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Abstract We investigate the complex bifurcation
scenarios occurring in the dynamic response of a
piecewise-linear impact oscillator with drift, which is
able to describe qualitatively the behaviour of impact
drilling systems. This system has been extensively
studied by numerical and analytical methods in the
past, but its intricate bifurcation structure has largely
remained unknown. For the bifurcation analysis, we
use the computational package TC-HAT, a toolbox
of AUTO 97 for numerical continuation and bifurca-
tion detection of periodic orbits of non-smooth dynam-
ical systems (Thota and Dankowicz, SIAM J Appl
Dyn Syst 7(4):1283–322, 2008) The study reveals
the presence of co-dimension-1 and -2 bifurcations,
including fold, period-doubling, grazing, flip-grazing,
fold-grazing and double grazing bifurcations of limit
cycles, as well as hysteretic effects and chaotic behav-
iour. Special attention is given to the study of the
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rate of drift, and how it is affected by the control
parameters.
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1 Introduction

Various drifting oscillator models [2–6] have been
extensively studied in the past due to their effective-
ness for predicting overall dynamics and progressive
motion in engineering applications, such as percussive
drilling and vibro-impact moling [7]. In these stud-
ies, the impacted media was represented by so-called
sliders, which modelled the contact force acting on
the drill-bit during the interactions, and the Kelvin–
Voigt model was frequently used to represent the con-
tact force generated during the impact. To facilitate
the comprehensive analysis of the drifting system [3],
in the previous work the drift was separated from the
bounded dynamics in [8], and a five-dimensional flow
was reduced to a two-dimensional map [9] first and later
to an approximate one-dimensional iterative map [10].
Finding the optimum characteristics of the applied sta-
tic and dynamics forces for maximising the progression
rates was an important focus of these investigations,
and the special attention was paid to period-1 motion
[11]. These models were developed further in [12,13]
to take into account the influence of contact geome-
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tries and the governing force–displacement relation-
ship during all stages of the interactions. In [12], the
influence of different force contact models on the global
and local dynamics has been investigated for three dif-
ferent models of the contact force: Kelvin–Voigt, Hertz
stiffness and nonlinear stiffness and damping, while in
[13], a power-law relationship between the force and
penetration was assumed, with a power-law exponent
which depends on the impactor geometry (conical or
spherical) and on the contact phase (loading or unload-
ing). The conducted analysis revealed that despite the
obtained differences given by all these models, the
drifting oscillator [3] with a simple linear visco-elastic
slider based on the Kelvin–Voigt model provides a good
approximation to study and predict the behaviour of the
real systems in the appropriate parameters’ ranges.

To support the development of mathematical mod-
els capable of describing the main phenomena occur-
ring during impact drilling, a number of experimental
studies were also conducted. Wiercigroch et al. [14]
presented extensive studies of ultrasonic percussive
drilling with diamond-coated tools in laboratory condi-
tions on rocks such as sandstone, limestone, granite and
basalt. Franca [15] carried out a series of experiments
on an in-house designed rotary-percussive drilling rig
and proposed a phenomenological bit-rock interaction
model for rotary-percussive drilling aiming to obtain
quantitative information from drilling data related to
rock properties, bit conditions and drilling efficiency.
More recently, Franca and Weber [16] conducted exper-
imental and numerical studies of a new resonance ham-
mer drilling model with drift and showed that the
behaviour of the system may vary significantly from
simple periodic regimes to chaos. In all these cases,
simple drifting oscillators were useful in describing
certain phenomena observed in the experiments.

Inspired by the impact-induced effects occurring in
percussive drilling, an extensive research programme
has been conducted at the Centre for Applied Dynam-
ics Research of Aberdeen University in the last few
years to develop a novel drilling technology known as
Resonance Enhanced Drilling (RED) [17]. The main
idea behind this technology is to apply an adjustable
high-frequency dynamic stress (generated by an axi-
ally vibrating tool through intermittent impacts), in
combination with rotary action in order to enhance
the penetration rates by creating resonance conditions
between the drill-bit and the drilled formation. This
resonance needs to be maintained for varying drilling

conditions by adjusting the static force (weight on
bit) together with the frequency and amplitude of the
dynamic stress, so as to produce a steadily propagat-
ing fracture zone, which is particularly beneficial while
drilling hard rocks. A recent investigation [18] shows
that the drifting oscillator model [3] is capable of giv-
ing good estimates of the optimal values of the static
force and the amplitude of the dynamic stress, which
can be used for the operational control of RED-based
systems while drilling through different rock forma-
tions. However, the complete picture of the dynamics
of the drifting oscillator [3] under parameter variations
is still to be developed, and the present paper aims pre-
cisely to fill this gap in order to assist the optimization
of the next-generation drilling operations.

