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Abstract With symbolic computation and Hirota
method, analytic two-soliton solutions for the cou-
pled nonlinear Schrödinger (CNLS) equations, which
describe the propagation of spatial solitons in an
AlGaAs slab waveguide, are derived. Two types of
coefficient constraints of the CNLS equations to dis-
tinguish the elastic and inelastic interactions between
spatial solitons are obtained for the first time in this
paper. Asymptotic analysis is made to investigate the
spatial soliton interactions. The inelastic interactions
are studied under the obtained coefficient constraints
of the CNLS equations. The influences of parameters
for the obtained soliton solutions are discussed. All-
optical switching and soliton amplification are studied
based on the dynamic properties of inelastic interac-
tions between spatial solitons. Numerical simulations
are in good agreement with the analytic results. The
presented results have applications in the design of
birefringence-managed switching architecture.
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1 Introduction

With the development of soliton theory, the study of
optical solitons has been attractive and active, and great
progress has been made in both experimental and the-
oretical investigations [1–19]. In recent years, soli-
ton interactions are of particular interest because of
their applications to nonlinear optics, plasma physics,
multi-component Bose–Einstein condensates, and bio-
physics [20–24]. In the context of nonlinear optics, spa-
tial soliton interactions are usually described by the
coupled nonlinear Schrödinger (CNLS) equations [1,
25–29].

In the present study, we will examine spatial soliton
interactions in the following CNLS equations [30,31]:
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where u(z, x) and v(z, x) are the envelopes of two
orthogonally polarized modes. z and x denote the
transverse and propagation coordinates, respectively.
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β = c
wnL

2 [001] , and �k represents the phase mismatch.

a1 and a2 represent the self-phase modulation. k1 and
k2 represent the cross-phase modulation. c1 and c2 rep-
resent the four-wave mixing. b1, b2, d1, d2, e1, and
e2 occur only in anisotropic media and require phase
matching. In particular, b1 and b2 contain only the
fields orthogonal to the polarizations that are being
considered and do in fact correspond to the genera-
tion of orthogonal components. In Ref. [30], stationary
solutions for Eq. (1) have been identified. The effects
of refractive anisotropy and induced birefringence on
spatial soliton collisions in an AlGaAs slab waveguide
have been studied numerically, and the interaction
dynamics as a function of crystal orientation and for
varying degrees of linear birefringence have been inves-
tigated [31].

However, to our knowledge, a systematic study on
the coefficient constraints of a j , b j , c j , d j , e j , and
k j ( j = 1, 2) has not been reported in the existing lit-
eratures. This paper will mainly focus on the following
two points: First, the coefficient constraints of a j , b j ,
c j , d j , e j , and k j , which are the key points of this
paper, will be obtained. Second, according to the dif-
ferent types of coefficient constraints of Eq. (1), soliton
interactions will be classified as either elastic or inelas-
tic. The conditions for elastic and inelastic interactions
will be discussed. Numerical simulations will approxi-
mately reflect the analytic results and reveal the mech-
anisms for all-optical switching and soliton amplifica-
tion.

The structure of the present paper will be as fol-
lows. In Sect. 2, with the aid of symbolic computation,
the bilinear forms and analytic two-soliton solutions for
Eq. (1) will be derived by use of the Hirota method, and
the coefficient constraints of Eq. (1) will be obtained.
In Sect. 3, asymptotic analysis will be made, discus-
sion on the inelastic interactions will be performed, and
numerical simulations will be demonstrated in order to
verify the correctness of the analytic results. Finally,
our conclusions will be given in Sect. 4.

