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Abstract In this paper, some comments on the paper
Solteiro Pires et al. (Nonlinear Dyn. 67:893–901, 2010)
are presented. We demonstrate that the authors of the
above paper have deduced the incorrect formula about
the velocity updating strategy of the fractional-order
particle swarm optimization algorithm. This paper
deduces the modified updating formula, and verified
experiments are also conducted.
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In Ref. [1], the authors have proposed an improved
version of particle swarm optimization (PSO) using
fractional-order calculus concepts, in which fractional
calculus is used to control its convergence. During the
past several years, the fractional-order PSO algorithm
has attracted the attention of several researchers [2–4],
and many new researches on PSO model improvement
have also conducted [5–7].

One error occurred in their designed fractional-order
PSO model, which is described in the following section.

As for the original PSO algorithm, the particle move-
ment is characterized by two vectors, namely the cur-
rent position x and the velocity v. At time t , each par-
ticle updates its velocity by the following equation:
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vt+1 − vt = φ1(b − x) + φ2(g − x), (1)

where b denotes the best position found by the particle
so far, and g denotes the global best position achieved
by the whole swarm so far. φ1 and φ2 are the randomly
uniformly generated terms. For simplicity, symbols and
notation are employed with the same meanings as those
in Ref. [1]. From the classical integer-order area, the
fractional-order PSO algorithm extends the velocity
derivative to the fractional-order area, yielding

Dα[vt+1] = φ1(b − x) + φ2(g − x). (2)

Thus, Pires et al. [1] derive the new velocity updating
strategy as shown below:

vt+1 − αvt − 1

2
αvt−1 − 1

6
α(1 − α)vt−2

− 1

24
α(1 − α)(2 − α)vt−3

= φ1(b − x) + φ2(g − x). (3)

According to Ref. [1], (1) is the special case of (3) when
α = 1. However, it can be observed that (1) cannot be
deduced from (3). Therefore, the key formula of the
fractional-order PSO algorithm in Ref. [1] is wrong.

To correct the formula, we substitute the following
discrete time implementation expression of fractional
differential into (2) again.

Dα[x(t)] = 1

T α

r∑

k=0

(−1)k�(α + 1)x(t − kT )

�(k + 1)�(α − k + 1)
, (4)

where T is the sampling period and r is the truncation
order. r = 4 is used in this paper, which is in agreement
with Ref. [1].
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Fig. 1 Evolution of the Bohachevsky 1 function using the FPSOs
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Fig. 2 Evolution of the Colville function using the FPSOs

Hence, the fractional-order behavior of PSO can be
written as

vt+1−αvt − 1

2
α(1−α)vt−1 − 1

6
α(1 − α)(2 − α)vt−2

− 1

24
α(1 − α)(2 − α)(3 − α)vt−3

= φ1(b − x) + φ2(g − x) (5)

That is

vt+1 =αvt + 1

2
α(1 − α)vt−1+ 1

6
α(1 − α)(2 − α)vt−2

+ 1

24
α(1 − α)(2 − α)(3 − α)vt−3

+φ1(b − x) + φ2(g − x) (6)

In the following sections, we revalidate the perfor-
mance of the fractional-order PSO algorithm using (6),
and the results are compared with those obtained by
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Fig. 3 Evolution of the Drop wave function using the FPSOs
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Fig. 4 Evolution of the Easom function using the FPSOs

Pires et al. in Ref. [1]. To indicate the difference, we
denote the PSO algorithm described in this comment
as FPSO-2, while the algorithm presented in Ref. [1] is
denoted by FPSO-1. The test functions adopted herein
are the five well-known functions namely Bohachevsky
1, Colville, Drop wave, Easom, and Rastrigin, which
are the same expressions as presented in Ref. [1].
Parameters of the FPSO algorithms are also in agree-
ment with Ref. [1] as well, which are set as follows:
the population size is 10, the maximum number of iter-
ation is 200, and φ1 and φ2 are randomly uniformly
generated in [0, 1]. Moreover, the value of α reduces
according to α(t) = 0.9−0.6t/200, t = 0, 1, . . ., 200.
For the purpose of reducing statistical errors, each algo-
rithm is tested 201 times independently for every func-
tion and the median results are used in the comparison.
Figures 1, 2, 3, 4 and 5 demonstrate the iteration evo-
lutionary progresses. The correct results for the PSO

123



Comments on “Particle swarm optimization” 429

0 20 40 60 80 100 120 140 160 180 200
50

100

150

200

250

300

350

400

450
f 5 (

t)

FPSO-1
FPSO-2

Fig. 5 Evolution of the Rastrigin function using the FPSOs

with fractional-order velocity are indicated by black
solid lines.

Moreover, the global minimum value of the Droop
wave function is f ∗(x) = −1.0, rather than f ∗(x) =
0.0 given by Ref. [1].
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