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Abstract This article investigates the problem of
fault diagnosis (FD) for a class of nonlinear state-
feedback control systems subject to parameter uncer-
tainties. The considered nonlinear systems are describ-
ed by T–S fuzzy models with local nonlinear parts and
uncertain grades of membership. First, a general actua-
tor fault model is proposed, which considers bias faults
and gain faults. Then, a switching technique is intro-
duced to address the unknown membership functions,
external disturbances, faults, and their coupling. Fur-
thermore, an adaptive FD observer design method com-
bined with the switching technique is proposed to esti-
mate the occurred actuator fault. It is noted that the
obtained fault errors converge exponentially to zero.
Finally, a numerical example of NSV reentry dynamic
model is given to confirm the effectiveness of the new
results.
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1 Introduction

Over the recent decades, the system reliability require-
ments have increased in the practical applications of
safely-critical systems, especially flight control sys-
tems. To improve the reliability and safety of such
systems, the model-based on fault diagnosis (FD) in
dynamic systems has attracted considerable attention
from many researchers. Among the various FD meth-
ods, the observer-based FD technique is the one that
has been widely and most extensively considered; see
survey articles: [1–6]. The basic idea of the observer-
based FD is to estimate the states and/or the faults of
the system from measurements using some types of
observers, and define a residual evaluation function to
compare the residual evaluation value with a predefined
threshold.

In almost all of the above referenced articles, the
study on observer-based FD is mainly concentrated
on linear systems. Since almost all realistic physical
processes exhibit nonlinear dynamics, FD for nonlinear
systems has received a great deal of attention recently;
for examples, see [7–9]. In particular, an important
approach to nonlinear system FD is to model the con-
sidered nonlinear systems as Takagi and Sugeno (T–
S) fuzzy systems [10], which have been proven to be
a good universal approximator to nonlinear behaviors
[11]. The prominent feature of T–S fuzzy models is
that they are represented by some locally linear time-
invariant submodels in the form of IF-THEN rules.
In recent years, we have witnessed rapidly growing
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interest in FD observers’ design for T–S fuzzy mod-
els [12–18].

In some cases, fault accommodation strategies are
needed, i.e., the control algorithm must be adapted
based on fault detection for controlling the faulty sys-
tem. Aircraft flight control systems [19] are good exam-
ples for applications of fault accommodation/active
reliable control. In such cases, it is important to carry
out fault estimation (FE) in addition to detection. In the
last decade, there have been fruitful results on adaptive
or robust FE, which can be found in [20–26]. In [24],
the authors studied the problem of robust FE observer
design for discrete-time T–S fuzzy systems via piece-
wise Lyapunov functions. In [25], the authors have
designed a bank of sliding mode observers to detect
and isolate the fault, and proposed a novel adaptive FE
observer to estimate actuator faults.

It should be pointed out that the membership func-
tions in all the above mentioned studies on fuzzy sys-
tems are required to be known. If the membership
functions are unknown, for example, they may con-
tain immeasurable premise variables or uncertain para-
meters, then the existing parallel distributed compen-
sator (PDC) strategy based on fault-detection and/or FE
results in the above studies cannot be used. In [27], a
linear fault-detection filter with fixed gains was pro-
posed for the T–S fuzzy It̂o stochastic system. It is
noted that the linear fault-detection filter design may
be conservative to some degree because it does not use
any membership function information, especially for
highly nonlinear complex systems. In [28], a switching-
type fault-detection filter was used to detect the fault,
which had a promising feature by means of which the
membership function information can be employed to
construct. Although the comparison results have illus-
trated the merits of the proposed switching-type fault-
detection filter in [28], the computational burdens are
heavy, especially for the multiple faults. To the best
of the authors’ knowledge, up to now, the FD problem
for fuzzy systems with uncertain grades of membership
has not been fully investigated and remains as important
and challenging one, which has motivated the current
study.

The main objective of this article is to investigate
the FD problem of uncertain nonlinear systems against
actuator faults. The considered nonlinear systems are
described by T–S fuzzy models with local nonlinear
parts and uncertain grades of membership. The type
of actuator faults under consideration contains bias

faults and gain faults. First, by introducing a switching
technique, a fault-detection observer is constructed to
detect the fault. Furthermore, an adaptive FE observer
design method combined with the proposed switching
technique is developed. It is noted that the proposed
FD scheme utilizes the lower and upper bounds infor-
mation of the unknown membership functions, exter-
nal disturbances, faults, and their coupling, and the
obtained fault errors converge exponentially to zero.
Finally, an example of NSV reentry dynamic model is
given to illustrate the effectiveness and merits of the
proposed method.

The structure of this article is as follows: following
the introduction, the system description and the prob-
lem under consideration are given in Sect. 2. In Sect.
3, the FD problem is addressed. An example is given
in Sect. 4 to show the superiority and effectiveness of
proposed method. Finally, conclusions are drawn in
Sect. 5.

