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Abstract This paper considers the design of adaptive
sliding mode control approach for synchronization of
a class of fractional-order arbitrary dimensional hyper-
chaotic systems with unknown bounded disturbances.
This approach is based on the principle of sliding mode
control and adaptive compensation term for solving the
problem of synchronization of the unknown parame-
ters in fractional-order nonlinear systems. In partic-
ular, a novel fractional-order five dimensional hyper-
chaotic system has been introduced as a representa-
tive example. Furthermore, global stability and asymp-
totic synchronization between the outputs of master and
slave systems can be achieved based on the modified
Lyapunov functional and fractional stability condition.
Simulation results are provided in detail to illustrate the
performance of the proposed approach.
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1 Introduction

Over the past decade, there have been tremendous
efforts in controlling and synchronization of nonlin-
ear hyperchaotic system due to the ubiquity of this
kind of systems with its potential applications in many
disciplines such as in encryption, secure communica-
tion and aerospace engineering. Since the first intro-
duction of chaos synchronization by Pecora and Car-
roll in 1990 [1], many techniques have been reported
in the literatures for discovering the state trajecto-
ries of hyperchaotic systems tend asymptotically to
be identical. Some of the useful control schemes
have been presented for synchronization of chaos such
as drive-response control, adaptive backstepping con-
trol, impulsive control, backstepping control, projec-
tive control, passive control, optimal control, and so on
[2–19].

Based on the Lyapunov stability theory, many con-
tributions deal with the control and synchronization
problem of chaotic systems via sliding mode control
(SMC) technique in recent years. The main feature of
SMC is to switch the control law to force the states of
the system from the initial states onto some predefined
sliding surface. The system on the sliding surface has

123



2060 L. Liu et al.

desired properties such as stability, disturbance rejec-
tion capability, and tracking ability. Konishi et al. [20]
proposed a bang-bang type SMC method to stabilize a
class of chaotic systems whose nonlinearity vanishes
on a sliding surface. A higher order SMC scheme for
uncertain nonlinear systems was proposed in [21]. In
[22], an active SMC was proposed for synchronizing
two chaos with parametric uncertainty. In [23], Yan
et al. presented the synchronization of chaotic gyros
with unknown parameters and external disturbance via
adaptive SMC. Furthermore, anti-synchronization for
a novel class of multiple chaotic systems via SMC
scheme has been given [24]. Unfortunately, very few
studies have investigated the synchronization prob-
lem of the non-integral order high-dimensional chaotic
or hyperchaotic systems via SMC control strategy
[25–27].

Although the classical differential operation from
the integral-order case to the non-integral order
(fractional-order) case has been expanded for more than
three century, its applications to real physics and engi-
neering are just gaining attention [28]. It is observed
that many fractional-order dynamical systems behave
chaotically, such as the fractional-order Chua system,
the fractional-order Chen system, the fractional cellu-
lar neural network system, the fractional form of Lu
and Liu system [29–32]. Afterward, various effective
control methods for fractional order chaotic system
synchronization were reported [33–39]. However, to
our best knowledge, the synchronization of fractional-
order arbitrary dimensional chaotic system especially
high dimensional hyperchaotic system via fractional-
order adaptive SMC has not been well discussed. In
[40], based on active sliding mode approach, a con-
troller has been proposed for fractional-order chaotic
system synchronization. In [41], an intelligent robust
fractional SMC method for a class of nonlinear system
is studied. In addition, Lin and Tun proposed an adap-
tive fuzzy SMC to synchronize two different uncer-
tain fractional order time delay chaotic systems [42].
In [43], the authors investigated the chaos control of a
class of low dimensional fractional order chaotic sys-
tems via sliding mode.