2 Bilinear forms and soliton solutions for Eq. (1)

Firstly, we introduce the dependent variable transfor-
mations [32]

u(z, x) = g(z, x)

f (z, x)
, v(z, x) = h(z, x)

f (z, x)
, (2)

where g(z, x) and h(z, x) are the complex differen-
tiable functions, and f (z, x) is a real one. After some
symbolic manipulations, the bilinear forms for Eq. (1)
can be obtained as
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b1h∗ + c1g∗ = 0, (3e)
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where the asterisk denotes the complex conjugate. In
order to insure that g and h are not collinear, we should
assume that b1 = c1 = b2 = c2 = 0. Hirota’s bilinear
operators Dz and Dx [33] are defined by
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Bilinear forms (3) can be solved by the follow-
ing power series expansions for g(z, x), h(z, x), and
f (z, x):

g(z, x) = ε g1(z, x) + ε3 g3(z, x)

+ ε5 g5(z, x) + · · · , (5a)

h(z, x) = ε h1(z, x) + ε3 h3(z, x)

+ ε5 h5(z, x) + · · · , (5b)

f (z, x) = 1 + ε2 f2(z, x) + ε4 f4(z, x)

+ ε6 f6(z, x) + · · · , (5c)

where ε is a formal expansion parameter. Substitut-
ing expressions (5) into bilinear forms (3) and equat-
ing coefficients of the same powers of ε to zero yield
the recursion relations for gn(z, x)’s, hn(z, x)’s, and
fn(z, x)’s. Then, soliton solutions for Eq. (1) can be
obtained.

To obtain the two-soliton solutions for Eq. (1), we
assume that

g1(z, x) = γ1 eθ1 + γ3 eθ2 , h1(z, x) = γ2 eθ1 + γ4 eθ2 ,

(6)

123



Types of coefficient constraints of CNLS equations 1937

where θ1 = m z + p x = (m1 + i m2) z + (p1 + i p2) x
and θ2 = n z +w x = (n1 + i n2) z +(w1 + i w2) x . γ1,
γ2, γ3, γ4, m1, m2, p1, p2, n1, n2, w1, and w2 are all
real constants. Substituting g1(z, x) and h1(z, x) into
bilinear forms (3), and after some calculations, we can
get the relations of the soliton parameters:

m1 = −β p1 p2, m2 = β

2
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1 − p2
2

)
,

n1 = −β w1 w2, n2 = β

2

(
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2

)
, �k = 0,

and

f2(z, x) = A1eθ1+θ∗
1 + A2eθ2+θ∗

2

+ A3eθ2+θ∗
1 + A4eθ1+θ∗

2 ,

g3(z, x) = B1eθ1+θ2+θ∗
1 + B2eθ1+θ2+θ∗

2 ,

h3(z, x) = B3eθ1+θ2+θ∗
1 + B4eθ1+θ2+θ∗

2 ,

f4(z, x) = E1eθ1+θ2+θ∗
1 +θ∗

2 ,

gn(z, x) = 0, hn(z, x) = 0 (n = 5, 7, ...),

fn(z, x) = 0 (n = 6, 8, ...).

In the process of solving f2(z, x), we obtain the fol-
lowing two coefficient constraints of Eq. (1),

γ1 = γ2γ3

γ4
, c1 = −b1γ4

γ3
, c2 = −b2γ1

γ2
,

a1 = k2 + (a2 − k1)γ
2
4

γ 2
3

+ (d2 − d1 − e1 + e2) γ4

γ3
,

(7)

and

k1 = a2, k2 = a1, d2 = e1, e2 = d1. (8)

In both of these constraints, the constants A1, A2,
A3, A4, B1, B2, B3, B4, and E1 can be determined, and
two-soliton solutions for Eq. (1) can be derived. Fur-
thermore, those two coefficient constraints (7) and (8)
of Eq. (1) are the only possible to derive the soliton
solutions.

With the coefficient constraint (7) of Eq. (1), the
soliton solutions for Eq. (1) are similar with the known
results in Refs. [34,35], and are not discussed in more
details here. With the coefficient constraint (8) of
Eq. (1), we derive
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1
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Without loss of generality, we set ε = 1, and the
two-soliton solutions can be expressed as

u(z, x) = g(z, x)

f (z, x)
= g1(z, x) + g3(z, x)

1 + f2(z, x) + f4(z, x)
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2
. (11)

3 Discussion

According to solutions (10) and (11), we will perform
asymptotic analysis, discuss interactions between spa-
tial solitons with different coefficient constraints of

123



1938 W.-J. Liu, M. Lei

Eq. (1), and analyze the influence of parameters for
spatial soliton interactions.