From the mathematical point of view, the drifting
oscillator [3] belongs to the class of piecewise-smooth
systems, and the presence of nonlinearities of two dif-
ferent types: dry friction and soft impact (see also
[19]), makes its dynamics especially interesting. As
is well known, the fundamental bifurcations occurring
in this type of systems are still a subject of ongo-
ing research, and a growing literature has concerned
itself with the classification and local description of
the dynamics in the vicinity of limit cycles interacting
with discontinuity boundaries in a degenerate manner
[20–22]. Practical examples where these phenomena
are observed can be found e.g. in [23] and [24], which
focus on the mathematical modelling of cam-follower
devices and the dynamics of gear rattling, respectively.
The present paper aims also to contribute in this area.
For this purpose, we will conduct a detailed bifurca-
tion analysis of the periodic response of the drifting
system [3] using path-following (numerical continu-
ation) techniques. Here, our interest in the periodic
motion is motivated by its practical implications on the
system performance (e.g. penetration rates) [25]. As
most of the mathematical models of drifting oscillators
are piecewise-smooth, the numerical continuation of
their periodic solutions requires the assembly of mul-
tiple boundary-value problems, resulting in a continu-
ation problem of large dimension, whose implementa-
tion requires involved programming and mathematical
manipulation. These complications can be overcome
by means of a suitable software application such as
TC-HAT [1], a driver of AUTO 97 for path-following
and bifurcation detection of periodic solutions of non-
smooth dynamical systems. Therefore, we will make
intensive use of this toolbox in order to unveil the intri-
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Bifurcation analysis of a piecewise-linear impact oscillator with drift 215

cate bifurcation structure of the drifting oscillator con-
sidered in this paper.

The organization of the paper is as follows. In the
next section, we explain the physical model of the
drifting oscillator and present its equations of motion
describing the different modes of operation in a com-
pact manner. In Sect. 3, the mathematical description
of the system is appropriately adopted in order to carry
out the numerical analysis of the system by means of
TC-HAT. The outcome of this analysis is presented in
Sect. 4. First, we carry out an extensive study of the
system response under one-parameter variations, thus,
obtaining precise values of several co-dimension-1
bifurcations. Then, this information is used to conduct a
two-parameter study of the system response, for which
we use TC-HAT to trace the co-dimension-1 bifurca-
tions previously found, which allows us to detect sev-
eral bifurcations of co-dimension 2. Finally, we present
some conclusions and closing remarks concerning our
study.

2 Physical model

Consider a drifting impact oscillator modelled as an
oscillating mass m (impactor) driven by an external
force f (t), as shown in Fig. 1, where three physical
models with increasing complexity are shown in panels
a–c. All these models have been developed and exten-
sively studied at the University of Aberdeen (Krivtsov
and Wiercigroch [2], Pavlovskaia et al. [3] and Aji-
bose et al. [12]). The interactions between the impactor
and the impacted media are represented by a frictional,

visco-elastic slider with negligible mass. The slider
moves downwards in stick-slip phases, where the pro-
gression takes place when the force acting on the mass
from the slider exceeds the threshold force fr = 1. The
variables x , z and v stand for the positions of the mass,
slider top and slider bottom, respectively. We assume
that the gravity loads are included in the static term b
of the driving force f (t). During operation, the differ-
ence (z + g) − x is monitored in order to detect an
impact between the slider top and the impactor. The
system can operate under one of three modes at any
time: No contact, Contact without progression or Con-
tact with progression. We refer the reader to [3,7,8]
for a detailed description of these modes. The nondi-
mensionalised equations of motion of the system can
be written in compact form as follows:

p′ = y − P1 P3

(
y + 1

2ξ
(q − 1)

)
,

y′ = a cos(ωt + ϕ0) + b − P1 P2(1 − P3)(2ξ y + q)

− P1 P3,

q ′ = − 1

2ξ
q + P1 P2(1 − P3)

(
y + 1

2ξ
q

)
+ P1 P3

2ξ
,

(1)

v′ = P1 P3

(
y + 1

2ξ
(q − 1)

)
,

with P1:=H(p − q − g), P2:=H(2ξ y + q) and
P3:=H(2ξ y +q −1), where H(·) stands for the Heav-
iside step function. In (1), the linear transformation

p = x − v, q = z − v,

m=1

x

g|

m=1

c=2k=1

z

x

g|

slider

m=1

c=2k=1

z

x

g|

slider

fr fr fr

f=b+a +cos( )0f=b+a +cos( )0

f=b+a +cos( )0

(a) (b) (c)

Fig. 1 Physical models of drifting impact oscillators: a without elasticity of the slider as introduced in [2]; b with linear visco elastic
characteristics of the slider as proposed in [3]; and c with nonlinear visco-elastic properties of the slider as studied in [12]
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has been introduced. The new variables p and q repre-
sent the displacements of the mass and the slider top,
respectively, relative to the position of the slider bottom
v. This linear change of coordinates allows to decou-
ple the oscillatory motion of the system captured by the
variables (p, y, q) from the drift v, see [8].

3 Mathematical modelling with TC-HAT

The mathematical model of the piecewise-linear sys-
tem (1) can be formulated as a hybrid dynamical system
[1], which is characterized by continuous-time behav-
iour interrupted by discrete-time events. In this context,
a solution trajectory is divided into a sequence of seg-
ments, each of which comprises a smooth vector field
describing the evolution of the segment, a smooth event
function whose zeroes define the terminal point of the
segment and a smooth jump function which maps the
terminal point of the current segment to the initial point
of the next one. Each segment is associated with an
index Ii , i ∈ N, in such a way that any periodic trajec-
tory of the hybrid dynamical system is fully described
by its solution signature {Ii }l

i=1, l ∈ N being the length
of the signature.