Motivated by the above discussion, a class of n-
dimensional fractional-order hyperchaotic system with
parametric uncertainty is proposed by using frac-
tional derivatives. By employing Lyapunov stabil-
ity theorem and fractional-order stability theory, a
fractional-order adaptive sliding mode controller is rep-

resented to achieve the synchronization of two identi-
cal five dimensional fractional order hyperchaotic sys-
tems with bounded disturbance and uncertainty key
parameters. In our design procedure, global stability
between the outputs of master and slave systems can
be approved by employing a modification Lyapunov
function. Moreover, numerical analysis illustrate that
the proposed control approach can eliminate asymp-
totic synchronization between master system and slave
system.

The rest of the paper is organized as follows: the
problem formulation of fractional-order n-dimensional
hyperchaotic system are given in Sect. 2. In Sect. 3,
based on the fractional order stability theory, an mod-
ified adaptive sliding mode controller is designed to
synchronize the fractional-order hyperchaotic system
with unknown parameters and bounded disturbance.
Results of extensive simulation studies are shown to
demonstrate the effectiveness of the approach in Sect.
4. The brief comments and conclusions are drawn in
Sect. 5.

2 Preliminaries for fractional-order n-dimensional
hyperchaotic systems

Throughout this paper, ‖·‖ denotes the Euclidean norm
of vectors and induced norm of matrices, [·]T represents
the transpose of vector, �(·) denots the Euler’s Gamma
function, Rn denotes the real n-dimensional space.

Consider a class of nonlinear integral-order n-
dimensional hyperchaotic system composed of linear
term and nonlinear term with unknown parameters:

ẋ = Fi (x, p), (1)

where x = [x1, x2, . . . , xn]T ∈ Rn, 1 < i ≤ n is
the state vector, Fi (xi , p) = [F1(x, p), F2(x, p), . . . ,

Fi (x, p)]T ∈ Rn, 1 < i ≤ n are smooth continuous
nonlinear functions, which is described as

Fi (x, p) = Ci fi (x)

+ Pi j

m∑

j=1

gi j (x), (i = 1, 2, . . . , n), (2)

where Ci ∈ Rn×n (i = 1, 2, . . . , n) and Pi j ∈
Rn×m (i = 1, 2, . . . , n; j = 1, 2, . . . , m) are
unknown constant virtual coefficients, respectively;
fi (·) and gi j (·) are smooth linear functions and nonlin-
ear functions, respectively.
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Hyperchaos synchronization 2061

In order to analysis the fractional-order form of sys-
tem (1), some definitions of fractional derivative and
approximation approach will be given in the Section.

2.1 Fractional derivatives

In real applications, there are several original defin-
itions of fractional derivatives have been successfully
used as a model construction function to achieve system
equations. The commonly used definitions for the gen-
eral fractional differential integral are the Grünwald–
Letnikov (GL) definition and Riemann–Liouville (RL)
definition. The GL definition is expressed as

dα f (t)

dtα
= lim

h→0
h−r

[ t−α
h ]∑

j=0

(−1) j
(

r
j

)
f (t − jh), (3)

where [·] means the integer part. The RL fractional
derivative is defined as:

t Dα
a f (t) = dα f (t)

dtα

= 1

�(n − α)

dn

dtn

t∫

a

f (τ )

(t − τ)α−n+1 dτ, (4)

where n is an integer larger than α, i.e., n −1 < α < n.
The gamma function is a generalization of the factorial
function n! and can be written in the following form

�(z) =
1∫

0

e−t t z−1dt +
∞∫

1

e−t t z−1dt, Re(z) > 0

�(z + 1) = z�(z).

(5)

Based on the RL definition, the fractional-order form
of system (1) can be express as follows:

Dαi xi (t) = F(xi , p), (6)

where αi = [α1, α2, . . . , αn]T ∈ (0, 1] is the fra-
ctional-order satisfying xi = [x1, x2, . . . , xn]T ∈ Rn ,
F : R1 → Rm is a smooth nonlinear vector functions
in the term of xi .

2.2 ABM approximation algorithm

Generally, a very brief overview of approximation
approach which can be useful for numerical investi-
gation of the considered generalized fractional-order

nonlinear systems. The approximation design proce-
dure based on the Adams–Bashforth–Moulton(ABM)
predictor–corrector algorithm which is usually used for
numerical solutions of the fractional-order correspond-
ing systems [44]. This scheme is at least super linearly
convergent and has good stability, especially it pre-
serves the inherent attribute of fractional derivatives.

