solutions.

Remark 5.3 Here, we indicate an alternative proof
of Theorem 4.1 using Riemann–Liouville fractional
derivatives and an idea from [19]. Suppose that p(x, t)
solves the second-order Cauchy problem (4.1) with ini-
tial conditions p(x, 0) = φ(x) and ∂

∂t p(x, 0) = 0. Let
h(u, t) be the density (3.2) of the inverse stable subor-
dinator with index β = γ /2. From (5.7), it follows that
D

β
t h(u, t) = −∂uh(u, t) on t > 0 and u > 0. It follows
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from (3.2) and the asymptotic behavior of stable den-
sities that h(0+, t) = t−β/
(1−β) and h(0−, t) = 0
for all t > 0 (e.g., see [20, Eq. 20]). Write

pγ (x, t) =
∞∫

0

p(x, u)h(u, t)du

and integrate by parts to get

D
β
t pγ (x, t) =

∞∫

0

p(x, u)D
β
t h(u, t)du

=
∞∫

0

p(x, u) [−∂uh(u, t)] du

= p(x, 0)h(0+, t)

+
∞∫

0

∂u p(x, u)h(u, t)du.

Integrate by parts again and use (4.1) to get

D
2β
t pγ (x, t) = p(x, 0)Dβ

t h(0+, t)

+
∞∫

0

∂u p(x, u) [−∂uh(u, t)] du

= p(x, 0)Dβ
t h(0+, t)

+
∞∫

0

∂2u p(x, u)h(u, t)du

= Lpγ (x, t) + φ(x)
t−2β


(1 − 2β)

using the general formula Dβ
t [tα] = 
(1 + α)tα−β/


(1 + α − β) [18, Example 2.7]. This equation for
pγ (x, t) is equivalent to the second-orderCauchy prob-
lem (4.1) with initial conditions pγ (x, 0) = φ(x)
and ∂

∂t pγ (x, 0) = 0, since the Caputo and Riemann–
Liouville fractional derivatives of order γ = 2β ∈
(1, 2) are related by (3.9).

Finally, we develop a simple particle tracking
method for solving the fractional wave equation (2.3),
using a continuous-time randomwalk [16,17] that con-
verges to the stochastic solution of the fractional wave
equation. The main idea is to construct a random walk
model that converges to the inverse stable subordinator

Et and use the fact that the density (3.2) of Et solves
the positive one way fractional wave equation.

Theorem 5.4 Given a continuous probability density
function φ(x) on R, let X0 be a random variable with
density φ(x). Let X1 be a Bernoulli random variable
independent of X0 such that P[X1 = 1] = P[X1 =
−1] = 1/2, set Xn = X1 for n > 1, and let S(n) =
X1 +· · ·+ Xn = nX1. Let Wn be iid random variables
independent of X0, X1 with P[Wn > t] = Ct−β for
t > C1/β , where 0 < β < 1 and C = 1/
(1 − β).
Let T0 = 0, Tn = W1 + · · · + Wn for n ≥ 1, and
Nt = max{n ≥ 0 : Tn ≤ t} for t ≥ 0. Then,

X0 + c−β S(Nct ) ⇒ Ut as c → ∞ (5.8)

in D[0,∞) with the Skorokhod J1 topology, where the
random variable Ut has density

p(x, t) = 1

2
E [φ(x + Et ) + φ(x − Et )] , (5.9)

and Et is the inverse stable subordinator (3.1) with
index β = γ /2. Hence, p(x, t) is the unique solution
to the fractional wave equation (2.3) in B2,0(R×R

+)

with p(x, 0) = φ(x) and ∂
∂t p(x, 0) = ψ(x) ≡ 0.