This mathematical formulation allows us to study
numerically the bifurcation structure of a hybrid
dynamical system by means of TC-HAT [1]. This is
a FORTRAN-based toolbox for the numerical contin-
uation and bifurcation detection of periodic orbits of
non-smooth dynamical systems. It exploits the pseudo-
arclength numerical continuation applied to boundary-
value problems implemented in AUTO 97. Specifi-
cally, TC-HAT uses this boundary-value problem for-
mulation for the one-parameter continuation of peri-
odic trajectories composed of multiple segments and
two-parameter continuation of fold, period-doubling
and grazing bifurcations of such trajectories. A detailed
explanation of the functionality and usage of this tool-
box is available in [1,26]. A recent application of TC-
HAT can be found in [27], where the authors use this
path-following software to unveil the bifurcation struc-
ture of a non-smooth model of a Jeffcott rotor.

3.1 Basic framework

Let us introduce the vector fields, event functions and
jump functions characterizing the periodic trajectories

of the drifting oscillator (1). Let α:=(b, ω, a, ξ, g, ϕ0)

∈ R+
0 × (

R+)4 × S
1 be the parameters of the system,

with R+
0 being the set of nonnegative numbers. Denote

by u:=(p, y, q, s)T ∈ Wg×S
1 the state variables of the

system, with the invariant set Wg:=
{
(p, y, q) ∈ R3 :

0 ≤ q ≤ 1 and p ≤ q + g}.
The periodic trajectories described by Eq. (1) will

consist of the following segments:

No contact (NC). This segment occurs when the
impactor (m) and the slider top move separately (see
Fig. 1b), i.e. p − q − g < 0. The dynamics of the sys-
tem during this regime is governed by the equation (cf.
Eq. (1))

u′ = fNC(u, α):=

⎛
⎜⎜⎜⎜⎝

y
a cos(s + ϕ0) + b

− 1

2ξ
q

ω

⎞
⎟⎟⎟⎟⎠ . (2)

This segment terminates when a crossing with the dis-
continuity boundary

�:=
{
(p, y, q) ∈ R3 : hC(u, α):=p − q − g = 0

}
(3)

is detected. The initial point of the next segment is given
by the jump function gid(u):=u.

No contact 2π(NC-2π). This segment is intro-
duced to keep the angular variable s within the interval
[0, 2π). The dynamics of the system is governed by Eq.
(2), and the segment terminates when h2π (u, α) := s
− 2π = 0, with the corresponding jump function

g2π (u) =

⎛
⎜⎜⎝

p
y
q

s − 2π

⎞
⎟⎟⎠ .

The initial phase ϕ0 will be chosen in such a way that
the event h2π (u, α) = 0 occurs during this segment
only.

Contact without progression 1 (CwoP-1). In this seg-
ment, the impactor is in contact with the slider top (i.e.
p − q − g = 0), and consequently they move together.
The behaviour of the system is described by the equa-
tion (cf. Eq. (1))

123
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u′ = fCwoP(u, α)

:=

⎛
⎜⎜⎝

y
a cos(s + ϕ0) + b − (2ξ y + q)

y
ω

⎞
⎟⎟⎠ . (4)

This segment is characterized by the fact that the force
acting on the mass from the slider is positive but less
than the threshold of the dry friction fr = 1 (i.e.
0 < 2ξ y + q < 1); hence, no progression occurs. The
terminal point of the segment corresponds to a crossing
with the discontinuity boundary

�1 := {(p, y, q) ∈ R3 : hCwoP−1(u, α)

:= 2ξ y + q − 1 = 0, p − q − g = 0} (5)

with the jump function gid previously defined.
Contact without progression 2 (CwoP-2). This seg-

ment is the same as the one introduced above, except for
its terminal point, which is defined by the discontinuity
boundary

�2:={(p, y, q) ∈ R3 : hCwoP−2(u, α):=2ξ y + q = 0,

p − q − g = 0}. (6)

Contact with progression (CwP). This segment
occurs when the force acting on the mass from the slider
is large enough to move the slider bottom downwards,
i.e. 2ξ y + q ≥ 1, and p − q − g = 0. The dynamics of
the drifting oscillator during this phase is governed by
the following system of ODEs:

u′ = fCwP(u, α):=

⎛
⎜⎜⎜⎜⎜⎝

− 1

2ξ
(q − 1)

a cos(s + ϕ0) + b − 1

− 1

2ξ
(q − 1)

ω

⎞
⎟⎟⎟⎟⎟⎠

. (7)

The segment ends when the trajectory hits the discon-
tinuity boundary �1, with the initial point for the next
segment given by the jump function gid defined above.

Near grazing (NG). This segment is introduced to
detect a grazing contact with the event surfaces �1 or �2,
during the Contact without progression mode of opera-
tion. The dynamics during this segment is described by
the vector field fCwoP, and the terminal point is defined
by the condition (cf. [1, Sect. 3.2])

Table 1 Segments defined for the numerical analysis using TC-
HAT.

Index Segment Vector
field

Event
function

Jump
function

I1 No contact fNC hC gid
I2 Contact without

progression 1
fCwoP hCwoP−1 gid

I3 Contact with
progression

fCwP hCwoP−1 gid

I4 Contact without
progression 2

fCwoP hCwoP−2 gid

I5 No contact 2π fNC h2π g2π

I6 Near grazing fCwoP hNG gid

hNG(u, α) := ∂uhCwoP−1(u, α) · fCwoP(u, α)

= ∂uhCwoP−2(u, α) · fCwoP(u, α)

= y(1 − 4ξ2) + 2ξ(a cos(s + ϕ0)

+b − q) = 0,

with the jump function gid previously defined. Adding
the auxiliary boundary conditions hCwoP−1(u, α) = 0,
hCwoP−2(u, α) = 0, allows to locate the parameter val-
ues at which the trajectory makes grazing contact with
the event surfaces �1 and �2, respectively.

