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Abstract This paper examines the effect of using
independent finite rotation field in the large displace-
ment analysis of flexible bodies. This finite rotation
description is at the core of the large rotation vec-
tor formulation (LRVF), which has been used in the
dynamic analysis of bodies experiencing large rota-
tion and deformation. The LRVF employs two inde-
pendently interpolated meshes for describing the flexi-
ble body dynamics: the position mesh and the rotation
mesh. The use of these two geometrically independent
meshes can lead to coordinate and geometric invari-
ant redundancy that can be the source of fundamen-
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tal problems in the analysis of large deformations. It
is demonstrated in this paper that the two geometry
meshes can define different space curves, which can
differ by arbitrary rigid-body displacements. The mate-
rial points of the two meshes occupy different positions
in the deformed configuration, and as a consequence,
the geometries of the two meshes can differ signifi-
cantly. The paper also discusses other issues including
the inextensibility of the rotation mesh. Simple exam-
ples are presented in order to shed light on these fun-
damental issues.

Keywords Flexible multibody dynamics · Large
rotation vector formulation · Rotation coordinates ·
Finite element geometry

1 Introduction

The choice of the geometry description used in the
large displacement analysis can be a challenge, par-
ticularly in the case of finite rotations. An example of a
large displacement analysis formulation is the floating
frame of reference (FFR) formulation, which is widely
used when the bodies experience finite rigid-body rota-
tion and small deformation. This formulation leads to a
local linear elasticity problem that allows for exploiting
model-order reduction techniques [1]. Because of the
need for the simulation of rigid-body motion and large
deformation, several non-linear theories were proposed
in the two fields of computational mechanics and flex-
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1830 J. Ding et al.

ible multibody system (MBS) dynamics. In the co-
rotational formulations, a coordinate system is used
for each finite element (FE) to define both the elas-
tic and inertia forces [2]. In the absolute nodal coor-
dinate formulation (ANCF), on the other hand, the
rigid and flexible body motion is defined using global
coordinates including Cartesian position and gradient
coordinates [3–5]. Another FE formulation used for
the description of large rotation and large deforma-
tion problems is the large rotation vector formulation
(LRVF), which is supposed to be a non-incremental
procedure intended mostly for beam and plate appli-
cations [6]. Simo and Vu-Quoc developed this for-
mulation by describing the geometrically exact beam
dynamics based on the Kirchhoff–Love model devel-
oped by Reissner [7,8]. Reissner’s work represents the
foundation of the large-displacement finite-strain the-
ory of shear-deformable beams [9]. Reissner formu-
lated a one-dimensional large-strain beam theory for
plane deformations by first deriving the local equa-
tions of beam equilibrium with the assumption of a
plane and undistorted cross-section. He then developed
generalized constitutive relations at the beam-theory
level based on generalized strain measures such as the
bending, axial force, and shear force strains. The vir-
tual work of the internal, external, and boundary forces
was then derived to obtain the governing equations.
Simo and Vu-Quoc expanded upon this static theory
to dynamics with the essence of this approach lead-
ing to accomplishing a fully non-linear plane beam
theory that can account for finite rotations as well as
finite strains. Absolute positions and absolute finite
angles are used as generalized coordinates. The posi-
tion and rotation fields are interpolated independently
in the LRVF, giving rise to questions with regard to the
redundancy in the geometric description. The rotation
field can be used to define a tangent vector that defines
a space curve which possesses geometric properties,
such as curvature and torsion, which can significantly
differ from those obtained using the position field [10].
In fact, the nodes of the position-based (PB) interpo-
lation can occupy positions in space, which are dif-
ferent from the positions occupied by the nodes of the
rotation-based (RB) interpolation. Furthermore, as will
be shown in this paper, the rotation mesh can define
a beam that is inextensible, leading to an additional
inconsistency in the LRVF geometry representation.

Several notable contributions by other authors were
based on Simo and Vu-Quoc’s geometrically exact

beam theory, such as the work of Romero [11] who
examined the use of interpolation types for the rota-
tion field. The interpolations types were discussed in
terms of advantages and drawbacks using non-linear
rod models to provide qualitative and quantitative eval-
uation of four interpolation techniques with the goal to
assess each method. The best overall properties were
obtained with models using an orthogonal interpolation
in the rotation group, where the objectivity of the con-
tinuum model was preserved. This method was orig-
inally proposed by Crisfield and Jelenic [12], where
it was also shown that the application of linear inter-
polation techniques to finite rotation fields of either
incremental or iterative rotations is non-objective and
is path-dependent. Objectivity is achieved when the
geometry is invariant under rigid-body transformation.
When this condition is met, the formulation is said to
be objective, otherwise it is non-objective. In order to
address this problem, simple algorithms that achieve
objectivity were developed to test finite rotation formu-
lations to help identifying the source of the problems
and deal with the unavoidable singularities associated
with the use of some finite rotation parameters [13].
Although the algorithms can handle the finite rotations
through a rescaling operation, the separation of dis-
placement and rotation fields still exists.