The initial value equation of system (6) can be
described as follows:
{

Dαi∗ xi (t) = F(t, xi (t))

xk(0) = x (k)
0 , k = 0, 1, . . . , [α] − 1

, (7)

where 0 ≤ t ≤ T, 0 < i ≤ n, and αi =
(α1, α2, . . . , αn)T is the fractional order satisfying α ∈
(0, 1]; xi = (x1, x2, . . . , xn)T ∈ Rn , F· : R1 → Rm is
a smooth nonlinear vector functions in the term of xi ,
0 ≤ t ≤ T, 0 < i ≤ n

Lemma 1 D := [0, T ∗]×[x0−δ, x0+δ] with T ∗ > 0
and δ > 0, then let the function F : D → R be continu-

ous. Furthermore, define T := min
{

T ∗,
( δγ (α+1)

‖F‖∞
) 1

α

}
,

then there exists a function x : [0, T ] → R solving the
initial value form (7). Notice that ‖F‖∞ is the norm of
function F.

Note that the differential equation (7) is equivalent
to the Volerra integral equation:

x(t)=
[α]−1∑

k=0

tk

k! x (k)
0 + 1

�(α)

t∫

0

(t−τ)α−1 f (τ, x(τ ))dτ,

(8)

set h = T
N , t j = jh, ( j = 0, 1, . . . , N ∈ Z+), the

corresponding discretization equation for (6) is defined
by

xh(tn+1) =
[α]−1∑

k=0

x (k)
0

tk
n+1

k! + hα

�(α+2)
f
(
tn+1, x p

h (tn+1)
)

+ hα

�(α + 2)

n∑

j=0

a j,n+1 f
(
t j , xh(t j )

)
, (9)

where

a( j,n+1)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

nα+1 − (n − α)(n + 1)α, j = 0

(n− j +2)α+1 + (n− j)α+1−2(n− j +1)α+1,

1 ≤ j ≤ n

1, j = n + 1

(10)
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the predictor x p
(tn+1)

is given by

x p
h (tn+1) =

n+1∑

k=0

tk
n+1

k! xk
0 + 1

γ (α)

n∑

j=0

f
(
t j , xh(t j )

)
,

(11)

where

b( j,n+1) = hα

α

(
(n+1− j)α−(n− j)α

)
, 0 ≤ j ≤ n.

(12)

Comparing Eqs. (7) and (8), estimation error of the
approximation is

e∗ = max
j=0,1,...,N

|x(t j ) − xh(t j )| = O(h p),

p = min(2, 1 + α). (13)

3 Modified SMC design for fractional-order
hyperchaotic synchronization

In this section, we will derive a globally synchroniza-
tion for n-dimensional hyperchaotic systems via adap-
tive SMC approach. We refer to system (6) as the
master system, and the controlled slave system can be
described by following differential equation:

Dαi y = F(yi , p) + d(t) + u, (14)

where yi = [y1, y2, . . . , yn]T ∈ Rn is the vec-
tor of states; F(y, p) = [F1(y, p), F2(y, p), . . . ,

Fn(y, p)]T ∈ Rn are smooth continuous nonlinear
functions; d(·) are the unknown external time varying
disturbances, and controller u = (u1, u2, . . . , un)T ∈
Rn are fed into arbitrary equation to form the controlled
system.

Remark 1 Assume that disturbance d(t) = [d1(t),
d2(t), . . . , dn(t)]T ∈ Rn are bounded, i.e., ‖di (t)‖ ≤
k̃i < ∞, (i = 1, 2, . . . , n),∀t . the values of every
k̃i (i = 1, 2, . . . , n) are not required to be known but
can be achieved by adaptive law.