The segments defined above along with the corre-
sponding vector fields, event functions and jump func-
tions are summarized in Table 1. Here, we also assigned
an index to each segment. In Fig. 2, we present a period-
1 trajectory of the drifting oscillator illustrating some
of the segments introduced in this section. Finally, the
equations of motion of the system can be written in
terms of the vector fields defined above as follows:

u′

=

⎧⎪⎨
⎪⎩

fNC(u, α), p < q + g or 2ξ y + q ≤ 0,

fCwoP(u, α), p = q + g and 0 < 2ξ y + q < 1,

fCwP(u, α), p = q + g and 2ξ y + q ≥ 1.

(8)

3.2 Solution measures

In order to construct a bifurcation diagram of a cer-
tain invariant set, a measure of the invariant set is usu-
ally plotted against a single control parameter. In many
path-following packages (e.g. AUTO 97 [28]), the L2-
norm is set by default as the principal solution measure.
In the present work, however, we will use solution mea-
sures related to physical phenomena occurring in the
system. In the case that a periodic trajectory is stud-
ied for which progression takes place (i.e. those whose
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Fig. 2 Period-1 orbit of the drifting oscillator computed for a =
0.3, ω = 0.1, ξ = 0.05, b = 0.15, g = 0.02 and ϕ0 = 0. The
trajectory is plotted using different colours to distinguish each
segment I1–I5. The figure also includes a number of subspaces
that are used to study the system dynamics by means of low-
dimensional maps, as published in a previous work [10]. For
the current numerical implementation, we will make use of the
discontinuity boundaries � = X2

⋃
X3, �1 = 
2

⋃

3 and

�2 = 
4, as defined in (3), (5) and (6)

solution signature includes the index I3), we will use
the average rate of progression (drift) per period (rate
of progression, for short) as solution measure, which
is computed as follows. Consider a periodic solution
(p(t), y(t), q(t)) of Eq. (8) with period T > 0. We,
thus, define the rate of drift

RO P:= 1

T

T∫
0

v′(t) dt, (9)

where

v′(t) =

⎧⎪⎪⎨
⎪⎪⎩

y(t) + 1

2ξ
(q(t) − 1), p(t) = q(t) + g and

2ξ y(t) + q(t) ≥ 1,

0, otherwise.

Thus, the solution measure defined by (9) gives us the
average velocity of the slider bottom during one period
of oscillation.

In our analysis, we will also deal with periodic tra-
jectories where no progression is observed, i.e. their
solution signature does not contain the index I3. In this
case, the ROP is not a suitable measure, as the progres-

sion per period is always zero. For this type of motion
we will use the average power dissipated by the damper
c (see Fig. 1b) per period as solution measure, which
can be calculated as follows:

Pc:= 1

T

T∫
0

w′(t) dt, (10)

with

w′(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2ξ
q(t)2, p(t) < q(t) + g or

2ξ y(t) + q(t) ≤ 0,

2ξ y(t)2, p(t) = q(t) + g and

0 < 2ξ y(t) + q(t) < 1,
1

2ξ
(q(t) − 1)2, p(t) = q(t) + g and

2ξ y(t) + q(t) ≥ 1.

Here, w′(t) gives us the instantaneous rate at which the
damper c dissipates energy along the periodic motion
(p(t), y(t), q(t)). With this mathematical formulation
we are now ready to show the main results of the present
work.

4 Bifurcation analysis of the drifting oscillator

In [3], the authors discovered that, within a certain
interval of the static force b with the remaining para-
meters fixed, the rate of progression achieves a local
maximum for period-1 motion. Thus, in the present
work we will study this type of periodic response of
the system in detail. In Fig. 2 we show the initial
period-1 trajectory that will be analysed by means
of path-following techniques. In the next section, we
will begin our analysis with a detailed one-parameter
study of the drifting oscillator in order to understand
the effect of the control parameters on its response
and also to determine their optimal values yielding
the highest rate of progression. In this analysis, sev-
eral co-dimension-1 bifurcations will be detected and
then continued in two control parameters in Sect. 4.2,
thus, yielding a two-parameter bifurcation diagram
where co-dimension-2 phenomena will be observed
and discussed.
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Fig. 3 One-parameter continuation of the periodic orbit shown
in Fig. 2 with respect to the static force. The solid and dashed
lines mark stable and unstable solutions, respectively. In what
follows, this convention is used to denote stability. The green,
red and black curves correspond to the cases a = 0.28, a = 0.3
and a = 0.32, respectively. Bifurcations and points of maximal
ROP are marked by X’s and dots, respectively. (Color figure
online)

4.1 One-parameter analysis

One of the main concerns from a practical point of
view is to maximise the rate of progression (ROP), for
which a careful analysis of the system response under
parameter variations is essential. To this end, we will
first perform the numerical continuation of the periodic
orbit shown in Fig. 2 with respect to the static force b,
using the rate of progression as solution measure. The
result is depicted in Fig. 3 (red curve). Here, we show
how the ROP varies with the static force. In this way,
we found that for b ≈ 0.1638 the ROP achieves a max-
imum value ≈ 0.5387. This optimal point lies within
the interval of stability of the period-1 motion, which
is bounded by period-doubling and fold bifurcations
located at b ≈ 0.11 and b ≈ 0.1671, respectively. For
parameter values below the period-doubling point, the
period-1 trajectory is unstable and undergoes a grazing
bifurcation at b ≈ 0.0277 (grazing with the discon-
tinuity boundary �1), where the ROP becomes zero.
In Fig. 3, we also depict continuation curves for the
cases a = 0.28 (green) and a = 0.32 (black). As can
be seen, the bifurcation scenario just described persists
under perturbations in the amplitude a.