2 System description and problem statement

2.1 System description

The following continuous-time T–S fuzzy dynamic
model with local nonlinear parts can be used to rep-
resent a class of complex nonlinear systems subject
to parameter uncertainties, in the form described as
follows:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ẋ(t) =
N
∑

i=1
αi (θ(t))(Ai x(t) + Bi u(t) + Niφ(x(t))

+Giw(t))

y(t) =
N
∑

i=1
αi (θ(t))(Ci x(t) + Ni1φ(x(t))),

(1)

where N is the number of inference rules; x(t) ∈ Rn is
the system state vector, and assumed to be measurable;
u(t) ∈ Rm is the control input vector; y(t) ∈ Rs is the
output vector; w(t) = [

w1(t) · · ·wk(t) · · · wp(t)
]T ∈

R p is the disturbance input; θ(t) is the premise variable
that contains the system states and unknown parame-
ters; and Ai , Bi , Gi , Ci , Ni , and Ni1 are the known
constant matrices with appropriate dimensions. As dis-
cussed in [29], φ(x(t)) is a known nonlinear function
and reserved as the nonlinear part of local models. The
membership functions αi (θ(t)) (i = 1, . . . , N ) are
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uncertain due to the existence of the parameter uncer-
tainties and satisfy the following properties:
⎧

⎨

⎩

0 ≤ αi ≤ αi (θ(t)) ≤ αi ≤ 1, for i = 1, ..., N
N
∑

i=1
αi (θ(t)) = 1,

(2)

where αi , αi (i = 1, . . . , N ) are the known constants.
To formulate the FD problem of this article, the

fault model must be established first. Here, the types
of actuator faults under consideration are bias faults
and gain faults, which commonly occur in practice. Let
u f

i (t) represent the signal from the i th actuator that has
failed, in this article, the following actuator faults are
considered:

u f
i (t) = (1 − ρi )ui (t) + fi , i = 1, 2, . . . m (3)

where ρi , fi (i = 1, 2, ... m) are the unknown con-
stants. Note that when ρi �= 0, fi = 0, there is an
actuator gain fault for the i th actuator ui (t); when
ρi = 0, fi �= 0, there is an actuator bias fault for the
i th actuator ui (t); and when ρi = 0, fi = 0, there is
no fault for the i th actuator ui (t).

Denote

ρ = diag{ρ1, . . . , ρm}, F = [ f1, . . . , fm]T

Then, we have

u f (t) = (I − ρ)u(t) + F

Note that when ρ = 0m×m , F = 0m×1, there is no
fault for the system (1). The dynamics under normal
case and faulty cases are described as
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ẋ(t) =
N
∑

i=1
αi (θ(t))(Ai x(t) + Bi u f (t) + Niφ(x(t))

+Giw(t))

y(t) =
N
∑

i=1
αi (θ(t))(Ci x(t) + Ni1φ(x(t)))

(4)

Remark 1 It is noted that, when a nonlinear system
has complex nonlinearities, the constructed T–S fuzzy
model with local linear parts must consist of a number
of fuzzy rules. Then, the detector/estimator design for
such a T–S fuzzy model becomes very difficult. In this
article, a class of T–S fuzzy models with local nonlinear
parts discussed in [29] are exploited to describe the
considered nonlinear systems, which need fewer fuzzy
rules and less computational burden.

We shall make the following assumptions through-
out:

Assumption 1 It is assumed that only one single actu-
ator fails at one time, and there exist known constants
ρi , ρ

i
, f i , f

i
such that

ρ
i
≤ ρi ≤ ρi , f

i
≤ fi ≤ f i , for i = 1, 2, . . . , m

(5)

Assumption 2 For disturbance input component wk

(t), there exist two known constants wk , wk such that

wk ≤ wk(t) ≤ wk, for k = 1, 2, . . . , p (6)

Assumption 3 In this article, we assume that the non-
linear function φ(x(t)) satisfies the following:

||φ(x(t)) − φ(̂x(t))|| ≤ ϑ ||R(x(t) − x̂(t))|| (7)

−φ(x(t))(Ex(t) − φ(x(t))) ≤ 0, (8)

where ϑ is a constant; and E , R are constant matrices
with proper dimensions.

Remark 2 It is well known that Assumptions 1, 2 are
quite natural and common in the robust fault-tolerant
control literature, which physically means that the
boundaries of disturbance and fault signals are known.
Assumption 3 implies that φ(x(t)) is a sector-bounded
Lipschitz function, which has also been given in
[29].

2.2 State-feedback controller design

To investigate the FD problem for closed-loop fuzzy
systems, the state-feedback controller under fault-free
(normal) case and faulty cases must be designed first.
In order to ensure that the output y(t) tracks a given
reference-input vector yr (t) without steady-state error,
we define e(t) = yr (t) − Sy(t), where S ∈ Rl×s is a
known matrix used to form the output required to track
the reference signal, and introduce an augmented state-
space ξ(t) = [(∫ t

0 e(τ )dτ)T xT (t)]T , the augmented
system can be changed into

ξ̇ (t) =
N

∑

i=1

αi (θ(t))(Aiξ(t) + Bi u
f (t)

+ Giw(t) + Br yr (t)

+ N iφ(x(t))), (9)

where
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Ai =
[

0 −SCi

0 Ai

]

Bi =
[

0
Bi

]

Gi =
[

0
Gi

]

Br =
[

I
0

]

N i =
[−SNi1

Ni

]

In order to obtain a tracking controller with state-
feedback plus tracking error integral, a state-feedback
controller is designed such that the following control
objectives are satisfied:

(1) The closed-loop system in normal case is stable
with a good disturbance attenuation performance.

(2) The closed-loop system in faulty cases is stable
with an acceptable disturbance attenuation perfor-
mance.