3.1 Asymptotic analysis

(1) Before interactions (z → −∞)

(a) θ1 + θ∗
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(2) After interactions (z → +∞)
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We can substitute the parameters A1, A2, B1, B2, B3,
B4, and E1 into expressions (12)–(19) and then, inves-
tigate spatial soliton interactions. Although Eq. (1)
admits two-soliton solutions, the soliton interactions
in both coefficient constraints (7) and (8) of Eq. (1) are
of different nature. Under the condition of the coef-
ficient constraint (7) of Eq. (1), the solitons demon-
strate the standard elastic interactions, which is a known
result [36], and we will not discuss it in this case. Next,
we will discuss the properties of inelastic interactions
with coefficient constraints (8) of Eq. (1).

3.2 Inelastic interactions with the coefficient
constraint (8) of Eq. (1)

Substituting expressions (9) into expressions (12)–
(19), we can obtain that

|u1−| �= |u1+|, |v1−| �= |v1+|,
|u2−| �= |u2+|, |v2−| �= |v2+|.
Hereby, the interactions between spatial solitons are
inelastic with the coefficient constraint (8) of Eq. (1).
That is, there is an energy exchange between two soli-
tons after the interactions. In Fig. 1, the parameters are
chosen as p1 = 1.8, p2 = −1, w1 = −1.5, w2 = 1,
γ1 = 1, γ2 = 2, γ3 = 4, γ4 = 1, β = 0.5, a1 = 0.5,
d1 = 0.1, e1 = 0.3, k1 = 1.5, a2 = 1.5, d2 = 0.3,
e2 = 0.1, and k2 = 0.5. Two bright solitons propagate
stably without shape changing before interactions. Dur-
ing the interactions, the solitons merge as one soliton
with higher amplitude, and the solitons are compressed.
After the interactions, one of the soliton amplitudes
increases, and the other one decreases.
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Fig. 1 Soliton interactions
between two solitons via
solutions (10) and (11).
Parameters are: p1 = 1.8,
p2 = −1, w1 = −1.5,
w2 = 1, γ1 = 1, γ2 = 2,
γ3 = 4, γ4 = 1, β = 0.5,
a1 = 0.5, d1 = 0.1,
e1 = 0.3, k1 = 1.5,
a2 = 1.5, d2 = 0.3,
e2 = 0.1, and k2 = 0.5

0
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z

33 x
0

11
u 2

0
11 0
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z

33 x
0

11
v 2

0
11

(a) (b)

Fig. 2 Soliton interactions
between two solitons via
solutions (10) and (11).
Parameters are: p1 = 1.1,
p2 = 0.15, w1 = 1.5,
w2 = 0.15, γ1 = −1,
γ2 = 2, γ3 = 4, γ4 = 1,
β = 0.5, a1 = 0.5,
d1 = 0.1, e1 = 0.3,
k1 = 1.5, a2 = 1.5,
d2 = 0.3, e2 = 0.1, and
k2 = 0.5

0

12

z

44
x

0
6u 2

0
6

0

12

z

44
x

0
6v 2

0
6

(a) (b)

The distinct feature of the inelastic interaction
process is that the interacting dynamical behavior
allows one of the solitons to get suppressed, while the
other one to get enhanced. The energy exchange phe-
nomenon between two solitons occurs, but the total
energy of two solitons is conserved, and the exchange
phenomenon satisfies the energy conservation of soli-
tons before and after interactions. The features of
energy exchange give possible applications for all-
optical switching and soliton amplification. For the
soliton amplification, the amplifier does not require
any external amplification medium, and the amplifi-
cation process does not introduce any noise. More-
over, the switching rate and signal-to-noise ratio for
the all-optical switching or soliton amplifier can be con-
trolled through adjusting the parameters related to solu-
tions (10) and (11) with the coefficient constraint (8)
of Eq. (1).

