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Abstract Recently the discrete fractional calculus
(DFC) started to gain much importance due to its appli-
cations to themathematicalmodeling of realworld phe-
nomena with memory effect. In this paper, the delayed
logistic equation is discretized by utilizing the DFC
approach and the related discrete chaos is reported. The
Lyapunov exponent togetherwith the discrete attractors
and the bifurcation diagrams are given.
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1 Introduction

The discrete dynamic behavior and its applications
have been paid much attention in various applied areas,
such as synchronization control [1–3], secure commu-
nication [4,5], biomolecular network evolution [6,7],
and so on.

The DFC is one of recent topics and some results
were already reported in the discrete fractional dynam-
ics. In 1989, Miller and Ross [8] began the theory of
the fractional difference, and the fractional integral was
given as a fractional summation. After that, several
authors developed the theory of the fractional differ-
ence equations on time scales [9], such as the initial
value problems [10], the discrete calculus of variations
[11], the Laplace transform [12,13], the properties of
the Caputo and the Riemann-Liouville difference [14],
and so on (see, for example, Refs. [15–21] and the refer-
ences therein). Very recently, the DFC tool was applied
to the chaotic aspects of the discrete systems in [22,23].
The logistic map of fractional order is proposed as

x(n) = x(0) + μ

Γ (ν)

n∑

j=1

Γ (n − j + ν)

Γ (n − j + 1)

× x( j − 1)(1 − x( j − 1)). (1)

It holds discrete memory effects and can describe the
long interaction of the systems. Besides, the parameter
ν can be varied and themore general chaos can shrink to
the results of integer maps for the ν = 1. These merits
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help us understand the discrete chaotic behaviors more
deeply.

This study considers the general results in a two-
dimensional case and it is organized as follows: Sect.
2 introduces some of the basic definitions and the pre-
liminaries of the DFC. In Sect. 3 we applied the tool of
the DFC to the two-dimensional logistic equation and
a discrete fractional map is obtained. Then the chaotic
behaviors are reported and the bifurcation diagrams are
given for various difference orders.

2 Basic definitions and preliminaries

In the following we recall some definitions and prelim-
inaries of the DFC. The following notation Na denotes
the isolated time scale andNa = {a, a+1, a+2, . . .},
(a ∈ R fixed). For the function x(n), the difference
operator � is defined as �x(n) = x(n + 1) − x(n).

Definition 2.1 ([10]) Let x : Na → R and 0 < ν be
given. Then the fractional sum of order ν is defined by

�−ν
a x(t) := 1

Γ (ν)

t−ν∑

s=a

(t − σ(s))(ν−1)x(s), t ∈ Na+ν

(2)

where a is the starting point, σ(s) = s + 1, and t (ν)is
the falling function defined as

t (ν) = Γ (t + 1)

Γ (t + 1 − ν)
. (3)

Definition 2.2 ([14]) For 0 < ν < 1, and x(t) defined
on Na , the Caputo-like delta difference is defined by

C�ν
ax(t) := 1

Γ (1 − ν)

×
t−(1−ν)∑

s=a

(t − σ(s))(−ν)�x(s), t ∈ Na+1−ν. (4)

Theorem 2.3 The delta fractional difference equation

C�ν
ax(t) = f (t + ν − 1, x(t + ν − 2)),

0 < ν < 1, t ∈ Na+1−v (5)

has an equivalent discrete integral equation

x(t) = x(a) + 1

Γ (ν)

t−ν∑

s=a+1−ν

(t − σ(s))(ν−1)

× f (s + ν − 1, x(s + ν − 2)), t ∈ Na+1. (6)

Proof Suppose that x(t) is a solution of (5), then
according to the discrete Taylor expansion [16]

x(t) = x(a)+ 1

Γ (ν)

t−ν∑

s=a+1−ν

(t−σ(s))(ν−1)×C�ν
ax(s),

0 < ν < 1, t ∈ Na+1 (7)

and substituting Eq. (5) into Eq. (7), we can prove (6).
Conversely, if x(t) is a solution of (6), from the right

hand sides of (6) and (7), we can obtain

1

Γ (ν)

t−ν∑

s=a+1−ν

(t − σ(s))(ν−1)(C�ν
ax(s)

− f (s + ν − 1, x(s + ν − 2))) = 0. (8)

As a result, we get that

C�ν
ax(t) = f (t + ν − 1, x(t + ν − 2))

which implies that x(t) is a solution of (6). ��

3 Discrete chaos in fractional delayed logistic maps

3.1 Fractional discretization of the delayed logistic
equation

The logistic equation

dx

dt
= r x(t)(1 − x(t)) (9)

is originally proposed by Verhulst [24] in 1845 and has
numerous applications. Particularly in the biology and
ecology, the model depicts the ratio of the population’s
growth.