Consider the following state-feedback controller:

u(t) = Ka(t)ξ(t) + Kb(t)φ(x(t)), (10)

where Ka(t), and Kb(t) are the gains required to be
determined. Then, the augmented closed-loop system
can be obtained as

ξ̇ (t) =
N

∑

i=1

αi (θ(t))((Ai + Bi (I − ρ)Ka(t))ξ(t)

+(N i + Bi (I − ρ)Kb(t))φ(x(t))

+ Bi F + Giw(t)

+Br yr (t)). (11)

Since the membership functions are unknown, the
existing PDC controller design methods cannot be used
here. In Appendix, we will present a non-PDC con-
troller design method.

2.3 Problem statement

With the property of
∑N

i=1 αi (θ(t)) = 1, the closed-
loop system (11) can be rewritten as

ξ̇ (t) =
[

(Al +
N

∑

i=1

αi (θ(t))Ail)

+(Bl +
N

∑

i=1

αi (θ(t))Bil)(I − ρ)Ka(t)

]

ξ(t)

+
[

(Nl +
N

∑

i=1

αi (θ(t))Nil)

+ (Bl +
N

∑

i=1

αi (θ(t))Bil)(I − ρ)Kb(t)

]

×φ(x(t))

+ (Gl +
N

∑

i=1

αi (θ(t))Gil)w(t)

+ (Bl +
N

∑

i=1

αi (θ(t))Bil)F + Br yr (t) (12)

with Ail = Ai − Al , Bil = Bi − Bl , Gil = Gi − Gl ,
N il = N i − Nl , and (Al , Bl , Nl , Gl) is the determin-
istic part of the subsystem containing the equilibrium
point of the original system. For brevity, in the sequel,
we choose Al = A1, Bl = B1, Gl = G1, Nl = N 1.

The problem considered in this article is to present
a novel FD approach of actuators for the closed-loop
fuzzy system (12). Meanwhile, the proposed approach
can utilize the information of the uncertain grades
of membership, external disturbances, local nonlinear
parts, faults, and their coupling to construct the FD
observers in a less conservative way.

3 Fault diagnosis

3.1 fault-detection observer design

Consider the closed-loop system (12) in fault-free case
described by

ξ̇ (t) =
[

(A1 +
N

∑

i=2

αi (θ(t))Ai1)

+ (B1 +
N

∑

i=2

αi (θ(t))Bi1)Ka(t)

]

ξ(t)

+
[

(N 1 +
N

∑

i=2

αi (θ(t))Ni1) + (B1

+
N

∑

i=2

αi (θ(t))Bi1)Kb(t)

]

φ(x(t))

+ Br yr (t) + (G1 +
N

∑

i=2

αi (θ(t))Gi1)w(t)

(13)

Define αi (θ(t))w(t) = di (t), and αi (θ(t))wk(t) =
dik(t), then we have

di (t) = [

di1(t) · · · dik(t) · · · dip(t)
]T

(14)
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Because of 0 ≤ αi ≤ αi (θ(t)) ≤ αi ≤ 1 and wk ≤
wk(t) ≤ wk , which implies

dik ≤ dik(t) ≤ dik, (15)

where dik and dik can be determined by the known
constants αi , αi , wk and wk . Then, the system (13) is
rewritten as

ξ̇ (t) =
[

A1 + B1 Ka(t) +
N

∑

i=2

αi (θ(t))(Ai1 + Bi1 Ka(t))

]

× ξ(t) + [N 1 + B1 Kb(t) +
N

∑

i=2

αi (θ(t))(N i1

+ Bi1 Kb(t))]φ(x(t)) + G1w(t)

+
N

∑

i=2

Gi1di (t) + Br yr (t) (16)

The fault-detection observer is designed as
˙̂ξ0(t) = (A1 + B1 Ka(t))̂ξ0(t) + (N 1 + B1 Kb(t))φ(̂x(t))

+
N

∑

i=2

α̂0
i (t)(Ai1 + Bi1 Ka(t))ξ(t) + G1ŵ

0(t)

+
N

∑

i=2

Gi1̂d
0
i (t) +

N
∑

i=2

α̂0
i1(t)(N i1 + Bi1 Kb(t))

×φ(x(t)) + Br yr (t), (17)

where ̂ξ0(t) is the estimation of ξ(t), x̂(t) is the esti-
mation of x(t), and α̂0

i (t), α̂0
i1(t), ŵ0(t), ̂d0

i (t) are the
switching signals, which are determined according to
some switching laws to be defined later.

Define the error vector as e0(t) = ξ(t) − ̂ξ0(t);
combining (16) with (16), the observer error system
can be obtained as

ė0(t) = (A1 + B1 Ka(t))e0(t)

+
N

∑

i=2

(αi (θ(t)) − α̂0
i (t))(Ai1 + Bi1 Ka(t))ξ(t)

+ G1(w(t) − ŵ0(t))

+
N

∑

i=2

Gi1(di (t) − ̂d0
i (t)) + (N 1 + B1 Kb(t))

× (φ(x(t)) − φ(̂x(t))) +
N

∑

i=2

(αi (θ(t))

− α̂0
i1(t))(Ni1 + Bi1 Kb(t))φ(x(t)). (18)

By applying the switching technique, we propose a
novel observer which is particularly designed for fault-
detection purpose. The following theorem establishes
the convergence of the proposed observer.