Substituting (2) into (14), we obtain

Dα y = fi (y) +
m∑

j=1

pi j gi j (y) + di (t) + ui ,

(i = 1, 2, . . . , n). (15)

Definition 1 To design an appropriate fractional-order
active sliding mode controller u(x) such that the trajec-
tory of the salve system (15) asymptotically approaches

the master system (6) and finally implement synchro-
nization, in the sense if there exists a constant T =
T (e(0)) > 0, such that

lim
t→T

‖y − x‖ = lim
t→T

‖e(t)‖ = 0,

where ‖e(t)‖ ≡ 0, if t ≥ T , which means that asymp-
totic synchronization is achieved.

The tracking error vector of master system (6) and
slave system (15) can be written as

ei = (e1, e2, . . . , en)T

= (y1 − x1, y2 − x2, . . . , yn − xn)T . (16)

Substituting (2) and (4) into (6), it follows that

Dαi ei = fi (y) − fi (x) +
m∑

j=1

pi j [gi j (y) − gi j (x)]

+ di (t) + ui , (i = 1, 2, . . . , n). (17)

The control objective is to ensure that all signals of
slave system are bounded while tracking the signals of
master system.

In accordance to the standard SMC theory, the
design procedure of modified adaptive SMC with
fractional-order state contains two main steps as:

(i) Constructing a sliding surface (sliding mode)
which represents the desired system dynamics;

(ii) Developing a switching control law to guarantee
the sliding mode possible on every point in the
sliding surface. Any states outside the surface are
driven to reach the surface in a finite time.

For clarity and conciseness of presentation, detailed
explanation of steps are described as follows.

Step 1. To ensure the asymptotical stability of the slid-
ing mode, as a choice for the sliding surface, one has:

Si = Dαi −1ei +
τ∫

0

ci ei (τ )dτ, (i = 1, 2, . . . , n).

(18)

To guarantee the sliding mode on the sliding surface,
the surface is defined as

Si = Dαi ei +
τ∫

0

ci ei (τ )dτ = 0, (i = 1, 2, . . . , n)

(19)

and its derivative satisfy as

Ṡi = Dαi ei + ci ei (τ ) = 0, (i = 1, 2, . . . , n). (20)
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Noting (21), fractional tracking error can be expressed
as

Dαi ei = −ci ei (τ ), (i = 1, 2, . . . , n). (21)

To avoid control singularity, the continuously differ-
entiable Lyapunov function candidate can be chosen
as

V̇i = 1

2
e2

i , (i = 1, 2, . . . , n). (22)

Its derivative is given by

V̇i = ei ėi = −ci e
2
i (τ ) (i = 1, 2, . . . , n), (23)

where ci > 0, (i = 1, 2, . . . , n) is a design constant,
such that V̇i < 0. At the same time we can see that the
controlled error system in sliding mode and the system
is insensitive to external interference. In other words,
the system showed strong robustness to external inter-
ference. Therefore, the closed loop system is globally
asymptotically stable when the error system enters the
sliding mode.

To guarantee the fractional order hyperchaotic sys-
tem asymptotically stable, the Theorem 1 should be
considered.

Theorem 1 For n-dimensional fractional hyperchaotic
system Dαi x = Ax, x(0) = x0, where 0 < αi <

1, x ∈ Rn, A ∈ Rn×n is the n-dimension matrix. If all
eigenvalues of A(x) satisfy |arg(eig(A))| > απ/2, then
the system is asymptotically steady at the equilibrium.

Based on the Theorem 1, the stability region of the
fractional-order hyperchaotic system with order αi is
illustrated in Fig. 1, in which ω, σ refer to the real and
imaginary parts of the eigenvalues, respectively. Thus,
the asymptotic stability of Eq. (22) can be guaranteed
by choosing ci > 0, (i = 1, 2, . . . , n).

