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Abstract This paper is concerned with the parameter
estimation of nonlinear chaotic system, which could
be essentially formulated as a multi-dimensional opti-
mization problem. In this paper, a hybrid algorithm
by combining differential evolution with artificial bee
colony is implemented to solve parameter estimation
for chaotic systems. Hybrid algorithm combines the
exploration of differential evolution with the exploita-
tion of the artificial bee colony effectively. Experiments
have been conducted on Lorenz system and Chen sys-
tem. The proposed algorithm is applied to estimate the
parameters of two chaotic systems. Simulation results
and comparisons demonstrate that the proposed algo-
rithm is better or at least comparable to differential
evolution, artificial bee colony, particle swarm opti-
mization, and genetic algorithm from literature when
considering the quality of the solutions obtained.
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1 Introduction

As a quintessence of nonlinear systems, chaos is a
bounded unstable dynamic behavior that exhibits sen-
sitive dependence on the initial conditions and includes
infinite unstable periodic motions [1]. Chaos has been
applied in many academic and engineering fields, such
as communication, economic system, and optimiza-
tion. During the last decade, we have viewed signif-
icant progresses on deal with the parameters of chaotic
systems. Moreover, in the real world, the parameters
may be difficult to determine due to the complexity of
chaotic systems. Therefore, the parameter estimation
for chaotic system has become an important issue of
nonlinear science. So far, different kinds of classical
techniques have been advanced to handle these prob-
lems [2–7].

Among them, meta-heuristic-based method, such as
genetic algorithm (GA), particle swarm optimization
algorithm (PSO), and differential evolution algorithm
(DE) [2,5,6,8], may be one of the most popular meth-
ods by defining the problem as a multi-dimensional
optimization problem. Parameter estimation for chaotic
systems using these heuristic algorithms is reported
in some research. The paper [9] proposes a variant
of particle swarm optimization, called Drift particle
swarm optimization, and applies it in estimating the
unknown parameters of chaotic dynamic systems. The
principle and procedure of DPSO are presented, and
the algorithm is used to identify the Lorenz system
and the Chen system. Experimental results show that
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the DPSO can identify the parameters of the systems
accurately and effectively, and may be a promising
tool for chaotic system. The paper [3] presents that
a PSO approach is implemented to solve parameter
estimation for chaotic systems. In this paper, parame-
ter estimation for chaotic system is formulated as a
multi-dimensional optimization problem. The paper [9]
combines biogeography-based optimization with dif-
ferential evolution and simplex search to develop an
effective hybrid algorithm for parameter estimation
for chaotic system that is formulated as a multi-
dimensional optimization problem. Numerical simula-
tion based on two chaotic systems and comparisons
with some existing methods demonstrate the effec-
tiveness of the proposed algorithm. The paper [10]
presents an effective hybrid quantum-inspired evolu-
tionary algorithm with differential evolution to estimate
the parameters of the Lorenz system. Numerical sim-
ulation and comparisons show that the proposed algo-
rithm is effective and efficient.

Differential evolution algorithm [11] and artifi-
cial bee colony algorithm (ABC) [12] are two novel
meta-heuristic algorithms introduced recently and have
gained significant attention in the research literatures
[13,14]. DE is a simple yet powerful population-based,
direct search algorithm with the generation and test
feature for global optimization problems. The basic
idea of DE is to create new candidate solutions by
combining the parent individual and several other
individuals of the same population, and a candidate
solution replaces the parent only if it has better fit-
ness. Artificial bee colony algorithm is a population-
based heuristic evolutionary algorithm inspired by
the intelligent foraging behavior of the honeybee
swarm.

On the other hand, although meta-heuristic meth-
ods have been proved to have superior features to
other traditional methods, they often suffer some lim-
itations. In some cases, they may easily fall into the
local minimum or converge too slowly. For exam-
ple, for DE algorithm, it is good at exploring the
search space and locating the region of global mini-
mum but it is slow at exploitation of the solution [11].
Recently, researchers have found that a skilled combi-
nation of two meta-heuristic techniques can improve
the performance of the algorithms obviously when
dealing with real-world and large-scale problems [15].
Several hybrid heuristic-based optimization methods
have been investigated in the past few years [16,17].

However, this field of study is still in its early days;
a large number of future researches is necessary in
order to develop hybrid algorithm for optimization
problems.