Theorem 1 The observer error e0(t) in (18) converges
exponentially to zero if there exists a positive-definite
matrix P = PT , and a positive number ε, such that the
following matrix inequalities are feasible:

P(A1 + B1 Ka(t)) + (A1 + B1 Ka(t))T P + εP < 0

(19)

ϑ P(N 1 + B1 Kb(t))R
 + ϑ(R
)T (N 1

+B1 Kb(t))
T P − εP < 0 (20)

and the switching signals α̂0
i (t), α̂0

i1(t), ŵ0(t) and
̂d0

i (t) are designed according to the following switch-
ing laws:

α̂0
i (t) = αi + (αi − αi )D(eT

0 (t)P(Ai1

+ Bi1 Ka(t))ξ(t)) (21)

α̂0
i1(t) = αi + (αi − αi )D(eT

0 (t)P(Ni1 + Bi1 Kb(t))

×φ(x(t))) (22)

ŵ0
k (t) = wk + (wk − wk)D(eT

0 (t)[PG1]k) (23)
̂d0

ik(t) = dik + (dik − dik)D(eT
0 (t)[PGi1]k) (24)

for i = 2, . . . , N , where the function D(z) is defined
by

D(z) =
{

1, if z ≥ 0,

0, else.

Proof Choose the Lyapunov function as

V (t) = eT
0 (t)Pe0(t)

The proof is similar to a few of the proofs of Theorem
2, and we will present it later. ��
Remark 3 If the membership functions are unknown,
then a linear fault-detection filter design with fixed
gains has been considered in [27]. However, the results
in [27] may be conservative to some degree because
the linear fault-detection filter design does not use any
membership function information. To reduce the con-
servatism, a switching mechanism which depends on
the lower and upper bounds of the unknown member-
ship functions has been introduced in [28] to design
a fault-detection filter with varying gains. It is noted
that, to get convex filter design conditions, the authors
imposed restrictions on the Lyapunov matrix, and the
involved number of LMIs is 22N−1+2. Compared with
[28], by introducing the switching technique, the pro-
posed fault-detection method in Theorem 1 only needs
two LMIs. As we know, larger number of conditions in
the above computations may result in numerical prob-
lems (slow progress) with the LMI solver.
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3.2 Fault estimation observer design

In this section, we will present an FE approach. Assume
that the j th actuator is faulty, then the closed-loop sys-
tem (12) is described as

ξ̇ (t) =
[

(A1 +
N

∑

i=2

αi (θ(t))Ai1)

+ (B1 +
N

∑

i=2

αi (θ(t))Bi1)Ka(t)

]

ξ(t)

+
[

(N 1 +
N

∑

i=2

αi (θ(t))N i1) + (B1

+
N

∑

i=2

αi (θ(t))Bi1)Kb(t)]φ(x(t))

+ (

N
∑

i=2

αi (θ(t))Gi1 + G1)w(t) − b1, j [ρ j u j (t) − f j

]

−
N

∑

i=2

bi1, j [ρ j
i (t)u j (t) − f j

i (t)] + Br yr (t), (25)

where bi1, j = bi, j − b1, j , (i = 2, . . . , N ).
Define αi (θ(t))w(t) = di (t), and αi (θ(t))wk(t) =

dik(t), then the closed-loop system (25) is rewritten as

ξ̇ (t) = [(A1 +
N

∑

i=2

αi (θ(t))Ai1) + (B1 +
N

∑

i=2

αi (θ(t))Bi1)

×Ka(t)]ξ(t) + [(N1 +
N

∑

i=2

αi (θ(t))Ni1) + (B1

+
N

∑

i=2

αi (θ(t))Bi1)Kb(t)]φ(x(t)) + G1w(t)

+
N

∑

i=2

Gi1di (t) − b1, j [ρ j u j (t) − f j ] −
N

∑

i=2

bi1, j

×[ρ j
i (t)u j (t) − f j

i (t)] + Br yr (t). (26)

The observer for the j th fault is designed as

˙̂ξ j (t) = (A1 + B1 Ka(t))̂ξ j (t) + (N 1 + B1 Kb(t))φ(̂x(t))

+
N

∑

i=2

α̂
j
i (t)(Ai1 + Bi1 Ka(t))ξ(t) + G1ŵ

j (t)

+
N

∑

i=2

Gi1̂d
j

i (t) +
N

∑

i=2

α̂
j
i1(t)(N i1 + Bi1 Kb(t))

×φ(x(t)) − b1, j [ρ̂ j (t)u j (t) − ̂f j (t)]

−
N

∑

i=2

ρ̂
j
i1(t)bi1, j u j (t) +

N
∑

i=2

̂f j
i1(t)bi1, j + Br yr (t),

(27)

where ̂ξ j (t) is the estimation of ξ(t), x̂(t) is the esti-
mation of x(t), and α̂

j
i (t), α̂ j

i1(t), ŵ
j (t), ̂d j

i (t), ̂f j
i1(t),

ρ̂
j
i1(t) are the switching signals, which are determined

according to some switching laws to be defined later,
ρ̂ j (t) is the estimation of ρ j , and ̂f j (t) is the estima-
tion of f j . Define the error vectors e j (t) = ξ(t) −
̂ξ j (t), ρ̃ j (t) = ρ j − ρ̂ j (t), ˜f j (t) = f j − ̂f j (t), com-
bine (26) with (27), the observer error system can be
obtained as