In order to study the period-1 orbits for values of
static force below the grazing bifurcation, we will use
the average dissipated power as solution measure [see
(10)], as these orbits never operate under the Contact
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Fig. 4 a Continuation of the period-1 orbit shown in Fig. 2 with
respect to b; b unstable period-1 orbits of (8) for values of static
force between the grazing bifurcations shown in a, with b1 =
0.0277, b2 = 0.0192, b3 = 0.0119, b4 = 0.0048 and b5 = 0

with progression mode; hence, the ROP is always zero.
In Fig. 4a we show the continuation of the period-1
solution for values of b both above and below the graz-
ing bifurcation found previously. The performed con-
tinuation reveals a second grazing bifurcation at b = 0
(grazing with the discontinuity boundary �). Figure 4b
shows different unstable period-1 orbits for values of
static force between and including the grazing points.

Now let us investigate the steady-state attractors of
the drifting oscillator for values of static force below the
period-doubling bifurcation found before, where the
period-1 motion is unstable. For this purpose, we will
construct a bifurcation diagram computed by means of
direct numerical integration. We set initially b = 0.12
where a stable period-1 trajectory exists (see Fig. 3).
Then we choose suitable initial values (which can be
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Fig. 5 a Bifurcation diagram of the piecewise-linear system
(8) for the parameter values a = 0.3, ω = 0.1, ξ = 0.05,
g = 0.02 and ϕ0 = 0. The picture shows the periodic win-
dow (εn, ρn) belonging to a reverse period-adding cascade. b–d

show a sequence of fingered strange attractors computed along
the period-adding cascade, computed for the static force values
b1, b2, b3 shown in a

obtained from the continuation results described above)
and integrate (8) over 500 periods of external forcing
to allow for the decay of transients. Next we continue
the flow for another interval of 100 periods and plot
samples of the solution at the times t = 2iπ

ω
, i =

1, 2, . . . , 100. Subsequently, b is decreased by a small
amount and the same procedure is repeated, where now
the final sample of the previous step is used as initial
value. This is done, until the grazing point b = 0 is
reached. This procedure allows us to visualize the qual-
itative changes in the ω-limit sets of the iterations of a
Poincaré map under parameter perturbation, which in
turn provides relevant information about the changes
in the long-time dynamics of the drifting oscillator.
The outcome of this numerical procedure is shown
in Fig. 5. The bifurcation diagram (panel a) shows a
large interval of period-1 motion 0.11 ≤ b ≤ 0.1671,

which corresponds to the solid segment of the curve
bounded by the period-doubling and fold bifurcations
shown in Fig. 4a. For parameter values slightly greater
than the fold point, the motion becomes chaotic. In
the parameter range, 0 ≤ b ≤ 0.1671, the bifurca-
tion diagram reveals the presence of a reverse period-
adding cascade with bands of chaos appearing between
periodic intervals. This cascade consists of a sequence
of parameter windows (εn, ρn) where stable period-n
orbits exist, n = 1, 2, . . ., with one impact with the
plane p − q = g per orbital period. This type of
orbit is called a maximal periodic orbit, cf. [29–31].
The period of these orbits increases in an arithmetic
sequence as b is decreased, in such a way that each
period increment is due to the appearance of an addi-
tional excursion of the periodic orbit through the No
contact regime. According to the numerical observa-
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Fig. 6 Bifurcation diagram
of the drifting oscillator
with respect to a. The red
curve represents the
continuation of the period-1
motion shown in Fig. 2,
while the diagram in blue
corresponds to the
bifurcation picture
generated via direct
numerical integration. The
diagrams were computed
for the parameter values
b = 0.15, ω = 0.1,
ξ = 0.05, g = 0.02 and
ϕ0 = 0. (Color figure
online)
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tions, the periodic windows seem to accumulate on the
grazing bifurcation b = 0, with the period going to
infinity and the width of the windows decreasing to
zero as b → 0+.

It can also be observed that the transitions between
adjacent periodic windows involve further bifurcations
and chaotic behaviour. Let us explain this in more
detail. Assume b ∈ (εn, ρn) for some fixed n ≥ 1. For
this parameter value a stable period-n orbit exists, and
it disappears when b is increased beyond b = ρn via
a fold bifurcation. Moreover, the period-n orbit looses
stability at b = εn , where a period-doubling cascade
is born, thus leading to chaos, which is manifested
as a strange attractor with a fingered structure, see
Fig. 5b–d. The number of fingers of this attractor
increases in an arithmetic sequence, as the static force
is decreased, following the increment of the period
of the orbits in the window (εn, ρn). The phenomena
described above have been shown to be universal in
the sense that, qualitatively, this system response has
been observed in a wide variety of impact oscillators
for near-grazing conditions [29,30,32].