The objective of this paper is to analytically and
numerically examine and demonstrate the fundamen-
tal LRVF redundancy problem. It is shown in this paper
that the use of two independent interpolations for the
position and rotation leads to two independent meshes
with nodes that occupy different positions in space
in the deformed configuration. As a consequence, the
material points of the rotation mesh are different from
the material points of the position mesh. Furthermore,
the space curve resulting from the rotation mesh is inex-
tensible regardless of the axial load applied. Another
contribution of this paper is to show that, while shear is
an independent mode of deformation, the independent
position and rotation interpolations cannot, in general,
lead to the same geometric representation. As a con-
sequence, the use of curvature defined using the rota-
tion mesh to describe the bending of the position mesh
cannot be justified. Numerical examples are presented
for the first time in this paper to shed light on these
fundamental issues and concepts. This paper is orga-
nized as follows. Section 2 demonstrates using a simple
example that two independent kinematic descriptions
cannot be used, in general, to obtain the same geom-

123



Use of independent rotation field 1831

etry. The brief discussion presented in Sect. 2 is nec-
essary in order to clearly understand the LRVF kine-
matic assumptions and the potential problems which
can develop from using independent interpolations for
the position and rotation. Section 3 shows that a rota-
tion mesh implicitly defines another space curve whose
geometric properties may differ from an independently
interpolated position mesh in a three-dimensional case.
The LRVF kinematic description and equations of
motion are presented in Sect. 4 for the planar case,
where the definitions of the strains are also included.
Section 5 compares the curvatures obtained using the
PB and RB interpolations and shows how they can vary
significantly. This section will also show additional
complications resulting from using an independent RB
interpolation such as the rotation field’s inextensibility
when some assumptions related to the definition of the
tangent vector are made. Section 6 presents numerical
results obtained using the LRVF, including a robot arm
subjected to a specified angular motion and an axial
load. The numerical results obtained, which demon-
strate that the nodes of the two meshes occupy differ-
ent positions in space, shed light on the fundamental
redundancy issue in the definition of inertia and strains.
Conclusions are presented in Sect. 7.

2 Background

In this section, a simple example is used to demon-
strate that two independent kinematic descriptions can
possess significantly different geometries. This issue
is fundamental in understanding the basic assumptions
and the redundancy problem associated with the use of
some large displacement FE formulations. There are
two types of redundancies; one which can be eliminated
systematically using a constraint or penalty approach,
while the other cannot be eliminated and this second
type can pose fundamental problems since it is in viola-
tion of basic mechanics motion description principles.

In order to explain the second type of redundancy
which cannot be resolved, the two modes of deforma-
tion shown in Fig. 1 are considered. Figure 1a shows an
example of a simple mode shape that defines a displace-
ment field u1 (x, t) = (

sin
(
πx
L

))
q1 (t), while Fig. 1b

shows a second mode shape that defines another dis-
placement field u2 (x, t) = (

sin
( 2πx

L

))
q2 (t) with q1

and q2 being the amplitudes of the first and second
independent mode shapes, respectively, for an element
of length L with x as the axial coordinate of the beam,
and t as time. Even in this simple case, the two indepen-
dent fields u1 and u2 have significantly different geo-

Fig. 1 Mode shape
displacement and curvature

123



1832 J. Ding et al.

metric properties. By applying forces or constraints, u1

and u2 cannot be brought to be the same. As a conse-
quence, the material points of the curve defined by the
field u1 will occupy positions that are different from
the positions occupied by the material points of the
curve defined by the field u2 regardless of the forces
and the constraints used. For example, the constraint
condition that u1 (x, t) = u2 (x, t) leads to the trivial
solution q1 (t) = q2 (t) = 0 which corresponds to the
undeformed reference configuration.

One can also show, using the simple example of this
section, that the geometric properties of two indepen-
dent fields can be significantly different. As a conse-
quence, it cannot be justified to assume that the geo-
metric properties, obtained using one field, are the
same as those of the other field. For example, using
the assumption of small change in the length of the
beam, the curvatures of the curves defined by the
two fields u1 (x, t) and u2 (x, t) can be approximated
by differentiating twice with respect to the parameter
x as

(
∂2u1/∂x2

) = − (
π2/L2

) (
sin

(
πx
L

))
q1 (t) and(

∂2u2/∂x2
) = − (

4π2/L2
) (

sin
( 2πx

L

))
q2 (t). These

two equations show that for the same amplitudes, the
values of the curvature of u2 are different from the val-
ues of the curvature of u1. The differences in curvature
can be seen clearly in Fig. 1c where the same coordinate
amplitude q is used for the two fields.

The concept discussed in this section is important to
understand that the nodes in the position and rotation

meshes occupy different positions in space as shown
in later sections of this paper. While the displace-
ment solution obtained using the position mesh in
the LRVF may compare favorably with the solution
obtained using other formulations, further investigation
into derived geometric properties such as curvature and
torsion can show greater geometric inconsistency that
sheds light on more fundamental formulation issues.