ė j (t) = (A1 + B1 Ka(t))e j (t) +
N

∑

i=2

(αi (θ(t)) − α̂
j
i (t))

×(Ai1 + Bi1 Ka(t))ξ(t) + G1(w(t) − ŵ j (t))

+
N

∑

i=2

Gi1(di (t) − ̂d j
i (t)) + (N 1 + B1 Kb(t))

×(φ(x(t)) − φ(̂x(t))) +
N

∑

i=2

(αi (θ(t)) − α̂
j
i1(t))

×(Ni1 + Bi1 Kb(t))φ(x(t)) − b1, j ρ̃ j (t)u j (t)

+ b1, j ˜f j (t) −
N

∑

i=2

(ρ
j

i (t) − ρ̂
j

i1(t))bi1, j u j (t)

+
N

∑

i=2

( f j
i (t) − ̂f j

i1(t))bi1, j (28)

Theorem 2 The observer error e j (t) in (28) converges
asymptotically to zero if there exists a positive-definite
matrix P = PT satisfying (19), (20), and the switching
signals α̂

j
i (t), α̂

j
i1(t), ŵ j (t), ̂d j

i (t), ̂f j
i1(t), ρ̂

j
i1(t) are

designed by the following switching laws

α̂
j
i (t) = αi + (αi − αi )D(eT

j (t)P(Ai1 + Bi1 Ka(t))ξ(t))

(29)

α̂
j
i1(t) = αi + (αi − αi )D(eT

j (t)P(Ni1 + Bi1 Kb(t))

×φ(x(t))) (30)

ŵ
j
k (t) = wk + (wk − wk)D(eT

j (t)[PG
j
1]k) (31)

̂d j
ik(t) = dik + (dik − dik)D(eT

j (t)[PG
j
i1]k) (32)

ρ̂
j
i1(t) = −ρ

j
i − (ρ

j
i − ρ

j
i )D(eT

j (t)[Pbi1, j ]u j (t)) (33)

̂f j
i1(t) = f j

i + ( f
j
i − f j

i )D(eT
j (t)[Pbi1, j ]) (34)

for i = 2, . . . , N; and ρ̂ j (t), ̂f j (t) are determined
according to the following adaptive laws

˙̂ρ j (t) = −2η1eT
j (t)Pb1, j u j (t) (35)
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˙̂f j (t) = 2η2eT
j (t)Pb1, j , (36)

where η1, η2 are prespecified positive scalars which
define the learning rates for (35) and (36). Moreover,
the fault errors ρ̃ j (t), ˜f j (t) converge exponentially to
zero under a persistently exciting.

Proof Choose the Lyapunov function as

V (t) = V1(t) + V2(t) + V3(t) (37)

where

V1(t) = eT
j (t)Pe j (t)

V2(t) = 1

2η1
ρ̃2

j (t)

V3(t) = 1

2η2

˜f 2
j (t)

Taking the time-derivative of Vi (t) along the solution
of (28), we have

V̇1(t) = eT
j (t)(P(A1 + B1 Ka(t)) + (A1 + B1 Ka(t))T P)

× e j (t) + eT
j (t)P(N 1 + B1 Kb(t))(φ(x(t))

− φ(̂x(t))) + (φ(x(t)) − φ(̂x(t)))T (N 1 + B1

× Kb(t))
T Pe j (t) + 2eT

j (t)P(

N
∑

i=2

(αi (θ(t))

− α̂
j
i (t))(Ai1 + Bi1 Ka(t))ξ(t) +

N
∑

i=2

(αi (θ(t))

− α̂
j
i1(t))(Ni1 + Bi1 Kb(t))φ(x(t)) + G1(w(t)

− ŵ j (t)) +
N

∑

i=2

Gi1(d
j

i (t) − ̂d j
i (t)) − b1, j ρ̃ j (t)

× u j (t) + b1, j ˜f j (t) −
N

∑

i=2

(ρ
j
i (t) − ρ̂

j
i1(t))bi1, j

× u j (t) +
N

∑

i=2

( f j
i (t) − ̂f j

i1(t))bi1, j )

V̇2(t) = 1

η1
ρ̃ j (t) ˙̃ρ j (t) = 1

η1
ρ̃ j (t)(ρ̇ j − ˙̂ρ j (t))

V̇3(t) = 1

η2

˜f j (t)
˙̃f j (t) = 1

η2

˜f j (t)( ḟ j − ˙̂f j (t))

From the switching laws given in (29), we have

eT
j (t)P(

N
∑

i=2

(αi (θ(t)) − α̂
j
i (t))(Ai1 + Bi1 Ka(t))ξ(t)

=
N

∑

i=2

(αi (θ(t)) − αi − (αi − αi )D(eT
j (t)P(Ai1 + Bi1

×Ka(t))ξ(t))eT
j (t)P(Ai1 + Bi1 Ka(t))ξ(t)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

N
∑

i=2
(αi (θ(t)) − αi )eT

j (t)P(Ai1 + Bi1 Ka(t))ξ(t)),

if eT
j (t)P(Ai1 + Bi1 Ka(t))ξ(t)) ≥ 0,

N
∑

i=2
(αi (θ(t)) − αi )e

T
j (t)P(Ai1 + Bi1 Ka(t))ξ(t)),

else.