In this paper, parameter estimation for chaotic sys-
tem is formulated as a multi-dimensional optimization
problem; and a hybrid differential evolution algorithm
and artificial bee colony algorithm are implemented to
solve this problem. Hybrid bee operator is proposed
to combine the DE operator with the ABC operation.
It can balance the exploration and exploitation of the
algorithm. To the best of our knowledge, this is the first
paper to apply hybrid differential evolution algorithm
and artificial bee colony to estimate the parameter of
chaotic system. Experiments have been conducted on
the Lorenz system and the Chen system. Simulation
results and comparisons demonstrate the effectiveness
of the proposed algorithm compared with other algo-
rithms.

The rest of this paper is organized as follows: in
Sect. 2 we will give the problem formulation. Sec-
tion 3 describes the differential evolution algorithm.
Section 4 describes the artificial bee colony algorithm.
In Sect. 5, we introduce the hybrid algorithm. Bench-
mark problems and the corresponding experimental
results are given in Sect. 6. In the last section we con-
clude this paper and point out some future research
directions.

2 Problem formulation

This section describes the chaotic system. Let

•
X = F(X, X0, θ0) (1)

be a continuous nonlinear chaotic system, where the
state vector of the chaotic system is X = (x1, x2,

. . . , xN )′ ∈ Rn ,
•
X is the derivative of X , and X0

denotes the initial state. θ0 = (θ10, θ20, . . . , θd0)
′ are

the original parameters.
Suppose the structure of system (1) is known, then

the estimated system can be written as

•
X̃ = F(X, X0, θ̃ ), (2)

where X̃ = (x̃1, x̃2, . . . , x̃N )′ ∈ Rn denotes the state
vector, and θ̃ = (θ̃1, θ̃2, . . . , θ̃d)′ is a set of estimated
parameters.
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Fig. 1 The principle of parameter estimation for a chaotic sys-
tem

Based on the measurable state vector X = (x1, x2,

. . . , xN )′ ∈ Rn , we define the following objective func-
tion or fitness function

f
(
θ̃n

i

)
=

W∑
t=0

[
(x1(t) − xn

i,1(t))
2 + · · ·

+ (xN (t) − xn
i,N (t))2

]
, (3)

where t = 0, 1, . . . , W . The goal of estimating the
parameters of chaotic system (2) is to find out the suit-
able value of θ̃n

i such that fitness function (3) is globally
minimized.

Obviously, the parameter estimation for chaotic sys-
tem is a multi-dimensional continuous optimization
problem, where the decision vector is θ and the opti-
mization is to minimize f (θ̃n

i ). Figure 1 shows the prin-
ciple of parameter estimation for chaotic system in a
sense of optimization.

The chaotic systems are not easy to estimate because
of the unstable dynamic of the chaotic system. More-
over, due to multiple variables in the problem and mul-
tiple local search optima in the objective functions, tra-
ditional optimization can easily trap in local optima.
Therefore, we aim to solve this problem by proposing
a hybrid differential evolution and artificial bee colony
algorithm in this paper.

3 Differential evolution algorithm

Differential evolution (DE) is a simple optimization
method that has parallel, direct search, easy to use,
good convergence, and fast implementation proper-
ties. Similar to other evolutionary algorithms partic-
ularly genetic algorithm, DE uses some evolutionary
operators like selection recombination and mutation
operators. Different from genetic algorithm, DE uses
distance and direction information from current pop-
ulation to guide the search process. The crucial idea
behind DE is a scheme for generating trial parameter
vectors. If the trail vector yields a smaller value than a
predetermined population member, the newly trail vec-
tor will be accepted and be compared in the following
generation. Different kinds of strategies of DE have
been proposed based on the target vector selected and
the number of difference vectors used. In this paper,
we use the DE/rand/2/bin mutation strategy as the final
mutation strategy. The detail description of the differ-
ential evolution algorithm can be found in the paper
[18].

4 Artificial bee colony

Artificial bee colony introduced by Karaboga in 2005
is the recent swarm-based evolutionary computation
technique and models the foraging behavior of honey
bees. In this algorithm, the model of the ABC algo-
rithm consists of three groups of bees: employed
bees, onlooker bees, and scout bees. For each food
source, there is only one employed bee. In other words,
the number of bees is equal to the number of food
sources. Employed bees are responsible for exploiting
the sources explored before, and sharing their infor-
mation with onlookers within the hive. After that, the
onlookers will select one of the food sources within
the neighborhood of the food source. An employed bee
becomes a scout if the food source is abandoned, and
then starts to search a new food source randomly [9].
The main steps of the ABC algorithm simulating these
behaviors are listed below:
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As we can see in the algorithm, each cycle of the
search consists of three steps: moving the employed
and onlooker bees onto the food sources; calculating
their nectar amounts, respectively; and then determin-
ing the scout bees and moving them randomly onto
the possible food source. Here, a food source stands
for a potential solution of the problem to be optimized.
The ABC algorithm is an iterative algorithm. The detail
description of the artificial bee colony can be found in
the paper [19].