Now let us study the behaviour of the system when
the parameter a is varied. As in the previous case,
we will perform the one-parameter continuation of the
initial periodic orbit shown in Fig. 2, using the ROP
as solution measure. Furthermore, the same procedure
described before will be employed to generate a bifur-
cation diagram based on direct numerical integration,
this time taking a as the varying parameter. The result is

shown in Fig. 6. As can be seen, the initial period-1 orbit
(a = 0.3) disappears via a fold bifurcation a ≈ 0.2717,
at which value there is a sudden jump to impacting
chaotic behaviour. On the other hand, if the value of a is
increased, the periodic orbit looses stability at a period-
doubling bifurcation a ≈ 0.4576, where a period-
doubling cascade leading to chaos is born, as shown
in the blue diagram of Fig. 6. The unstable period-
1 motion regains stability at a reverse supercritical
period-doubling bifurcation located at a ≈ 1.7845. For
0.6498 < a < 0.6723, a significant window of period-
2 motion exists, culminating in a period-doubling cas-
cade. After this cascade, a long interval of chaotic
behaviour interrupted by small periodic windows is
observed. The co-dimension-1 bifurcations described
above are confirmed by the red curve shown in Fig. 6
computed via numerical continuation.

To finish this section, we will analyse the effect of
the frequency of the driving force. As in the previous
cases, we begin the study with the numerical contin-
uation of the period-1 solution shown in Fig. 2, this
time with respect to ω. In Fig. 7 we depict the resulting
bifurcation diagram using the rate of progression (panel
a) and the average dissipated power (panel b) as solu-
tion measures. By decreasing the frequency from the
starting point ω = 0.1, we found a fold bifurcation at
ω ≈ 0.0622, where a pair of stable and unstable period-
1 orbits collide and then disappear for lower frequency
values. Close to this fold point, the ROP achieves a
maximum value ≈ 0.7614 at ω ≈ 0.0628. If the fre-
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Fig. 7 One-parameter continuation of the periodic orbit shown
in Fig. 2 with respect to the excitation frequency ω. a Behaviour
of the rate of progression as ω is varied. The point of maximal
ROP is marked by a dot. b Average power dissipated by the
damper c (see Fig. 1b). The labels ω1–ω5 define the frequency
values at which the corresponding periodic solutions are plotted
in Fig. 8

quency is now increased, the orbit looses stability at a
period-doubling point ω ≈ 0.2697 and then undergoes
a grazing bifurcation at ω ≈ 0.5088 (grazing with the
discontinuity boundary �1), where the ROP becomes
zero. In Fig. 7b we show further bifurcations of the
period-1 orbit for ω values greater than the grazing
point found before. As can be seen in the picture, the
period-1 orbit recovers stability via a reverse super-
critical period-doubling bifurcation at ω ≈ 1.6257,
and then another grazing bifurcation takes place at
ω ≈ 1.7385 (grazing with the discontinuity boundary
�2). After this point, the period-1 solution remains on
the plane p − q = g, centred at the point (b + g, 0, b),
with decreasing amplitude as ω grows. This behaviour
can be observed in the phase diagram shown in Fig. 8
for different values of ω.
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Fig. 8 Period-1 orbits of the drifting oscillator for the frequency
values ω1 = 0.5088, ω2 = 0.6741, ω3 = 0.9544, ω4 = 1.7385
and ω5 = 3.1043 (see Fig. 7b). The orbits computed at ω4 and
ω5 are stable while the rest are unstable

In the parameter window limited by the period-
doubling bifurcations found before, the long-time
dynamics of the drifting oscillator is remarkably com-
plex. This fact can be observed from the bifurcation dia-
gram plotted in Fig. 9. From the starting point ω = 0.2,
we observe a period-1 attractor that bifurcates at the
period-doubling point, ω ≈ 0.2697, found earlier.
Here, a typical period-doubling cascade is born, fol-
lowed by small windows of chaotic behaviour and fur-
ther cascades. For frequency values between 0.4212
and 0.5499, we find a larger band of chaotic response
interrupted by small periodic windows, and after that
a significant interval of period-2 motion is observed,
which bifurcates at ω ≈ 0.6341, giving rise to a
period-doubling cascade leading to chaos. For ω ∈
I1:=[0.9163, 0.9672], Fig. 9 reveals parameter hys-
teresis in the system, produced by the co-existence of a
band of intermittent chaotic motion and periodic attrac-
tors. A bigger interval of hysteresis can observed for
ω ∈ I2:=[1.5096, 1.9026], where different stable peri-
odic motions co-exist.

In this section we have carried out a careful numeri-
cal study of the system dynamics changing one parame-
ter at the time, and considering a, b and ω as the main
control variables, i.e. the parameters governing the
external forcing of the drifting oscillator. This analy-
sis is fundamental for gaining a deeper insight into the
role played by each of the control parameters, in par-
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Fig. 9 Bifurcation diagram computed for the parameter values
b = 0.15, a = 0.3, ξ = 0.05, g = 0.02 and ϕ0 = 0. The red
and blue colours mark the frequency sweeps in the increasing
and decreasing directions, respectively. The intervals I1, I2 rep-

resent the frequency windows at which hysteretic effects can be
observed. The red diagram is depicted at these windows only,
where different attractors co-exist. (Color figure online)

ticular, how they affect the rate of progression during
period-1 motion. Specifically, Figs. 3, 6 and 7 show
the behaviour of the ROP, as the control parameters are
adjusted.