As it was already pointed out by Hutchinson [25],
the events fromnature are not continuous, therefore, we
have seasonal cycle which generates oscillations due to
the internal demographic factors. In view of this point,
the discrete maps can better depict the evolution of the
population.

Several modified logistic equations and their dis-
crete versions have been suggested in [25–33]. One of
them is the delayed logistic map [29], namely

x(n + 1) = Kx(n)(1 − x(n − 1)). (10)

It is derived by the discretization of the delayed Eq.
[25]

dx

dt
= μx(t)(1 − x(t − τ)), (11)
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(a)

(b)

Fig. 1 The chaotic behaviors of the delayed logistic maps of
integer order. a Numerical solution for μ = 1.25. b Discrete
strange attractor

where τ is the delay time and μ denotes the rate of
the maximum population growth. We assume that the
amount of resources available at time t will depend on
the density of the species at an earlier time by a delay
of τ .

At this point we recall that some discretization tech-
niques were reported in the literature [10–14,34–38].

Fig. 2 The bifurcation diagram of the classical delayed logistic
maps

We introduce the following fractional difference equa-
tion by the DFC [10–14]
C�ν

ax(t) = μx(t + ν − 1)(1 − x(t + ν − 2)),

t ∈ Na+1−ν . (12)

By using the Theorem 2.3 we obtain the fractional
delayed logistic maps as⎧
⎪⎨

⎪⎩

x(n) = x(0) + μ
Γ (ν)

∑n
j=1

Γ (n− j+ν)
Γ (n− j+1)

x( j − 1)(1 − y( j − 1)),
y(n) = x(n − 1).

(13)

The initial iterations are assumed as x(0) = y(0) =
0.001.

We notice that for ν = 1, the system reduces to the
following delayed logistic map

x(n + 1) = (μ + 1)x(n) − μx(n)x(n − 1) (14)

and x(0) = x(−1) = 0.001.
Since there is a discrete weighted or kernel function

Γ (n− j+ν)
Γ (n− j+1) in (13), the present statue x(n) depends on
the past information x(0), . . . , x(n−1)which is called
the discrete memory effect. This is one of crucial dif-
ferences between the fractional map and the classical
one.

3.2 Discrete chaos in fractional delayed logistic maps

We recall that the system (14) generates a chaotic series
for μ = 1.25 and comes across the Hopf bifurca-
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(a)

(b)

Fig. 3 Damped oscillation phenomenon for μ =1.05 and ν =
0.8

tion. With the mathematic software Maple, we plot the
numerical solution and the discrete attractor in Fig. 1a,
b, respectively. Figure 2 represents the bifurcation
diagram.

Now we consider the fractional case for ν = 0.8.
Figures 3, 4 and 5 illustrate the dynamic behav-
iors of the system when the coefficient μ is varied.
Figure 6 is the bifurcation diagram. It is found that qua-

(a)

(b)

Fig. 4 Sustained oscillation phenomenon for μ =1.08 and ν =
0.8

siperiodic behavior persists over most of the range of
1.096 < μ < 1.412 and some for 1.412 < μ. In order
to distinguish the chaos, we discard the first 70 values
of x(i) and adopt the Jacobian matrix algorithm to plot
the distribution of the maximal Lyapunov exponents in
Fig. 7. Through the analysis of the positive Lyapunov
exponents, we can note that the system meets chaotic
statues when μ increases through 1.096. We enlarge

123



Discrete chaos in fractional delayed logistic maps 1701

(a)

(b)

Fig. 5 Chaos in the maps for μ = 1.42 and ν = 0.8

the interval [1.3, 1.412] in Fig. 8. It can be more clearly
observed that the chaotic zone is non-continuous from
Figs. 7 and 8.

Similarly, for ν = 0.6 and ν = 0.4, we can give the
bifurcation diagrams in Figs. 9 and 10, respectively.
For the varied difference order, the chaotic zones are
different and new chaotic behaviors are observed.

Fig. 6 The bifurcation diagram of the fractional delayed logistic
maps for ν = 0.8

Fig. 7 The maximal Lyapunov exponent λmax for ν = 0.8

4 Conclusions

This study applies the DFC to the two-dimensional
delayed logistic equation and as a result a novel delayed
logistic map of fractional difference order is given in a
form of an iteration formula. Then the dynamic behav-
iors are discussed by varying the coefficient μ and the
difference order ν. The Lyapunov exponents are plotted
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Fig. 8 Apiece of the bifurcation diagram (6) and its enlargement

Fig. 9 The bifurcation diagram of the fractional delayed logistic
maps for ν = 0.6

to identify the chaos. The reported results show that the
discrete fractionalmaps hold some newdegrees of free-
dom which can be used in catching the hidden aspects
for real world phenomena encountered in ecology.
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