5 Our approach: DE/ABC

As mentioned above, DE can explore the search space
better and find the region of global minimum. How-
ever, it is slow at exploitation of the optimal solution.
In ABC, employed bees are responsible for exploiting
the nectar sources explored before and giving infor-
mation to the waiting bee in the hive about the qual-
ity of the food source sites which they are exploiting.
Onlooker bees wait in the hive and decide on a food
source to exploit based on the information shared by
the employed bees. The algorithm has a good exploita-
tion for global optimization. In order to achieve bet-
ter results on these benchmark functions, DE/ABC
is proposed to solve these problems. This algorithm
can take advantage of the exploration capability of the
DE algorithm and the stochastic exploitation ability
of the ABC [11,12]. The main framework of the pro-
posed algorithm can be summarized as follows: first,

a hybrid bee operator is proposed; which combines
the exploration of DE and the exploitation of ABC
effectively. Second, we introduced a novel boundary
constraint; which is reflected back from the bound by
the amount of violation. Finally, we propose a hybrid
algorithm combining differential evolution with artifi-
cial bee colony for the parameter estimation of chaotic
system.

5.1 Hybrid bee operator

The main operator of DE/ABC is the hybrid bee oper-
ator, which hybridizes the DE operator with the ABC
operator. Crossover operation of the DE algorithm is
applied to each pair of the target vector x j,i,G and its
corresponding mutate vector v j,i,G to generate a trail
vector. In the standard DE algorithm, DE employs the
binomial crossover defined as follows:

u j,i,G

=
{

v j,i,G , (rand j [0, 1] ≤ CR) or ( j = jrand)

x j,i,G , otherwise

(4)

Crossover operator can find the globally optimal
region. However, it cannot converge rapidly to the
globally optimal solution. Employed bees fly onto the
source which they are exploiting. In order to solve this
problem, we tackle by integrating an employed bee
operator of ABC to maintain the diversity and obtain
good solution rapidly at the same time.
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The crucial idea behind DE is a scheme for gener-
ating trial parameter vectors according to the manip-
ulation of target vector and difference vector. From
the algorithm, we can find that the proposed hybrid
bee operation is based on the main update operator
of ABC. The core idea of the proposed hybrid bee
colony is based on two considerations. On the one
hand, employed bee colony exploited the nectar sources
explored before—giving the information to the waiting
bees in the hive about the quality of the food source sites
which they are exploiting and onlooker bees waiting
in the hive watch the dances advertising the profitable
sources and choose a source site depending on the fre-
quency of a dance proportional to the quality of the
source. On the other hand, the mutation operator of the
DE is able to explore the new space. From the analysis,
it can be seen that the hybrid bee colony can balance
the exploration and the exploitation effectively.

5.2 Boundary constraints

The DE/ABC algorithm assumes that the whole popu-
lation should be in an isolated and finite space. During
the searching process, if there are some individuals that
will move out to the bounds of the space, the original
algorithm stops them on the boundary. In other words,
the individual will be assigned a boundary value. The
disadvantage is that if there are too many individuals
on the boundary, and especially when there exists some
local minimum on the boundary, the algorithm will lose
its population diversity to some extent. In order to tackle
this problem, we propose the following repair rule:

xi =
{

li + mod ((li − xi ), (ui − li ))
ui − mod ((xi − ui ), (ui − li ))

(5)

5.3 Proposed DE/ABC algorithm

In this section, we introduce the newly proposed
DE/ABC. The DE/ABC algorithm incorporates the
ABC operator into DE. The crossover can choose the
individual by the CR. The algorithm begins with a
randomly initiated population which generates NP*D
matrix with uniform probability distribution random
values. We can generate the j th component of the i th
vector as

x j,i,0 = x j,min + randi, j [0, 1] · (x j,max − x j,min), (6)

where randi, j [0, 1] is a uniformly distribution ran-
dom number between 0 and 1. i = 1, . . ., NP and
j = 1, . . ., D. x j,max, x j,min is the upper bound and
lower bound of the j th column, respectively. Then,
the algorithm uses a hybrid bee operation in which the
mutated individual vi,G is mated with the ABC oper-
ator, DE operator, and generate the offspring or trail
individual ui,G . The genes of ui,G are inherited from
the vi,G of DE and the ABC operators. Thus, the scout
bee colony can update the abandoned population. In
addition, the DE/ABC has a very simple structure and
thus is easy to implement. Moreover, this algorithm
combines the exploration capability of the DE algo-
rithm and the stochastic exploitation of the ABC. This
method can overcome the lack of the exploitation of the
DE algorithm. The DE/ABC was described as follows:
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6 Simulation results