Let us discuss these remarks in more detail. As can
be seen in Fig. 3, the stable period-1 motion survives
within an interval bounded by a period-doubling and a
fold point, which reveals the crucial role of the static
force in the operation of the system. Between these two
bifurcations, we find a point where the ROP achieves
a maximum value, which is the optimal operation con-
dition from a practical point of view. Moreover, Fig.
7a reveals that, qualitatively speaking, the influence
of the frequency of external excitation on the system
operation and that of the static force are analogous.
On the other hand, the variation of the amplitude a
affects the system response in a slightly different way,
as can be observed in Fig. 6. The stability of the period-
1 motion depends again on this parameter, but in this
case the highest ROP within the interval of stability
bounded by the fold and period-doubling bifurcations
is found at its end. Thus, one might be tempted to
set the amplitude as close as possible to the period-
doubling bifurcation; however, in practical terms the
aim could be compromised, as the period-1 motion
may lose stability under small perturbations. All of
these aspects must be taken into account for a suit-
able adjustment of the control parameters to achieve the
best ROP.

4.2 Two-parameter analysis

In the previous section, a detailed one-parameter analy-
sis of the dynamical response of the piecewise-linear
system (8) was undertaken. Generically, one expects
co-dimension-1 bifurcations to occur, i.e. qualitative
changes in the system behaviour produced by the vari-
ation of a single parameter. In our particular case, the
following co-dimension-1 bifurcations of limit cycles
were found: fold, period-doubling and grazing. As has
been extensively explored over the past decades, these
bifurcations can be traced in a two-parameter space,
giving rise to bifurcation curves that often intersect at
isolated co-dimension-2 points. The presence of such
points deeply influences the qualitative behaviour of the
system, as they play the role of organizing centres for
the nearby dynamics, giving rise to intricate bifurcation
scenarios. In this section, our focus will be on searching
for co-dimension-2 bifurcations, where a smooth and
a discontinuity-induced bifurcation (DIB, [31]) occur
together, i.e. when an orbit undergoing grazing contact
with a discontinuity boundary can be characterized by
a nontrivial Floquet multiplier on the unit circle.

In what follows, we will leave the value of the sta-
tic force fixed at b = 0.15 and consider ω and a as
the bifurcation parameters. This is motivated by the
fact that in practical applications the static force is kept
constant, whereas ω and a are usually varied. In other
words, we will focus on studying the effect of the har-
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Fig. 10 a Two-parameter
continuation computed for
b = 0.15, ξ = 0.05,
g = 0.02 and ϕ0 = 0,
showing the bifurcation
curves: fold (blue),
period-doubling (red),
grazing with the
discontinuity boundary �1
(black) and grazing with �2
(green). Co-dimension-2
bifurcations are denoted by
cod-2. The dotted vertical
and horizontal lines
correspond to the
one-parameter bifurcation
diagrams shown in Figs. 6
and 7b, respectively. The
grey area represents the
parameter region in which
stable period-1 orbits of the
type shown in Fig. 2 exist. b,
c show enlargements of the
bifurcation diagram around
cod-2 points. In addition to
the period-doubling (red)
and grazing (black) curves,
we computed a curve
(brown) of grazing
bifurcations of period-2
orbits that emanates from
the co-dimension-2 point
(see also Fig. 11 below).
(Color figure online)
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monic component of the external forcing on the system
dynamics. In Fig. 10a we show a global extension of the
two-parameter continuation of the fold (blue), period-
doubling (red) and grazing (black, green) bifurcations
in the ω-a plane. As can be seen in this picture, the
region of stability (grey area) of period-1 orbits of the
type shown in Fig. 2 is bounded from below, above and
the right side by a fold, period-doubling and grazing
bifurcation curves, respectively. This gives us critical
information regarding the parameter region from which
the control parameters must be chosen for the system to
operate under period-1 motion, taking also into account
suitable rates of progression which can be controlled
by these parameters (see Sect. 4.1). For instance, if ω

and a are chosen from the grey area, close to the graz-
ing curve, then the ROP will be close to zero (see e.g.

Fig. 7a), which is undesirable from a practical point of
view.

The numerical continuation of the co-dimension-1
bifurcations found before allows us to detect three co-
dimension-2 points: two flip-grazing (ω ≈ 1.3946,
a ≈ 6.7289; ω ≈ 0.4733, a ≈ 0.1616) and one
fold-grazing (ω ≈ 0.4292, a ≈ 0.0277) bifurca-
tions, all of which lie on the black grazing curve.
In Fig. 10b–c we show a blow-up of the parame-
ter space near two of the co-dimension-2 bifurcations
shown in Fig. 10a. In the left panel, two branches
of the grazing curve are depicted, corresponding to
stable (solid line) and unstable (dashed line) grazing
orbits, which are joined together at the fold-grazing
bifurcation. From this point, a branch of fold bifur-
cations emanates tangentially to the grazing curve. In
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Fig. 11 Period-2 orbits of system (8) for parameter values along
the grazing curve (brown) depicted in Fig. 10c: ω = 0.4733,
a = 0.1616, (O1, red); ω = 0.4644, a = 0.2044, (O2, grey) and
ω = 0.43, a = 0.4065, (O3, blue). This last orbit corresponds
to a double grazing bifurcation (co-dimension 2) for which graz-
ing contacts with the discontinuity boundaries �1 and �2 occur
simultaneously. (Color figure online)