3 RB geometric representation

In the preceding section, it was shown, using a simple
example, that in general two different shapes cannot be
brought together perfectly regardless of the magnitude

of the forces or type of constraints applied. In the LRVF,
two independent interpolations are used for the position
and finite rotation fields. The curve defined using the
rotation field has geometric properties different from
those of the curve defined by the position field. This
section explains how the rotation field can be used to
define a space curve (another position field) expressed
in terms of finite rotations.

A three-dimensional space curve can be systemat-
ically defined in a global coordinate system XY Z by
introducing a rotation field that defines the orientation
of coordinate systems at points on the space curve. One
can then choose an appropriate sequence of the three
Euler angle successive rotations to reach any orienta-
tion in space. For example, if s is the space curve arc
length parameter, one can use the interpolated rotation

vector θ (s) = [
ψ (s) φ (s) θ (s)

]T
to define the ori-

entation of coordinate systems with origins attached
to material points on the space curve. If Xi Y i Zi is
the coordinate system at an arbitrary material point
i defined by the arc length parameter s on the space
curve, one can use the Euler angle sequence defined by
an angle ψ (yaw) about the Zi axis, followed by a sec-
ond rotation φ (roll) about the −Y i axis, followed by
a third and final rotation θ (pitch) about the −Xi axis
[14]. Using this sequence of rotations, the transforma-
tion matrix that defines the orientation of the coordinate
system at s can be written as [15]

A =
⎡

⎣
cosψcosθ −sinψcosφ + cosψsinθsinφ −sinψsinφ − cosψsinθcosφ
sinψcosθ cosψcosφ + sinψsinθsinφ cosψsinφ − sinψsinθcosφ
sinθ −cosθsinφ cosθcosφ

⎤

⎦. (1)

In order to construct a curve using the rotation field,
the first column of the transformation matrix can be
considered as the unit tangent to the space curve at

s. Let r(s) = [
x y z

]T
be the vector that defines

the space curve. The location of an arbitrary point on
the space curve as a function of the arc length can
be determined by integrating the equation dr = tds.
This equation with the use of (1) can be written as
r(s) = r0 + ∫

tds. Substituting the tangent vector t
into this equation leads to

r (s) = r0 +
s∫

s0

⎡

⎣
cosψ (s) cosθ (s)
sinψ (s) cosθ (s)
sinθ (s)

⎤

⎦ ds, (2)
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where subscript 0 refers to an initial value, and t =[
cosψcosθ sinψcosθ sinθ

]T
is the unit tangent vector

at the arbitrary point i on the space curve. The preced-
ing equation can be used to define a curve based on
the rotation field without resorting to a PB interpola-
tion. It is important to note that, even in the case of
using a linear rotation field, the space curve of (2) is
a highly non-linear function since it contains trigono-
metric functions.

Differentiating the tangent vector with respect to the
parameter s defines the curvature vector as

dt
ds

=
⎡

⎣
−ψ ′ sinψ cos θ − θ ′ cosψ sin θ
ψ ′ cosψ cos θ − θ ′ sinψ sin θ
θ ′ cos θ

⎤

⎦ , (3)

where ψ ′ = ∂ψ/∂s and θ ′ = ∂θ/∂s. The norm of this
vector defines the curve curvature as

κ =
∣∣∣∣
dt
ds

∣∣∣∣ =
√
(ψ ′ cos θ)2 + (θ ′)2. (4)

Furthermore, the normal vector can be defined using
(3) and (4) as

n = (dt/ds)

|dt/ds|

= 1

κ

⎡

⎣
−ψ ′ sinψ cos θ − θ ′ cosψ sin θ
ψ ′ cosψ cos θ − θ ′ sinψ sin θ
θ ′ cos θ

⎤

⎦. (5)

The curve torsion can then be evaluated by differ-
entiating the curvature vector of (3) with respect to s
one more time. Therefore, the geometric properties of
the curve can be uniquely defined. Furthermore, if the
angles are functions of time, the curvature will also
change as function of the angles, and therefore, an arbi-
trary large deformation can be captured.

The curvature and torsion, obtained using the finite
rotation interpolation, are often used to formulate the
strains in the LRVFs. It is implicitly assumed that the
RB curvature and torsion are the same as the curva-
ture and torsion of another space curve obtained using
an independent position interpolation. This important
issue will be discussed in more detail in later sections
of this paper.