To evaluate the performance of our algorithm, we apply
it to two chaotic systems as the standard benchmarks.
The Lorenz chaotic system and the Chen chaotic system
described below were chosen to test the performance of
the algorithm. So far, these problems have been widely
used as benchmarks for studies with different methods
by many researchers. Each algorithm ran 30 times on
each system. The parameters of the algorithm were con-
figured as follows. After periods of transient process, a
state vector is chosen as the initial state X0 for parame-
ter estimated systems as shown in Fig. 1. The succes-
sive W states (W = 30) of both the estimated system
and the original system are used to calculate the fitness.
For the DE/ABC, the step size F is 0.5. The crossover
rate CR is 0.9. The value of “limit” is 100. For the
differential evolution algorithm, the step size F is 0.5.
The crossover rate CR is 0.9. For ABC algorithm, the
value of “limit” is 100. For PSO algorithm, the inertia
weight is 0.729 and the acceleration coefficients were
set to be 1.49. For GA, the crossover rate is 0.8 and the
mutation rate is increasing linearly from 0.001 to 0.6
during the evolution. In order to perform fair compar-
ison, the maximum generation number is 100 for the
Lorenz system and 200 for the Chen system. The pop-
ulation size of each algorithm is 30. All algorithms are
coded in MATLAB 7.0, and experiments are made on
a Pentium 3.0 GHz Processor with 1.0 GB of memory.

6.1 Simulation the Lorenz system

In the first example, the well-known Lorenz system [20]
is employed as an example in this paper. The general
expression of the chaotic system can be described as
follows:

⎧⎨
⎩

ẋ1 = θ1(x2 − x1)

ẋ2 = (θ2 − x3)x1 − x2

ẋ3 = x1x2 − θ3x3

,

where x1, x2, and x3 are the state variables; θ1, θ2, and
θ3 are unknown positive constant parameters. The orig-
inal parameters are θ1 = 10, θ2 = 28, and θ3 = 8/3. In
order to simulate, we let the parameters of the Lorenz
system be θ1 = 10, θ2 = 28, and θ3 = 8/3.

In order to simulate this system, the successive state
W is 30 and each algorithm ran 30 times with each
single runs 100 iterations. The statistical results of the
best fitness value, the mean value, the standard devia-
tion, and the identified parameters of the Lorenz sys-
tem are shown in Table 1. From Table 1, it can be
seen that the best fitness values obtained by DE/ABC
can performance better than DE, ABC, PSO, and GA.
The mean of the identified parameters by DE/ABC and
DE converges more quickly than those identified by
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Fig. 2 The relative estimation error of θ1 is defined by∣∣∣θ̃1 − 10
∣∣∣/10

Table 1 Statistical results from the four algorithms on the Lorenz system

Algorithm Means of the
best fitness

SD of the
best fitness

Obtained mean value and best
value (in brackets) of the identified parameters

θ1 θ2 θ3

DE/ABC 9.265e−23 1.2568e−23 10.0000 (10.0000) 28.0000 (28.0000) 2.6667 (2.6667)

ABC 6.6288e−005 1.3950e−004 9.99796 (10.0000) 27.9998 (28.0000) 2.6665 (2.6667)

DE 2.56E−13 3.28E−13 10.0000 (10.0000) 28.0000 (28.0000) 2.6667 (2.6667)

PSO 0.11788 0.268094 10.1667 (9.9999) 28.0105 (27.9999) 2.6684 (2.6666)

GA 1.331401 2.783125 9.9824 (10.0274) 28.0175 28.0058 2.6824 (2.6692)

Bold values indicate that our algorithm is better than other algorithms
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Fig. 4 The relative estimation error of θ3 is defined by∣∣∣θ̃3 − 8/3
∣∣∣/(8/3)