the right panel, we plot an enlargement of the parame-
ter region around the flip-grazing bifurcation (ω, a) ≈
(0.4733, 0.1616), where a period-doubling and a graz-
ing curve of period-1 solutions intersect each other.
In addition, we computed a grazing curve of period-2
orbits that emanates from this co-dimension-2 point.
In Fig. 11, three period-2 orbits along this grazing
curve are depicted. The orbit labelled O1 corresponds
to the flip-grazing point, where the period-1 trajectory
is traced twice. This point is detected as a branching
point during the continuation of the grazing curve of
period-2 orbits. The global extension of this curve ter-
minates at (ω, a) ≈ (0.43, 0.4065), where a double
grazing bifurcation occurs, as can be seen in the plot of
the orbit O3.

As pointed out in [20,22], the systematic study of
co-dimension-2 bifurcations occurring in non-smooth
dynamical systems is far from being complete. One of
the main reasons for this is the possibility that a clas-
sical (smooth) and a discontinuity-induced bifurcation
occur simultaneously upon parameter variations, e.g.
when a non-hyperbolic cycle makes tangential con-
tact with a discontinuity boundary in the phase space.
In such cases, the particular geometry of the involved
boundary can play a significant role in the bifurcation

scenario, hence making an exhaustive classification of
bifurcations occurring in non-smooth systems almost
hopeless.

Nevertheless, there are certain geometric features
that are common in many applications. For instance,
the fold-grazing bifurcation found in the present drift-
ing oscillator clearly belongs to the class described in
[22, Sect. 3], where this type of co-dimension-2 point
appears in an impacting model for forest fires [33]. Sim-
ilarly, the flip-grazing bifurcation encountered in our
study shares some common features with that analysed
in [22, Sect.4]. An analogous two-parameter bifurca-
tion picture can also be found in [24], where the authors
exploit the existence of explicit solutions in order to
compute bifurcations curves in a mathematical model
used to describe gear rattle.

Before finishing this section, it is worth mention-
ing another type of non-smooth bifurcation that has
recently received significant attention. Consider a para-
meter-dependent impacting system with a moving
obstacle whose motion is described by a non-smooth
function in time. Upon parameter variations, it is gen-
erally possible that the impacts occur exactly at the
points where the motion of the obstacle loses smooth-
ness. This phenomenon is referred to as a corner
event [34], and it can cause significant changes in the
system dynamics, including period-adding cascades,
also observed in the drifting oscillator analysed in the
present paper. A well-known practical example where
corner events are observed is the cam-follower device
studied in [35]. It consists of a cam rotating at a con-
stant speed, which provides a harmonic excitation to
a follower that may, for instance, open and close a
valve. Owing to the possibility of cam profiles being
characterized by a non-smooth geometry, corner events
appear naturally in cam-follower systems, typically at
high rotational speeds [23]. This is a good example to
illustrate the wide range of bifurcation scenarios that
can appear in non-smooth engineering applications.

Conclusions

In the present work, for the first time a detailed bifur-
cation analysis of the periodic response of a piecewise-
linear impact oscillator with drift has been carried out.
The model considered here operates under one of the
three regimes: No contact, Contact without progression

123



226 J. Páez Chávez et al.

and Contact with progression, each of which governed
by a separate set of ordinary differential equations.

The system was studied in the context of hybrid
dynamical systems, for which we used the AUTO 97
toolbox TC-HAT [1]. Specifically, we applied the tool-
box to carry out the numerical continuation of period-1
and -2 solutions of the drifting oscillator, using the ROP
as the main solution measure. This study enabled us
not only to locate co-dimension-1 bifurcations (fold,
period-doubling, grazing) but also to investigate the
effect of the control parameters on the ROP and thus,
determine the points where the ROP achieves a max-
imum value, which is one of the main concerns from
a practical point of view. Specifically, we have carried
out a careful numerical study of the periodic response
of the system under one-parameter perturbations, con-
sidering a, b and ω as the main control parameters, i.e.
the parameters governing the driving force of the drift-
ing oscillator. This study allowed us to gain a deeper
insight into the role played by each of the control para-
meters and how they affect the ROP.

A particular contribution of this work is the numeri-
cal continuation of the detected co-dimension-1 points
in two control parameters, thus, yielding a detailed
stratification of the parameter space where the topo-
logically different system behaviours can be identi-
fied. This study revealed the presence of co-dimension-
2 bifurcations, such as flip-grazing, fold-grazing and
double grazing, which serve as organizing centres of
the co-dimension-1 bifurcations occurring in the sys-
tem. Moreover, we also computed bifurcation diagrams
based on direct numerical integration showing the rich
spectrum of the possible system responses, including
period-adding cascades, chaotic behaviour and hys-
teretic effects. The bifurcation analysis presented in this
paper may provide fundamental knowledge for under-
standing the dynamical behaviour of systems with non-
linearities similar to those of the drifting oscillator con-
sidered in this work.

Acknowledgments The authors wish to thank Scottish Enter-
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