4 Large rotation vector formulation

While in the preceding section, general three-
dimensional analysis is used to define a space curve
using the finite rotation interpolation, the LRVF consid-
ered in this paper can be clearly addressed without delv-
ing into the details of the spatial analysis. The LRVF
incorporates two independent interpolations, one PB
and one RB; this brings up the issue of redundancy
despite the fact that shear is an independent defor-
mation mode. As previously shown, two independent
meshes cannot be brought together regardless of the
constraints and forces used. In this section, the kinemat-
ics and dynamic equations of the LRVF are explained
using planar analysis in order to better understand and
interpret the results of the examples that will be pre-
sented in later sections of this paper. To this end, con-
sider a two-dimensional flexible beam of length L , with
one end at the origin of the inertial frame XY . The
beam is allowed to rotate about the Z axis, but the
entire motion of the beam is constrained to the XY
plane.

4.1 LRVF kinematics

In the LRVF, two independent interpolations are used
for the position and finite rotations. These two indepen-
dent fields can be written, respectively, as r0 (x, t) =
Sr (x) er (t) and θ (x, t) = Sθ (x) eθ (t), where x is the
axial coordinate, t is time, subscript 0 refers to the beam
centerline, Sr and Sθ are shape function matrices, and
er and eθ are vectors of nodal coordinates. The position
vector of an arbitrary point P on a FE j may be defined
as follows

r j
P (x, t) = r0(x, t)+ yt2(x, t), (6)

where r0(x, t) = [
x + u v

]T
denotes the deformed

position of the beam axis (see Fig. 2), y is a coordinate
that defines the locations of points on the planar cross-
sections, and t2 is a vector in the direction of the cross-
section. Scalars u and v represent the displacements of
the beam material points along the global axes X and
Y , respectively. The position vector r0 and the moving
vectors t1 and t2 are defined with respect to the inertial
frame. The moving vectors are parameterized by means
of the time-dependent finite angle θ as
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A = [
t1 t2

]
, t1 =

[
cos θ
sin θ

]
, t2 =

[− sin θ
cos θ

]
.

(7)

In Eq. (7), A is the orientation matrix defined at
a point on the beam centerline. The orientation of
the cross-section is therefore kinematically uncoupled
from the position field in order to allow accounting for
the shear.

It is important to point out that while the LRVF kine-
matic description accounts for the shear deformation,
the beam cross-section in this description is assumed
to be rigid and planar. An axial force or stretch of the
beam does not lead to a change in the cross-section
dimensions. This formulation is, therefore, conceptu-
ally different from the ANCF which allows for the shear
and warping using fully parameterized elements. The
two formulations capture different modes of deforma-
tion, and therefore, the LRVF and the ANCF can be
compared only when using very specific and simpli-
fied examples.

4.2 Energy expressions

For the most part, the LRVF implementation is based
on the co-rotational approach. Following the work pre-
sented in [6] and using the co-rotational procedure
description, no distinction is made in most LRVF inves-
tigations between the spatial coordinate x and the beam
centerline arc length s. It is important, however, to point
out that in the case of large deformation and when non-
incremental solution procedure is used, one must dis-
tinguish between x and s in order to accurately define
the beam geometry. Based on the kinematic description
in Eq. (6), the kinetic energy of a beam can be written
as [6]

T = 1

2

L∫

0

(Aρ ṙT
0 ṙ0 + Iρ θ̇

2)dx, (8)

where L is the length of the element in the longitudi-
nal direction, and the inertia constants are defined as
Aρ = ∫ h/2

−h/2 ρ(x, y)dy and Iρ = ∫ h/2
−h/2 ρ(x, y)y2dy,

respectively, where ρ is the mass density and h is the
beam height. The resulting LRVF mass matrix is con-
stant only in the case of planar analysis. In the case of
three-dimensional analysis, the resulting LRVF mass

matrix is highly non-linear. This is another fundamental
difference between the LRVF and ANCF since ANCF
FEs always lead to a constant mass matrix.

The LRVF potential energy, however, becomes non-
linear and is defined by the axial, bending, and shear
components as

V = 1

2

L∫

0

(

EAε2
xx + GAsε

2
xy + EI

(
dθ

dx

)2
)

dx, (9)

where EA, GAs, and EI are the axial, shear, and flexural
stiffnesses of the beam, and εxx and εxy are the axial and
shearing strains, respectively, which can be defined as

εxx = tT
1 r′

0 − 1, εxy = t
T
2 r′

0, (10)

where r′
0 = ∂r0/∂x = (∂r0/∂s) (∂s/∂x), in which s

is the arc length of the beam centerline. From Eq. (10),
it is clear that the strains are defined using both inter-
polation meshes which can have very different geom-
etry. If the independent rotation mesh is used with the
assumption that x ≈ s, then r′

0 = t1 and when r′
0

is substituted into (10), the axial and shearing strains
become εxx = tT

1 t1 − 1 = 0 and εxy = tT
2 t1 = 0,

respectively, and are therefore constant. For a consis-
tent geometry description, the two meshes should yield
the same location for the material points at which the
strains are computed. This presents a brief proof of
the inextensibility of a beam when using independent
angular coordinates and can easily be generalized to
the three-dimensional case, leading to an inconsistency
in the LRVF geometry representation. Further analysis
into beam inextensibility, as well as other issues asso-
ciated with independent rotation interpolations, will be
shown in greater detail in Sect. 5.