Proof For any c > 0, it follows from [18, Theorem
3.41 and Eq. 4.29] that c−1/βT[ct] ⇒ Dt as c → ∞
in J1 topology in D[0,∞), where Dt is a β-stable
subordinator with characteristic function E[eikDt ] =
exp[−tC
(1 − β)(−ik)β ]. Taking C = 1/
(1 − β),
the limit is a standard stable subordinator with Laplace
transform E[e−sDt ] = e−tsβ , and then, [16, Theorem
3.2 and Corollary 3.4] implies that c−βNct ⇒ Et as
c → ∞, where Et is the inverse (3.1) of the standard
stable subordinator Dt . Since S(n) = nX1 it follows
easily that

X0 + c−β S(Nct ) = X0 + c−βNct X1 ⇒ X0 + Et X1

as c → ∞. Then, (5.8) holds with Ut = X0 + Et X1,
and a simple conditioning argument yields (5.9). Then,
Theorem 3.1 shows that p(x, t) is the unique solution
to the fractional wave equation (2.3) in B2,0(R × R

+)

with p(x, 0) = φ(x) and ∂
∂t p(x, 0) = ψ(x) ≡ 0. 	


Theorem 5.4 provides a physical model for the frac-
tional wave equation. Each sample path represents a
packet of wave energy moving out from its initial
position X0 at unit speed, represented by the process
S(n). For the traditional wave equation, this is the
correct particle model. In the fractional case, time
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delays with a power-law probability distribution occur
between movements, and this retards the progress of
the wave outward from the starting point. These delays
are related to the heterogeneous structure of the con-
ducting medium, see Mainardi [15, Sect. 6.4].

Remark 5.5 Theorem 5.4 implies that the histogram of
a large numberM of identical continuous-time random-
walk processes X0 + c−β S(Nct ) gives an approximate
solution to the fractional wave equation, which gains
accuracy at M → ∞ and c → ∞. It is a simple
matter to simulate the waiting times using the formula
Wn = (Un/C)−1/β where Un are iid uniform random
variables on (0, 1). Theorem 5.4 remains true for any
iid waiting timesWn > 0 in the domain of attraction of
the β-stable subordinator, except that the norming con-
stants c−β need to be adjusted as in [16, Theorem 3.2].

Acknowledgments This research was partially supported by
NIH grant R01-EB012079.

Appendix

Reflection principle

The goal of this appendix is to establish the follow-
ing variation of the D. André reflection principle for
Brownian motion, which may also be useful in other
contexts. Since this extension is not completely stan-
dard, we include its simple proof.

Theorem 6.1 (Reflection principle) Suppose that Yt is
a Lévy process started at the origin, with no positive
jumps, and let St = sup{Yu : 0 ≤ u ≤ t}. Assume that
P(Yt > 0) = P(Y1 ≥ 0), for all t > 0. Then,

P(St ≥ x) = P(Yt ≥ x | Yt ≥ 0) (6.1)

= P(Yt ≥ x)

P(Yt ≥ 0)

for all t, x > 0.

Proof Let τx := inf{u > 0 : Yu > x} denote the
first-passage time process. Since (Yt )t≥0 has stationary
independent increments, it follows that (Yt+τx −Yτx )t≥0

is a Lévy process, which is independent of the σ -
algebra generated by (Yt )t≤τx , and it has the samefinite-
dimensional distributions as (Yt )t≥0. Consequently,

P
(
τx ≤ t,Yt < Yτx

) = P
(
τx ≤ t,Yt − Yτx < 0

)
(6.2)

= P (τx ≤ t)P (Y1 < 0)

= P (Y1 < 0)

P (Y1 ≥ 0)
P (τx ≤ t)P (Y1 ≥ 0)

= P (Y1 < 0)

P (Y1 ≥ 0)
P

(
τx ≤ t,Yt ≥ Yτx

)
.

Observe that we have {τx < t} ⊂ {St > x} ⊂ {τx ≤
t} ⊂ {St ≥ x} for all t and x > 0. Therefore,

P(St > x) ≤ P(τx ≤ t) = P(τx ≤ t,Yt ≥ Yτx )

+ P(τx ≤ t,Yt < Yτx )

=
(
1 + P (Y1 < 0)

P (Y1 ≥ 0)

)
P(τx ≤ t,Yt ≥ Yτx )

= 1

P (Y1 ≥ 0)
P(τx ≤ t,Yt ≥ Yτx )

= 1

P (Yt ≥ 0)
P(τx ≤ t,Yt ≥ Yτx ,Yt ≥ 0)

= P(τx ≤ t,Yt ≥ Yτx | Yt ≥ 0).