Step 2. To design the reaching mode control scheme,
which drives states onto the sliding surface, the possible
control structure ui (i = 1, 2, . . . , n) should be chosen
as:

ui (t) = −γiζi sign(Si ), (24)

where the constant γi satisfies ∀γi > 1; sign(·) denotes
the sign function. The sign function of this study is
defined as

sign(S) =
⎧
⎨

⎩

+1, if S > 0
0, if S = 0
−1, if S < 0

, (25)

2

2

j

Fig. 1 Stability region of the fractional order dynamical system

where ζi is an adaptive parameter in the control law
which can be written in a compact form as

ζi = | fi (y) − fi (x) + ci ei |

+
m∑

j

p̂i j |gi j (y) − gi j (x)| + k̂i , (26)

where k̂i and p̂i j (i = 1, 2, . . . , n; j = 1, 2, . . . , m)

are estimate parameters of ζi , which can transform with
the change of state of the error system, and the para-
meters update law can be chosen as

˙̂pi j = |gi j (y) − gi j (x)||Si | (27)

and
˙̂ki = |Si |. (28)

To avoid the reaching condition of sliding mode sur-
face, the controller should be designed to guarantee the
surface converges to zero in limited period of time.

Define qi j and ki as

qi j = p̂i j + |pi j | (i = 1, 2, . . . , n; j = 1, 2, . . . , m)

and

ki = k̂i − k̃i .

Proof Consider the following Lyapunov function can-
didate

V (t) = 1

2

⎛

⎝
n∑

i=1

S2
i +

n∑

i=1

m∑

j=1

q2
i j +

n∑

i=1

k2
i

⎞

⎠ . (29)
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The time derivative of V (t) becomes

V̇ (t) =
n∑

i=1

Si Ṡi +
n∑

i=1

m∑

j=1

qi j q̇i j +
n∑

i=1

ki k̇i

=
n∑

i=1

Si (Dαi ei +ci ei )+
n∑

i=1

m∑

j=1

( p̂i j +|pi j |) ˙̂pi j

+
n∑

i=1

(k̂i − k̃i )
˙̂ki . (30)

Substituting Eq. (18) into (31), we have

V̇ (t) =
n∑

i=1

⎡

⎣( fi (y)− fi (y))+
m∑

j=1

(pi j gi j (y)− pi j gi j (x))

+ di (t) + ui + ci ei

⎤

⎦ Si

+
n∑

i=1

m∑

j=1

( p̂i j + |pi j |) ˙̂pi j +
n∑

i=1

(k̂i − k̃i )
˙̂ki . (31)

Furthermore, according to absolute value inequal-
ity theory, substituting Eqs. (25), (28) and (29) into
Eq.(32), it follows that

V̇ (t) ≤
n∑

i=1

|[ fi (y) − fi (y) + ci ei ]||Si |

+
n∑

i=1

m∑

i

|pi j ||gi j (y) − gi j (x)||Si |

+
n∑

i=1

|di (t)||Si | −
n∑

i=1

γiζi Si sign(Si )

+
n∑

i=1

m∑

j=1

( p̂i j + |pi j |)|gi j (y) − gi j (x)||Si |

+
n∑

i=1

(k̂i − k̃i )|Si |. (32)

Noting that sign(Si )Si = |Si | and ‖di (t)‖ ≤ k̃i , it
yields inequality (33) as following

V̇ (t) ≤
n∑

i=1

|[ fi (y) − fi (y) + ci ei ]||Si |

+
n∑

i=1

m∑

i

|pi j ||gi j (y) − gi j (x)||Si |

+
n∑

i=1

k̃i |Si | −
n∑

i=1

γiζi |Si |

+
n∑

i=1

m∑

j=1

( p̂i j + |pi j |)|gi j (y) − gi j (x)||Si |

+
n∑

i=1

(k̂i − k̃i )|Si |

=
n∑

i=1

| fi (y) − fi (y) + ci ei ||Si |

+
n∑

i=1

m∑

j=1

p̂i j |gi j (y) − gi j (x)||Si |

+
n∑

i=1

k̂i |Si | −
n∑

i=1

γiζi ||Si |

=
n∑

i=1

⎛

⎝| fi (y) − fi (y) + ci ei |

+
m∑

j=1

p̂i j |gi j (y) − gi j (x)| + k̂i

⎞

⎠ |Si |

−
n∑

i=1

γiζi |Si |. (33)