4.3 Equations of motion

The equations of motion of a planar body in the LRVF
utilize uncoupled inertia terms and can be systemati-
cally obtained by means of Hamilton’s principle [6].
Accordingly, it is required that

L =
t2∫

t1

(T − V )dt (11)
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be stationary for arbitrary paths connecting two points
at time t1 and t2 in the configuration space. Substituting
the kinetic and potential energies previously defined in
(8) and (9), respectively, into (11) with standard manip-
ulations yields the following equations for the planar
case

Aρ r̈0 −
[

ACAT
[

1 + u′ − cos θ
v′ − sin θ

]]′
− n̄ = 0

Iρ θ̈ − EIθ ′′ −
[−v′

1 + u′
]T

ACAT
[

1 + u′ − cos θ
v′ − sin θ

]

−m̄ = 0,

(12)

where

C =
[

EA 0
0 GAs

]
, (13)

and EA and GAs are the axial and shear stiffness
of the beam, respectively, Aρ and Iρ are the respec-
tive inertia constants defined in the previous subsec-
tion, and (•)′ = d(•)/dx . The external force vector
and external moment acting on the deformed cross-
section of the beam are represented in these equations

as n̄ = [
n̄1 n̄2

]T
and m̄, respectively, while the trans-

formation matrix A is defined previously in (7). Note
that the equations shown in (12) constitute the system
of non-linear partial differential equations governing
the response of the system and neglect the effects of
viscous friction.

5 Comments on the rotation interpolation

The interpolation of angles with application to the
analysis of large displacement of beams and plates has
posed a number of challenges with regard to its use in
computer simulations. This section intends to provide
discussions on some limitations and difficulties which
are characteristic of the interpolation of large rotations
in flexible MBSs.

The LRVF uses two independent meshes which can
cause redundancy in the geometric definition. This
issue especially affects the definition of the strains of
the beam, which is at the core of the formulation and
its applicability. Another issue, even though algorith-
mically avoidable, is the singularity that appears when
parameterizing rotations using a minimal set of angular

parameters. The mesh defined by these angular parame-
ters is, in this section, shown to be inextensible, which
makes it unsuitable to capture axial deformation. Other
methods that employ linearized angles, such conven-
tional beams used with the co-rotational formulation,
do not face some of the problems discussed in this sec-
tion. Nonetheless, the use of linearized angles entails
approximations that can burden the computational effi-
ciency and accuracy and limits the applicability of
the method in the case of high rotational speeds [16].
The subsections presented hereafter discuss these prob-
lems in more detail either by deriving simple proofs
or including state-of-the-art solutions to the aforesaid
problems.

5.1 Redundancy of the strain definition

The use of two independent meshes to describe the
same geometry causes redundancy in the definition of
strains since two independent shapes cannot be brought
together, as shown in Sect. 2. This issue can be easily
exemplified using the strains by deriving the expres-
sions for the curvature using both FE meshes. In the
case of planar beam elements, the tangent vector along
the space curve t1, defined in Eq. (7), can be differ-
entiated with respect to parameter s to determine the
curvature vector as

dt1

ds
=

[−θ ′ sin θ
θ ′ cos θ

]
, (14)

where θ ′ = ∂θ/∂s. The norm of this vector defines the
RB curvature as

κ rot =
∣∣
∣∣
dt1

ds

∣∣
∣∣ = θ ′. (15)

The preceding definition of the curvature is based on
the rotation mesh. If an independent position field is
used, there exists, however, a different definition of the
geometry invariants that depend on the assumed field
of the position mesh. The geometric curvature based
on the position mesh may be defined by the following
equation

κpos = |rss | = |rx × rxx |
|rx |3

, (16)
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where the subscript x denotes a spatial derivative with
respect to the beam longitudinal coordinate. The defi-
nition in (16) requires the computation of second spa-
tial derivatives, which are geometrically unrelated to
the expression in Eq. (15), based on the rotation mesh.
Equations (15) and (16) are an example of the redun-
dancy in the geometry definition that results from the
use of two independent meshes. The preceding two
equations demonstrate that the use of two independent
meshes leads to two different sets of geometry invari-
ants (curvature and torsion). In the LRVF, the curvature
shown in (15) is commonly used to define the elastic
forces.