On the other hand, and with similar arguments,

P(St > x) ≥ P(τx < t) = P(τx < t,Yt ≥ Yτx )

+ P(τx < t,Yt < Yτx )

= P(τx < t,Yt ≥ Yτx | Yt ≥ 0)

≥ P(τx < t,Yt > Yτx | Yt ≥ 0).

Therefore,

P(τx < t,Yt > Yτx | Yt ≥ 0) ≤ P(St > x)

≤ P(τx ≤ t,Yt ≥ Yτx | Yt ≥ 0).

Since Yt has no upward jumps, Yτx = x and {τx <

t} ∩ {Yt > x} = {Yt > x}. Therefore,
P(Yt > x | Yt ≥ 0) ≤ P(St > x)

≤ P(Yt ≥ x | Yt ≥ 0).

We can now use standard approximation techniques:

{X ≥ x} =
⋂
n

{
X > x − 1/n

}

=
⋂
n

{
X ≥ x − 1/n

}

and

{X > x} =
⋃
n

{X > x + 1/n}
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to get

P(Yt ≥ x | Yt ≥ 0) = lim
n→∞P(Yt > x − 1/n | Yt ≥ 0)

≤ lim
n→∞P(St > x − 1/n)

= P(St ≥ x)

and

P(St ≥ x) = lim
n→∞P(St > x − 1/n)

≤ lim
n→∞P(Yt ≥ x − 1/n | Yt ≥ 0)

= P(Yt ≥ x | Yt ≥ 0)

which proves P(St ≥ x) = P(Yt ≥ x | Yt ≥ 0). 	

Remark 6.2 If (Yt )t≥0 is a Brownianmotion, then (6.1)
becomes the classical reflection principle:P(Yt ≥ 0) =
1/2, so that (6.1) is equivalent to P(St ≥ x) =
2P(Yt ≥ x).

The proof of Theorem 6.1 relies essentially on local
symmetry and the strong Markov property. Let Yt
be a strong Markov process with càdlàg paths and
transition function pt (z, dy) = P

z(Yt ∈ dy). Write
τ z
x = inf{u > 0 : Yu − z > x} for the first passage
time above the level x + z for the process Yt started at
z; observe that, in general, Yτ zx

≥ x + z. We can use the
strong Markov property in (6.2) to get for any starting
point z

P
z (

τ z
x ≤ t,Yt < Yτ zx

) = P
z (

τ z
x ≤ t,Yt − Yτ zx

< 0
)

=
∫

{τ zx≤t}
P
Yτ

z
x
(ω)(Yt−τ zx (ω) − Y0 < 0

)
P
z(dω).

If we assume, in addition, some local “symmetry,” i.e.,
that for some constant c ∈ (0,∞) we have

P
z(Yt − z < 0)

Pz(Yt − z ≥ 0)
= c for all t > 0, z ∈ R, (6.3)

then we get PYτ
z
x
(ω)(

Yt−τ zx (ω) − Y0 < 0
) = c P

Yτ
z
x
(ω)(

Yt−τ zx (ω) − Y0 ≥ 0
)
and, with a similar argument,

P
z (

τ z
x ≤ t,Yt < Yτ zx

) = c Pz (
τ z
x ≤ t,Yt ≥ Yτ zx

)
.

This means that we can follow the lines of the proof of
Theorem 6.1 to derive the following general result.

Theorem 6.3 (Markov reflection principle) Suppose
(Yt ,Pz) is a strong Markov process satisfying the local
symmetry condition (6.3). Set St = sup{Yu −Y0 : 0 ≤
u ≤ t}. Then, we have for all t, x > 0 and z ∈ R

P
z(St > x) ≤ P

z(St ≥ x,Yt ≥ Yτ zx
| Yt ≥ z) (6.4)

≤ P
z(Yt − z ≥ x | Yt ≥ z).

If Yt has only non-positive jumps, then Yτ zx
= x + z

a.s., and we get for all t, x > 0 and z ∈ R

P
z(St ≥ x) = P

z(Yt − z ≥ x | Yt ≥ z). (6.5)

Remark 6.4 It is also possible to prove (6.1) using rela-
tion (3.6) in Alili and Chaumont [1].
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