Using Eq. (27), the above inequality can be further
written as

V̇ (t) ≤
n∑

i=1

ζi |Si | −
n∑

i

γiζi |Si |

=
n∑

i=1

(1 − γi )ζi |Si |. (34)

Because γi > 1, thus if guarantee ζi > 0, we further
obtain

V̇ (t) ≤
n∑

i=1

(1 − γi )ζi |Si | ≤ 0. (35)

Remark 2 When select bounded initial conditions of
p̂i j , k̂i (i = 1, 2, . . . , n; j = 1, 2, . . . , m) as p̂i j (0) >

0, k̂i (0) > 0, it is seen from Eqs. (28) and (29) that
there exist p̂i j > 0, k̂i > 0 (i = 1, 2, . . . , n; j =
1, 2, . . . , m) with time t variation under this conditions;
By substitution p̂i j (0) > 0, k̂i (0) > 0 into (27), it
follows that ζi > 0 (i = 1, 2, . . . , n)

Therefore, a Lyapunov function (30) has been found
that satisfies the conditions of the Lyapunov theorem
(V > 0; V̇ < 0). The inequality (35) confirms that the
fractional-order dynamical system in the presence of
the sliding mode controller (25) is globally asymptoti-
cally stable.
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4 Numerical simulation

In this section, to illustrate the effectiveness of the
proposed control design procedure for synchroniza-
tion, extensive simulations were carried out for a new
fractional-order five dimensional hyperchaotic system
synchronization by using (ABM) approximation algo-
rithm.

Consider a novel five-dimensional hyperchaotic sys-
tem as following
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = β1(x2 − x1)

ẋ2 = β2x1 − β3x1x3 − β4x4

ẋ3 = β5x1x2 − β6x2 − β7x3

ẋ4 = −2x1 − 2x4

ẋ5 = −2x3x4 − 2x5

, (36)

where xi (i = 1, 2, 3, 4, 5) are the state variables, and
βi (i = 1, 2, 3, 4, 5, 6, 7) are positive constant parame-
ters.

Master system: Fractional-order form of dynamical
equation (37) can be described as the following
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Dα1 x1 = β1(x2 − x1)

Dα2 x2 = β2x1 − β3x1x3 − β4x4

Dα3 x3 = β5x1x2 − β6x2 − β7x3

Dα4 x4 = −2x1 − 2x4

Dα5 x5 = −2x3x4 − 2x5

, (37)

where xi (i = 1, 2, 3, 4, 5) are the state variables,
αi (i = 1, 2, 3, 4, 5) are fractional orders, and βi (i =
1, 2, 3, 4, 5, 6, 7) are positive constant parameters.

Slave system: With the external time varying distur-
bances, the controlled corresponding fractional-order
form can be rewritten as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Dα1 y1 = β1(y2 − y1) + d1(t) + u1(t)

Dα2 y2 = β2 y1−β3 y1 y3− β4 y4+d2(t)+u2(t)

Dα3 y3 = β5 y1 y2− β6 y2− β7 y3+ d3(t)+u3(t)

Dα4 y4 = −2y1 − 2y4 + d4(t) + u4(t)

Dα5 y5 = −2y3 y4 − 2y5 + d5(t) + u5(t)

,

(38)

where yi (i = 1, 2, 3, 4, 5) are the state variables,
αi (i = 1, 2, 3, 4, 5) are fractional orders, and β1, β2,

β3, β4, β5, β6, β7 are positive constant parameters.
As the external time varying disturbance, d(t) =
[d1(t), d2(t), d3(t), d4(t), d5(t)]T is random noise gen-
erated by the random function. Its value is evenly dis-

tributed in the interval [−0.1, 0.1]. u = [u1, u2, u3,

u4, u5]T represents the proper controller
According to Definition 1 and Eq. (18), the synchro-

nization error can be expressed as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα1 e1 = β1(e2 − e1) + d1(t) + u1(t)

Dα2 e2 =β2e1−β3(y1 y3−x1x3)−β4e4+d2(t)+u2(t)

Dα3 e3 =β5(y1 y2−x1x2)−β6e2−β7e3+d3(t)+u3(t).