≤ 0
Since ρ j , f j are constants, then ρ̇ j = 0, ḟ j = 0.

Combine (19) and (29)-(34), it is obviously obtained
that

V̇ (t) ≤ −εeT
j (t)Pe j (t) + eT

j (t)P(N1 + B1 Kb(t))

×(φ(x(t)) − φ(̂x(t))) + (φ(x(t)) − φ(̂x(t)))T (N 1

+B1 Kb(t))T Pe j (t) − ρ̃ j (t)(2eT
j (t)Pb1, j u j (t)

+ 1

η1

˙̂ρ j (t)) + ˜f j (t)(2eT
j (t)Pb1, j − 1

η2

˙̂f j (t)) (38)

Combine with (35) and (36), we have

V̇ (t) ≤ −εeT
j (t)Pe j (t)+eT

j (t)P(N1+B1 Kb(t))(φ(x(t))

−φ(̂x(t))) + (φ(x(t)) − φ(̂x(t)))T (N 1 + B1

× Kb(t))T Pe j (t) (39)

Note that

x(t) − x̂(t) = Θe0(t), Θ := [

0n×1 In×n
]

This together with (7), (19) and (20) leads to

V̇ (t) < −m||e j (t)||2 ≤ 0

with m = ε||P|| − 2ϑ ||P(N 1 + B1 Kb(t))R
||. On
the other hand, let ẽ j (t) = [eT

j (t)ρ̃T
j (t) ˜f T

j (t)], by (37),
there exists a positive constant δ such that

0 ≤ δ||̃e j (t)|| ≤ V (t) (40)

Then

0 ≤ δ||̃e j (t)|| ≤ V (t) ≤ V (0) +
t

∫

0

V̇ (τ )dτ ≤ V (0)

−
t

∫

0

m||e j (τ )||2dτ ≤ V (0) (41)

which means that the solution of the system described
by (28) is uniformly bounded. Also, (41) implies that

limt→∞
t

∫

0

m||e j (τ )||2dτ ≤ V (0) (42)
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Since ẽ j (t) is uniformly bounded, it follows that e j (t),
ρ̃ j (t) and ˜f j (t) are uniformly bounded, which implies
e j (t) is uniformly continuous. Therefore, ε||e j (τ )||2
is also uniformly continuous. Applying Barbalat’s
Lemma to (42) yields limt→∞m||e j (t)||2 = 0, i.e.,

limt→∞e j (t) = 0 (43)

Furthermore, by Lemma 1 in [4] and the following per-
sistently exciting, that is, there exist μ and T > 0 such
that,

μI ≤
t+T
∫

t

uT
j (τ )b

T
1, j b1, j u j (τ )dτ ∀t ≥ 0 (44)

μI ≤
t+T
∫

t

b
T
1, j b1, j dτ∀t ≥ 0 (45)

the fault errors ρ̃ j (t), ˜f j (t) converge exponentially to
zero. ��
Remark 4 For linear time-invariant systems, by apply-
ing the adaptive technique, the authors in [4] inves-
tigated the actuator FD problem under the multiple-
model structure for locked actuators and loss of actua-
tor effectiveness, and proposed an adaptive UIO design
approach for FD under some equality constraints.
However, for nonlinear systems subject to parameter
uncertainties, the above method is hard to work. For
fuzzy systems, as the parameter uncertainties intro-
duce uncertain grades of membership to the fuzzy sys-
tems, the favorable property offered by sharing the
same premises in the fuzzy plant and fuzzy detec-
tors/estimators in [24–26] cannot be applied in this arti-
cle. In Theorem 2, combining the switching and adap-
tive techniques, the presented FE scheme utilizes the
information of the lower and upper bounds of unknown
membership functions, external disturbances, faults to
construct the FE observer with varying gains, which
can guarantee that the fault errors ρ̃ j (t), ˜f j (t) converge
exponentially to zero.

3.3 fault-detection threshold design

The following assumption is required for the purpose
of fault-detection decision:

Assumption 4 The steady-state values of the closed-
loop, (13) and (26), are different from each other for
∀ j ∈ 1, . . . , m.

To address the fault-detection problem, the follow-
ing model–match index in [30] is proposed to describe
the dynamic behavior of the current system:

Jσ
0 (t) = c1||eσ

0 (t)||2

+ c2

∫ t

0
exp(−μ(t − s))||eσ

0 (s)||2ds (46)

where eσ
0 (t) is the σ th component of e0(t), c1 > 0 is

the weight for the instantaneous residual signal, c2 > 0
is the weight for the past residual signals, and μ > 0 is
a forgetting factor that determines the memory of the
index., Then we have

Fault-detection decision scheme If there exists an
index σ ∈ {1, 2, . . . n + s}, a sufficient small positive
scalar ε0, and a constant Td such that

Jσ
0 (t) ≥ ε0, for t ≥ Td , (47)

then a fault is detected at t = Td .

Remark 5 By Theorem 1, it is easy to see from (46)
that J0(t) will converge to zero in the fault-free case.
Once a fault occurs, by Assumption 4, at least one of
the components of J0(t) will not approach zero, and
thus the fault can be detected according to the pro-
posed fault-detection decision scheme. Furthermore,
if the j th actuator fault occurs, from Theorem 2 and
Assumption 4, it is known that e j (t) will converge
asymptotically to zero, and such convergence does not
hold for other errors.