ABC, PSO, and GA. Figures 2, 3, and 4 show the
relative estimation errors from 30 runs of each algo-
rithm with each single run executing 100 iterations.
For the relative estimation errors, the three parame-

ters can be defined by
∣∣∣θ̃1 − 10

∣∣∣/10,

∣∣∣θ̃2 − 28
∣∣∣/28, and∣∣∣θ̃2 − 8/3

∣∣∣/(8/3), respectively; where θ̃1, θ̃2, and θ̃3 are

identification values of the parameters. As can be seen
in these figures, we can find that the DE/ABC algo-
rithm is the winner and the algorithm can provide the
better estimation errors among all the algorithms. Fig-
ure 5 shows that DE/ABC can converge to the optimal
solution more rapidly than other algorithms. Figures 6,
7, and 8 show the convergence process of these three
parameters, where each algorithm in the single run gen-
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Fig. 5 The convergence process of fitness value averaged over
30 runs for the Lorenz system
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Fig. 6 The convergence process of θ1 in the single run generating
the best solution

erates the best solution. In general, the performance of
DE/ABC is highly competitive with DE, ABC, PSO,
and GA for the well-known Lorenz system.

6.2 Simulation the Chen system

The second example system is the Chen system [21,
22]. The model of this system can be described as fol-
lows:⎧⎨
⎩

ẋ1 = θ1(x2 − x1)

ẋ2 = (θ3 − θ1)x1 − θ3x2 − x1x3

ẋ3 = x1x2 − θ2x3

,

where x1, x2, and x3 are the state variables; θ1, θ2, and
θ3 are unknown positive constant parameters. The orig-
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generating the best solution
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generating the best solution

inal parameters are θ1 = 35, θ2 = 3, and θ3 = 28.
In order to simulate this system, we let the parame-
ters of the Lorenz system be θ1 = 35, θ2 = 3, and
θ3 = 28.
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Fig. 9 The convergence process of fitness value averaged over
30 runs for the Chen system
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Fig. 10 The convergence process of θ1 in the single run gener-
ating the best solution

In order to simulate this system, the successive state
W is 30 and each algorithm ran 30 times with each
single runs 200 iterations. It seems that the parame-
ters of the Chen system are more difficult to identify

Table 2 Statistical results from the four algorithms on the Chen system

Algorithm Means of the
best fitness

SD of the
best fitness

Obtained mean value and best
value (in brackets) of the identified parameters

θ1 θ2 θ3

DE/ABC 6.5081e−31 1.2368e−31 35.0000 (35.0000) 3.0000 (3.0000) 28.0000 (28.0000)

ABC 0.525804 0.446762 35.23983 (36.01104) 2.997600 (2.996633) 28.119097 (28.491249)

DE 2.31E−22 5.28E−22 35.0000 (35.0000) 3.0000 (3.0000) 28.0000 (28.0000)

PSO 8.461767 24.18407 38.1409 (34.4876) 3.0556 (2.9968) 29.4815 (27.7544)

GA 4.769291 21.53209 35.2407 35.2199 2.9884 (3.0196) 28.1173 (28.0935)

Bold values indicate that our algorithm is better than other algorithms
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Fig. 11 The convergence process of θ2 in the single run gener-
ating the best solution
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Fig. 12 The convergence process of θ3 in the single run gener-
ating the best solution

than the Lorenz system. The statistical results of the
best fitness value, the mean fitness value, the stan-
dard deviation, and the identified parameters of the
Chen system are listed in Table 2. From Table 2, it
can be seen that the best fitness values obtained by
DE/ABC algorithm is much better than DE, ABC,
PSO, and GA. Figure 9 shows that DE/ABC can con-
verge to the optimal solution more rapidly than the
other algorithms. Figures 10, 11, and 12 show the
convergence process of these three parameters with
each algorithm in the single run generating the best
solution.

7 Conclusions

In this paper, the parameter estimation for chaotic sys-
tem was formulated as a multi-dimensional optimiza-
tion problem. A novel evolutionary algorithm, hybrid
differential evolution and artificial bee colony was
applied to solve the parameter estimation for chaotic
system. A new hybrid bee operator is proposed to gen-
erate the promising solutions. It can balance the explo-
ration and exploitation of the algorithm. In addition, the
DE/ABC has a very simple structure and thus is easy to
implement. To verify the performance of DE/ABC, the
algorithm has been employed for estimation of the para-
meters of two chaotic dynamical systems. By a compar-
ative study, it is shown that the proposed method is well
suited to solve a complex problem. The experimental
results show that DE/ABC can identify the parameters
of the Lorenz system and the Chen system more accu-
rately, more rapidly, and more stably than DE, ABC,
PSO, and GA. The future work is to apply the proposed
hybrid algorithm to other chaotic systems and make the
DE/ABC a promising tool for various numerical opti-
mization problems in physics.
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