Dα4 e4 = −2e1 − 2e4 + d4(t) + u4(t)

Dα5 e5 = −2(y3 y4 − x3x4) − 2e5 + d5(t) + u5(t)

(39)

Regarding to (19), the sliding mode surface are cho-
sen as follows⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1(t) = Dα1−1e1 + ∫ τ

0 c1e1(τ )dτ

S2(t) = Dα2−1e2 + ∫ τ

0 c2e2(τ )dτ

S3(t) = Dα3−1e3 + ∫ τ

0 c3e3(τ )dτ

S4(t) = Dα4−1e4 + ∫ τ

0 c1e1(τ )dτ

S5(t) = Dα5−1e5 + ∫ τ

0 c1e1(τ )dτ

, (40)

where ci > 0 (i = 1, 2, . . . , n) is determined by
the design parameters, thus, we choose (c1, c2, c3,

c4, c5)
T = (0.4, 0.3, 0.32, 0.4, 0.3)T .

To ensure the occurrence of the sliding motion, a
proper controller is proposed as the following
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u1(t) = −γ1ζ1sign(S1)

u2(t) = −γ2ζ2sign(S2)

u3(t) = −γ3ζ3sign(S3)

u4(t) = −γ4ζ4sign(S4)

u5(t) = −γ5ζ5sign(S5)

, (41)

where
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ζ1 = |c1e1| + p̂11|y2 − x2| + p̂12|x1 − y1| + k̂1

ζ2 = |x1x3− y1 y3+ c2e2|+ p̂21|y1−x1|+ p̂22|x4−y4|+k̂2

ζ3 = |y1 y2−x1x2+c3e3|+ p̂31|x2−y2|+ p̂32|x3−y3|+k̂3

ζ4 = |c4e4| + p̂41|x1 − y1| + p̂42|x4 − y4| + k̂4

ζ5 = |c5e5| + p̂51|x3x4 − y3 y4| + p̂52|x5 − y5| + k̂5

(42)

and p̂11, p̂12, p̂21, p̂22, p̂31, p̂32, p̂41, p̂42, p̂51, p̂52 are
defined as adaptive parameters, the update rule can be
written as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

˙̂p11 = |y2 − x2||S1|, ˙̂p12 = |x1 − y1||S1|
˙̂p21 = |y1 − x1||S2|, ˙̂p22 = |x4 − y4||S2|
˙̂p31 = |x2 − y2||S3|, ˙̂p32 = |x3 − y3||S3|
˙̂p41 = |x1 − y1||S4|, ˙̂p42 = |x4 − y4||S4|
˙̂p51 = |x3x4 − y3 y4||S5|, ˙̂p52 = |x5 − y5||S5|

(43)
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Fig. 2 Phase portraits of the fractional order five-dimensional hyperchaotic attractors in 3D plane
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Fig. 3 Synchronization state trajectories of system when the controller activated
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Fig. 4 Synchronization errors and the time response of surface
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and⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂k1 = |S1|
˙̂k2 = |S2|
˙̂k3 = |S3|
˙̂k4 = |S4|
˙̂k5 = |S5|

. (44)

In practice, the fourth order Runge–Kutta integra-
tion with 0.001 step size has been employed in sim-
ulation analysis. According to (ABM) approximation
algorithm, the master system should be discrete in the
following form
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(n+1) = x1(0) + β1hα1

�(q+2)

[
x∗

2(n+1)
− x∗

1(n+1)

+ ∑n
j=0 α j,n+1 · (x2( j) − x1( j))

]

x2(n+1) = x2(0) + hα2
�(q+2)

[
β2x∗

2(n+1)

− β3x∗
1(n+1)

x∗
3(n+1)