5.2 Singularities in the three-dimensional analysis
of beams

The study of the three-dimensional body rotation
requires addressing the known problem of singulari-
ties. Flexible multibody formulations that use angles
to describe large deformation can make use of minimal
(e.g., Euler angles) or non-minimal (e.g., Euler parame-
ters) rotation parameters to this end. When singularities
occur, the simulation of the motion of the system does
not proceed smoothly and this often causes the simula-
tion to stop. Romero [11] discussed different rotation
interpolation strategies in four different methods in a
series of tests for geometrically exact rods. Romero
found in his work that two of his interpolation strate-
gies (orthogonal interpolation by local rotation updates
and non-orthogonal interpolation) possess singulari-
ties. The purpose of these investigations and several
others was to cut down on extra computational costs
and avoid any potential error accumulation. Within the
context of the LRVF, rescaling operations of a minimal
set of rotation parameters have been suggested in order
to avoid the singularities associated with the interpola-
tion of rotation [13]. In the latter publication, Bauchau
et al. [13] analyzed the interpolation of finite rotations
by developing and testing two algorithms dealing with
geometrically exact beams. The first algorithm inter-
polated the rotation field by its rotation parameters at
the nodes of each FE and removed any possible effects
of rescaling from the interpolation process. The second
algorithm interpolated the rotation field by incremen-
tal nodal rotations defined by the rotation parameters
at the nodes of each finite element. In both algorithms,
the task of rescaling is mandatory to avoid simulation
failure.

In summary, the treatment of the interpolation
of rotations requires the use of algorithms specifi-
cally devised to avoid the accumulation of error and
the well-known singularities associated with mini-
mal sets of rotation parameters. This problem can be
avoided using non-RB FE formulations such as the
ANCF.

5.3 Inextensibility of the rotation field

The LRVF relies on both the rotation and position mesh
for the calculation of strains. When calculating the
strains, both meshes contribute to the geometric def-
inition of strains (see (10) or [6]). In the large defor-
mation analysis of beams, a consistent description of
geometry is necessary since strains can reach high val-
ues. However, RB meshes can be inextensible, which
adds a significant anomaly in the LRVF description of
the large deformation. Another issue with regard to the
use of a RB position representation is its inability to
capture accurately axial and shearing strains in vari-
ous applications. This can be especially problematic in
situations where the beam stiffness is particularly low.
Beam inextensibility when using a rotation mesh can be
proven in multiple ways using a two-dimensional beam
element example. For a RB mesh θ (x, t) that employs
the axial coordinate x as a parameter, one can write
dr0 = (∂r0/∂x) dx and use this equation to define a
space curve. If ∂r0/∂x is assumed to be the first col-
umn of a rotation matrix based on the assumed rotation
field, the position vector of an arbitrary point can be
defined by rotation parameters instead of the previously
defined position coordinates uand v as

r0 (x, t) =

⎡

⎢⎢
⎣

x +
x∫

0
(cosθ (x̄, t)− 1) dx̄

x∫

0
sinθ (x̄, t) dx̄

⎤

⎥⎥
⎦ , (17)

where x is the axial parameter of the beam, and t is
time. Note that in Eq. (7), it is assumed that ∂r0/∂x
is a unit tangent. Figure 2 shows that u′ = cos θ −
1 and v′ = sin θ in the rotation mesh, which leads
to r′

0 (x, t) = [
1 + (cosθ (x, t)− 1) sinθ (x, t)

]T =
[

cosθ (x, t) sinθ (x, t)
]T = t1, where r′

0 = ∂r0/∂x .
The strain measures of a beam using a RB mesh can
then be defined as
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Fig. 2 Kinematic definition
of a beam in the LRVF

εrot
xx = tT

1 r′
0 − 1 = [

cos θ sin θ
] [

cos θ sin θ
]T − 1 = 0

εrot
xy = tT

2 r′
0 = [ − sin θ cos θ

] [
cos θ sin θ

]T = 0

κ rot = dθ(x,t)
dx = θ ′

⎫
⎪⎬

⎪⎭
,

(18)

where εrot
xx and εrot

xy are the axial and shearing strains,
respectively, and κ rot is the RB curvature. The mov-
ing vectors t1 and t2 are defined in (7) with respect to
the inertial frame and shown in Fig. 2. Equation (18)
shows that the axial and shearing strains are constant
throughout.

A second proof of beam inextensibility when using
the rotation mesh can be shown by defining the
current length of a beam as dl2 = drT

0 dr0 =
dx

[
cosθ(x, t) sinθ(x, t)

] [
cosθ(x, t) sinθ(x, t)

]T
dx

= (dx)2 = (dl0)2. This shows that, when using the
RB mesh parameter to define a unit tangent as the first
column of the rotation matrix, the current length of a
beam l will be equal to its initial length. Therefore, the
described beam cannot be stretched and will retain its
original length, which leads to inaccuracy when cap-
turing the precise deformation of a beam. A specific
example highlighting beam inextensibility of the rota-
tion mesh will be shown in the numerical results section
to better shed light on this fundamental issue.

The fact that a RB interpolation leads to an inex-
tensible beam can be also demonstrated in the case

of spatial analysis. Using the rotation coordinates, the
tangent vector can always be defined as the first col-
umn of a rotation matrix. This column of the rotation
matrix is always a unit vector regardless of the para-
meterization used (x or s). The angles at an arbitrary
point on the beam centerline can be defined in terms
of any parameter; coordinates in the reference config-
uration are often used as parameters to define the rota-
tion mesh (Lagrangian description). The use of para-
meters defined in the current deformed configuration
will require a different treatment and different solution
procedure. Nonetheless, the first column of the rotation
matrix expressed in terms of these angles remains a unit
vector, and in the reference configuration without any
loss of generality s = x .