4 Simulation example

In this section, a NSV attitude dynamics in a reentry
phase is given as

J ω̇ = −�Jω + δ

γ̇ = R(·)ω (48)

where ω = [p q r ]T = [x1(t) x2(t) x3(t)]T is the
angular rate (roll, pitch, and yaw rate, respectively);
and γ = [μ β α]T = [x4(t) x5(t) x6(t)]T are the atti-
tude angles (bank, sideslip, and angle of attack, respec-
tively); The parameter matrices are given as

� =
⎡

⎣

0 −x3(t) x2(t)
x3(t) 0 −x1(t)
x2(t) x1(t) 0

⎤

⎦

R(·) =
⎡

⎣

cos(x6(t)) 0 sin(x6(t))
sin(x6(t)) 0 −cos(x6(t))

0 1 0

⎤

⎦
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To demonstrate the validity and applicability of the
suggested FD method, we consider the reentry phase
of (48) with the altitude of H = 40 km and speed
of V = 2500 m/s as the initial states, the inertia J is
borrowed from [31]. As stated in [32], the nonlinear-
ity of NSV reentry attitude dynamics mainly comes
from the attack angle α and the attitude angular veloc-
ity ω. During the phase of reentry α ∈ [0, π/4],
ω ∈ [−0.5, 0.5], we choose six operating points:
[α, ω] ∈ {[0, −0.5], [0, 0], [0, 0.5], [π/4, −0.5],
[π/4, 0], [π/4, 0.5]}. Under the membership func-
tions and the six operating points, the fuzzy system is
described by

ẋ(t) =
6

∑

i=1

αi (x(t))(Ai x(t) + Bi u(t) + Niφ(x(t))

+ Giw(t))

y(t) =
6

∑

i=1

αi (x(t))Ci x(t) (49)

the parameter matrices Ai , Bi , Ci are given in [32], and

G1 = [

0.1 0.01 0.01 0 0 0
]T

G2 = [

0.1 0.01 0 0 0.01 0
]T

G3 = [

0.15 0.01 0.01 0.01 0 0
]

G4 = [

0.01 0.02 0.01 0 0 0
]

G5 = [

0.1 0.01 0.01 0 0 0
]

G6 = [

0.1 0.03 0.01 0 0 0.05
]

N1 = [

0 0.03 0.15 0 0 0
]

N2 = [

0.015 0.03 0 0.1 0 0
]

N3 = [

0.005 0.03 0.1 0 0 0
]

N4 = [

0.015 0.03 0 0 0.1 0
]

N5 = [

0.015 0 0 0 0.03 0
]

N6 = [

0.015 0.03 0 0 0 0.1
]

the local nonlinear part is assumed to be φ(x(t)) = (1−
cos(x1(t)))sin(x1(t)), and φ(x(t)) ∈ co{0, 2

π
x1(t)}.

By virtue of the Canchy mean value theorem, it follows
that ||φ(x(t))−φ(̂x(t))|| ≤ ϑ ||R(x(t)− x̂(t))||, where
ϑ = 2.1 and R = [100000].

In order to ensure that the attitude angle [x4(t) x5(t)
x6(t)]T tracks a reference input yr (t), let S = I3×3 and
yr (t) = [5o 0o 5o]T .

As the nonlinear plant suffers parameter uncer-
tainties [32], the membership functions αi (x(t)) are
assumed to be uncertain and belong to [0 1]. It is
noted that, the FD approaches given in [24–26] can-

not be applied for this class of systems. In this simula-
tion, a common state-feedback controller is designed,
The external disturbance is w(t) = 0.1e−t sin(5t). By
Lemma 1, the state-feedback controllers are obtained
with gains as:

Ka = 107

⎡

⎣

0.1985 0.0678 0.0045 −0.8634 −0.0145
−0.0141 −0.0149 0.2621 0.0375 −0.3519
0.1477 −0.1966 −0.0006 −0.3300 −0.0193

−0.0991 −3.7358 −0.2892 −0.0206
−0.0209 0.2338 0.0487 −1.2152
−0.8740 −2.7018 0.8260 −0.0499

⎤

⎦

Kb = 105

⎡

⎣

−4.8655
0.2575

−1.1380

⎤

⎦

It is assumed that the system operates without faults at
the beginning. From t = 50s, the fault occurs in the first
actuator ( j = 1), and the second and third actuators are
fault free; the faulty actuator is set up as

u f
1 (t) = ρ1u1(t) + f1,

where

ρ1 =
{

0, 0 ≤ t ≤ 50,

0.8, t > 50.

f1 =
{

0, 0 ≤ t ≤ 50,

6× 105, t > 50.