The solitons can also be inputted in phase as shown
in Fig. 2. During the propagation, the interactions
between solitons show the periodical changes. The two
solitons attract and repel each other periodically and
form the bound solitons. The bound solitons exchange
their energy periodically. By changing the value of a j ,
d j , e j , and k j , we can change the amplitudes of spatial

solitons in Fig. 3. In the above analysis, the value of
a2, d2, e2, and k2 is both positive. In fact, as long as
k2γ

2
1 + d2γ1γ2 + e2γ1γ2 + a2γ

2
2 is positive, the value

of a2, d2, e2, and k2 can be negative.

3.3 Numerical simulations’ results

To verify the correctness of the analytic results,
the numerical simulation based on split-step Fourier
method will be investigated. Figures for v solutions are
not discussed in this subsection for the sake of sim-
plicity. The propagation of spatial solitons is shown in
Fig. 4. The stable soliton can be obtained, and the inter-
action between spatial solitons is inelastic in Fig. 4a.
After the interaction, the spatial solitons exchange their
energy. One of the spatial solitons is amplified, and the
all-optical switching function is achieved. Those results
are in agreement with the analytic results in Figs. 1, 2,
and 3.

4 Conclusions

In conclusion, the CNLS equations [see Eq. (1)], which
can be used to describe the propagation of spatial soli-
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Fig. 3 Soliton interactions
between two solitons via
solutions (10) and (11).
Parameters are: p1 = 1.8,
p2 = −1, w1 = −1.5,
w2 = 1, γ1 = 1, γ2 = 2,
γ3 = 4, γ4 = 1, β = 0.5,
a1 = 0.3, d1 = 0.1,
e1 = 0.3, k1 = 1.0,
a2 = 1.0, d2 = 0.3,
e2 = 0.1, and k2 = 0.3

0

4

z

33 x
0

11
u 2

0
11 0

4

z

33 x
0

11
v 2

0
11

(a) (b)

Fig. 4 Numerical
simulations of soliton
interactions between two
solitons. The corresponding
initial conditions are
u = sech(x +5)exp(15i x)+
0.8sech[0.8(x −
5)]exp(−10i x)
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tons in an AlGaAs slab waveguide, have been investi-
gated analytically. With the help of symbolic compu-
tation and Hirota method, bilinear forms (3) and two-
soliton solutions (10) and (11) for Eq. (1) have been
obtained. The soliton interactions have been studied
through the asymptotic analysis. Attention needs to be
paid to the following issues:

1. The key point of this paper lies in the obtaining of
two coefficient constraints (7) and (8) of Eq. (1),
which can divide the soliton interactions into two
classes: elastic and inelastic interactions. In the con-
dition of coefficient constraint (7) of Eq. (1), the
soliton interaction has been elastic. With coefficient
constraint (8) of Eq. (1), the soliton interaction has
been inelastic.

2. For the inelastic interaction, there has been an
energy exchange between two solitons after the
interactions (see Fig. 1). The features of energy
exchange give the possible applications for all-
optical switching and soliton amplification. Numer-
ical simulations have been made to support the
correctness of the conclusions. For the all-optical
switching, the switching rate and signal-to-noise
ratio can be controlled through adjusting the para-

meters for solutions (10) and (11). For the soliton
amplification, the amplifier does not require any
external amplification medium, and the amplifica-
tion process does not introduce any noise.

3. Either soliton interactions are elastic or inelastic,
the bound solitons can be formed (see Fig. 2). The
period and intensity of soliton interaction can be
controlled with the changing value of wave num-
bers p1, p2, w1, and w2. The bound states of soli-
tons can also be controlled when the amplitude of
the initial incident pulse changes.

The investigation of this paper provides a theoretical
foundation for studying the elastic or inelastic interac-
tions in CNLS equations. Results may lead to excit-
ing applications in nonlinear optics, particularly in the
design of birefringence-managed switching architec-
ture.
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