5.4 Energy conservation

One widespread field of research within the con-
text of flexible multibody dynamics is linked to the
study of energy and momentum preserving schemes.
The total energy of a non-dissipative system must
remain constant throughout the simulation. When the
LRVF description was systematically incorporated into
flexible multibody systems codes, the use of con-
straints became mandatory. These constraints cause
non-physical high-frequency oscillations in the solu-
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tion. These oscillations, in turn, together with the con-
servation of energy and momentum of the integration
algorithms, have been studied in numerous investiga-
tions. One such investigation using beams was pre-
sented by Bauchau et al. [17]. In their work, it was
discussed that high-frequency oscillations hindered the
convergence of the equations of motion and that a
smaller time step did not necessarily help this problem.
The higher frequency oscillations also made strict total
energy preservation strenuous to accomplish. Bauchau
and Theron [18] later discussed an energy-decaying
scheme for non-linear beam models with the main focus
being on the derivation of an algorithm presenting with
high-frequency dissipation. The derived energy decay
algorithms followed the parameter that the total energy
at a time step must be equal to or less than that of
the previous time step. It was also mentioned that this
approach could be used as a time-step control parame-
ter with the concept that if the total energy was larger
than it was at the previous time step, then a smaller
time step would be used. Some of this theory was used
by Romero and Armero [19] when they developed a
FE formulation using geometrically exact rods. These
rods used a time-stepping algorithm which improved
the rod’s dynamics using the preservation of total lin-
ear and angular momentum, as well as the conserva-
tion of the total mechanical energy H (or Hamiltonian
H = T + V , where T and V are the kinetic and poten-
tial energy, respectively).

Besides the challenge of an energy and momentum
preserving numerical integration, the definition of the
strains using two independent meshes can lead to an
inconsistent definition of the strain energy, which uti-
lizes strain measures defined by the two meshes, when
large deformation occurs. This can be attributed to the
inextensibility of the rotation field in the way presented
in the preceding subsection. According to the axial and
shearing stresses defined in (10), the potential energy
definition uses independently interpolated position and
rotation meshes. As shown earlier, these meshes should
describe the same geometry. However, the beam mater-
ial points using LRVF cannot be properly and uniquely
associated with the rotation and position meshes, and
the same material point can greatly differ in location
between the two meshes. This can cause inaccuracies
in the definition of the strain energy. As a beam moves
during a simulation, the differences in the position and
rotation meshes can become considerably large and this
may cause some sort of energy drift. While the kine-

matics used in the LRVF, as traditionally used by the
FE community, can be accurate for the description of
small deformation, the study of the geometry of large
deformation on the basis of two independent meshes
can lead to inconsistency.

6 Numerical examples

A flexible robot arm rotating about one end is consid-
ered to illustrate the effect of the use of the rotation
interpolation in the large rotation–large deformation
analysis of beams. To this end, the LRVF is used, as
detailed in by Simo and Vu-Quoc [6]. The robot arm
is represented by a beam whose first node is connected
to the ground by a revolute joint. Several cases of an
angle-driven flexible robot arm are considered to better
demonstrate the redundancy of the geometry definition.
For the figures in this section, Eq. (2) is used to obtain
the space curve from the rotation mesh. The dimensions
of the beam are assumed to be the same as reported by
[6], while the axial, shear, and flexural stiffnesses of
the arm for each case are shown in Table 1. The FE
mesh consists of ten elements of equal length with lin-
ear interpolation functions for both displacement and
rotation. The equations of motion are obtained using
selective Gauss quadrature.

In the first case, the robot arm is repositioned to an
angle of 1.5 rad from its initial position by prescribing
the rotation angle as a linear function of time, as shown
in Fig. 3a. The sequence of motion during this reposi-
tioning stage is depicted in Fig. 4, where one snapshot
of the beam is depicted at each second. This figure
shows that when the stiffness is high and the angu-
lar velocity is low, the material point position results
obtained using the position and rotation meshes can
be in a good agreement. In the second case, the same
prescribed rotational displacement is used with lower
element stiffness. More significant differences may be
observed between the two curves in this case, as shown
in Fig. 5: The differences between geometry represen-
tations can be observed from the first steps of the simu-
lation. The third case involves the robot arm reposition-
ing to an angle of 1.5 rad from its initial position in 4.5 s,
as shown in Fig. 3b, with the elemental stiffness being
the same as in the previous simulation model. Figure
6 shows that the increased angular velocity with a low
stiffness leads to the meshes differing greatly in terms
of curvature and nodal position. Figure 7 shows fur-
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Table 1 Model parameters Fig. 4 parameters Figs. 5 and 6 parameters Figs. 7, 8, and 9 parameters

EA (N) 1.00 × 109 1.00 × 107 1.00 × 106

GAs(N) 5.00 × 108 5.00 × 106 5.00 × 105

EI (N m2) 8.33 × 107 8.33 × 105 8.33 × 104

Fig. 3 Rotation angle at the revolute joint

ther differences between the position and RB meshes
when incorporating an axial load at the tip of the flex-
ible arm. The tip load of 100 kN is applied in the axial
direction of the last element of the arm at each time
step. The results presented in this last figure show that
the RB interpolation cannot capture the stretch in the
elements, whereas the independent PB interpolation is
actually stretched.