− β4x∗
4(n+1)

+ ∑n
j=0 α j,n+1 · (β2x1( j)

− β3x1( j)x3( j) − β4x4( j))
]

x3(n+1) = x3(0) + hα3
�(q+2)

[
β5x∗

1(n+1)
x∗

2(n+1)

− β6x∗
2(n+1)

− β7x∗
3(n+1)

+ ∑n
j=0 α j,n+1

· (β5x1( j)x2( j) − β6x2( j) − β7x3( j))
]

x4(n+1) = x4(0) + −2hα4
�(q+2)

[
x∗

1(n+1)
+ x∗

4(n+1)

+ ∑n
j=0 α j,n+1 · (x1( j) + x4( j))

]

x5(n+1) = x5(0) + −2hα5
�(q+2)

[
x∗

3(n+1)
x∗

4(n+1)
−x∗

5(n+1)

+ ∑n
j=0 α j,n+1 · (x3( j)x4( j) + x5( j))

]

(45)

where the fractional order of master system are cho-
sen as: α1 = 0.85, α2 = 0.85, α3 = 0.85,
α4 = 0.85, α5 = 0.85, parameters are chosen as
β1 = 8, β2 = 40, β3 = 1.5, β4 = 1.2, β5 =
1.5, β6 = 10/3, β7 = 4, the initial conditions
are taken as [x1(0), x2(0), x3(0), x4(0), x5(0)]T =
[0.8, 2.2, 2.0, 0, 1.5]T. Fig. 2a–f show the observed
fractional-order projections of 3-D space on different
phase planes via solid line.

If the controller does not activated, we assume that
the controlled fractional-order dynamical system is
originally [ui = 0, (i = 1, 2, 3, 4, 5)] in the hyper-
chaotic state. The asymptotically tracking performance

can not be achieved, and the tracking error can not con-
verge to the zero with ui = 0. This means that the error
system can display randomness properties within the
master system and slave system under different initial
conditions.

When the controller activated, the control law is
determined by Eq. (25) and (42). The initial condi-
tions of slave system are given as (y1(0), y2(0), y3(0),

y4(0), y5(0))T = (3.2, 1.8, 2.2, 3.2, 2.5)T All other
conditions being the same as the master system.
Regarding (43), (44) and (45), the design parameters
of controller (42) and parameter update law are cho-
sen as γ1 = 1.3, γ2 = 1.2, γ3 = 1.25, γ4 = 1.38,
γ5 = 1.5. p̂11(0) = 0.1, p̂12(0) = 0.2, p̂21(0) = 0.1,
p̂22(0) = 0.1, p̂31(0) = 0.2, p̂32(0) = 0.2, p̂41(0) =
0.1, p̂42(0) = 0.1, p̂51(0) = 0.1, p̂52(0) = 0.1,
k̂1(0) = 0.02, k̂2(0) = 0.013, k̂3(0) = 0.01, k̂4(0) =
0.02, 5̂(0) = 0.01. The state trajectories of the master
system and slave system are shown in Fig. 3a–e. Fur-
thermore, Fig. 4a–f clearly show the synchronization
errors and the time responses of sliding surface, respec-
tively. From Fig. 4 we observe that the state trajectories
asymptotically converge to zero, which implies the syn-
chronization between the fractional-order slave system
and fractional-order master system is realized under the
adaptive sliding mode controller.

5 Conclusion

In this paper, an effective modified adaptive SMC
method for synchronizing fractional-order arbitrary
dimensional hyperchaotic system has been proposed
using Lyapunov stability theorem and fractional stabil-
ity theorem. Based on the intuitive principle of frac-
tional derivatives, the developed sliding mode con-
troller can guarantee that all signals involved are ulti-
mately bounded. Furthermore, theoretical analysis and
numerical simulations have been shown to verify the
results through a novel fractional-order five dimen-
sional hyperchaotic system. The error dynamics gov-
erning the difference between the master states and the
slave states are required to be globally stable while
approaching zeros to ensure complete synchronization.
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