The objective is to design FD observers in the form
of (17) and (27) to detect and estimate the occurred
fault. By solving the LMIs (19) and (20), we get the
Lyapunov matrices P as follows:

P = 104

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.2230 −0.0497 0.0119 −0.0009 0.0027
−0.0497 0.0282 0.0016 0.0001 −0.0002
0.0119 0.0016 0.5695 −0.0029 −0.0366

−0.0009 0.0001 −0.0029 0.0221 0.0036
0.0027 −0.0002 −0.0366 0.0036 0.0628

−0.0080 0.0038 −0.0040 0.0003 −0.0003
−0.0981 −0.0117 −0.1679 0.0009 −0.0686
0.0342 −0.0130 0.0330 0.0001 0.0003
0.0137 −0.0031 −0.2015 0.0016 0.0362

−0.0080 −0.0981 0.0342 0.0137
0.0038 −0.0117 −0.0130 −0.0031

−0.0040 −0.1679 0.0330 −0.2015
0.0003 0.0009 0.0001 0.0016

−0.0003 −0.0686 0.0003 0.0362
0.0066 0.0016 −0.0058 0.0005
0.0016 1.6427 −0.0378 −0.1041

−0.0058 −0.0378 0.0704 −0.0225
0.0005 −0.1041 −0.0225 0.6558

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Figures 1, 2, 3 show the simulation results of the
model–match indexes with c1 = c2 = μ = 1 in (46).
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Fig. 1 J0(t) generated by fault-detection observer correspond-
ing to the fault in the first actuator

0 10 20 30 40 50 60 70 80 90 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

6

bias fault
estimation of bias fault

Fig. 2 Bias fault f1 = 6 × 105 and its estimation ̂f1(t)

Setting ε0 = 0.05, the function J0(t) generated by the
fault-detection observer is shown in Fig. 1. It is shown
that the fault is detected at t = 50.66 s. Figures 2 and 3,
respectively, present the estimation results of the con-
sidered bias fault and the gain fault given by the cor-
responding adaptive observer. From Figs. 2 and 3, it
can be seen that both bias fault and gain fault can be
estimated accurately and promptly.

The state estimation error e1(t) generated by the FE
observer has been given in Fig. 4. From Fig. 4, it can be
seen that although this FE observer can track the faulty
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Fig. 3 Gain fault ρ1 = 0.8 and its estimation ρ̂1(t)
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Fig. 4 State estimation error e1(t) generated by the FE observer
corresponding to the fault in the first actuator

system state, the introduced switching laws lead to the
chatter phenomenon close to the equilibrium.

5 Conclusion

This article investigates the FD problem for T–S fuzzy
models with local nonlinear parts and uncertain grades
of membership. The system states are chosen as the
inputs of the FD observers. By introducing the switch-
ing and adaptive techniques, the presented FD scheme
utilizes information about the lower and upper bounds
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of the unknown membership functions, external distur-
bances, faults, and their coupling to construct a bank of
FD observers. It is noted that the obtained fault errors
converge exponentially to zero. Finally, an example is
given to illustrate the effectiveness and merits of the
new results. For the future research, the studies on fault-
tolerant control for fuzzy systems with uncertain grades
of membership are under investigation.
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Appendix

In this section, a simple state-feedback controller
design method is proposed in the form of linear matrix
inequalities, and the controller is described as

u(t) = Kaξ(t) + Kbφ(x(t)) (50)

Define the performance output

z(t) =
N

∑

i=1

αi (θ(t))(Cziξ(t) + Di1u f (t) + Di2w(t)

+Ni2 × φ(x(t))),

where Czi , Di1, Di2, Ni2(i = 1, . . . , N ) are known
matrices.

The considered H∞ state-feedback controller (50)
is designed such that,

(1) For a prescribed H∞ performance bound γ > 0,
the closed-loop system (11) in fault-free case is
stable with
∞

∫

0

zT (t)z(t)dt ≤ γ 2

∞
∫

0

wT (t)w(t)dt (51)

(2) For a prescribed H∞ performance bound γ1 > 0,
the closed-loop system (11) in faulty case is stable
with∞

∫

0

zT (t)z(t)dt ≤ γ 2
1

∞
∫

0

wT (t)w(t)dt (52)

with w(t) = [wT (t)yT
r (t)]T .

Lemma 1 For the prescribed γ > 0, γ1 > 0, the
closed-loop augmented system (11) is stable, and the
performances (51) and (52) are satisfied if there exist
matrices Q = QT > 0, La, Lb, and λ such that

⎡

⎢

⎢

⎢

⎢

⎣

He(Ai Q + Bi La) λN i + Bi Lb + QE
T

Gi Br

∗ −2λ 0 0
∗ ∗ −γ 2 I 0
∗ ∗ ∗ −γ 2 I
∗ ∗ ∗ ∗

(Czi Q + Di1La)T

(λNi2 + Di1Lb)T

DT
i2

0
−I

⎤

⎥

⎥

⎥

⎥

⎦

< 0 (53)

⎡

⎢

⎢

⎢

⎢

⎣

He(Ai Q + Bi (I − � j )La) λN i + Bi (I − � j )Lb + QE
T

∗ −2λ

∗ ∗
∗ ∗
∗ ∗

Gi Br (Czi Q + Di1(I − � j )La)T

0 0 (λNi2 + Di1(I − � j )Lb)
T

−γ 2
1 I 0 DT

i2∗ −γ 2
1 I 0

∗ ∗ −I

⎤

⎥

⎥

⎥

⎥

⎦

< 0

(54)

for i = 1, . . . , N , j = 1, . . . , m with E = [0E], � j =
diag{0, . . . ρ j , . . . 0}, ρ j ∈ {ρ

j
, ρ j }, and the con-

troller gains are given as Ka = La Q−1, Kb = Lbλ
−1.

Proof The proof is easily obtained from the techniques
in [29] and omitted.
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