Another example using the same beam model is
depicted in Fig. 8. In this second example, the clamped

boundary conditions are assumed at the first node. A
constant external moment of 30 kN m is applied at the
free tip of the beam. The generalized moment is applied
on the rotation coordinate of the node at the tip. The def-
inition of axial and shear strains (10) involves both posi-
tion and rotation meshes. For this reason, the applied
moment can generate axial and shear stresses. How-
ever, this aforesaid coupling is not sufficient to bring
the two meshes together, as shown in Fig. 8. It is clear
from the results presented in this figure that the curva-
ture obtained using the RB mesh is not a good represen-
tative of the curvature of the PB mesh. Figure 9 displays
the values of the RB curvature at 20 s. When using the
RB mesh, the curvature is non-zero and constant within
the elements. However, because of the linear interpola-
tion, the PB mesh always yields null curvature at every
point within the element, which is in contrast to the
large values obtained from the other mesh. It can also
be seen in Fig. 9 that the curvature used to account
for bending deformation in the LRVF does not possess
inter-elemental continuity. More specifically, the use
of independent position and the rotation meshes in the
LRVF makes it difficult to create strategies to enforce
higher-order derivatives continuity.

7 Summary and conclusions

This paper highlights some issues on the interpolation
of rotations in the analysis of large deformation of bod-
ies in flexible multibody system dynamics and presents
results of the large rotation vector formulation. The
focus of this paper is on the geometry issues arising
from the use of two interpolation meshes: the position
mesh and the rotation mesh. These two meshes lead
to different space curves that can differ by an arbitrary
rigid-body displacement and have different geometric
properties. The examples demonstrate the fact that the
rotation mesh of the LRVF can be inextensible and
that the material points of a RB position mesh occupy
different positions from the material points of the posi-
tion mesh. The consequences of the redundancy in the
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Fig. 4 Repositioning
sequence in LRVF: high
stiffness (thick blue line PB
curve and dashed red line
RB curve). (Color figure
online)
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Fig. 5 Repositioning
sequence in LRVF: medium
stiffness (thick blue line PB
curve and dashed red line
RB curve). (Color figure
online)
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geometry definition can negatively affect the accuracy
of the strain energy and the inertia of the bodies. These
inconsistencies become more apparent in the case of

larger deformations and are not circumvented by the
inclusion of elastic forces or imposing kinematic con-
straints. This is mainly due to the fact that two differ-
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Fig. 6 Repositioning
sequence in LRVF: low
stiffness (thick blue line PB
curve and dashed red line
RB curve). (Color figure
online)
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Fig. 7 Repositioning
sequence in LRVF: axial
load (thick blue line PB
curve and dashed red line
RB curve). (Color figure
online)
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ent assumed displacement fields cannot, in general, be
brought to the same configuration as illustrated in this
paper.

It is important to point out that this paper is focused
on a fundamental issue related to the use of the large
rotation vector formulation. This study is not intended
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Fig. 8 Cantilever beam
with a moment applied at
the tip (thick blue line PB
curve and dashed red line
RB curve). (Color figure
online)
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Fig. 9 Curvature of RB
mesh at t = 20 s (the PB
curvature remains zero for
all the simulation due to the
linear interpolation of the
displacements)
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to provide a comparison of the LRVF with other formu-
lations. Nonetheless, it is worth mentioning that several
other approaches have been used in the large displace-

ment analysis of structural systems. These formulations
include the ANCF and methods based on B-spline rep-
resentation. For example, a more recent approach for
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flexible beams in MBSs employs elastic beams mod-
eled using dynamic splines [20,21]. This approach is
based on the Qin and Terzopoulos’s work with D-
NURBS [22], which is a physics-based generalization
of non-uniform rational B-Splines. D-NURBS com-
bines physics-based constraint equations with spline
geometry to improve the overall design process. Theet-
ten et al. [20] used this concept to develop geometri-
cally exact dynamic splines (GEDS), which extends
the mechanical accuracy with the use of geometri-
cally exact formal expressions along with analytical
spline expressions for real-time, computer-aided mod-
els. Valentini and Pennestri [21] further advanced this
approach by developing a dynamic spline formulation
which could be suitable for MBS dynamics implemen-
tation of flexible beams undergoing large displacement.
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