
Nonlinear Dyn (2014) 76:1693–1709
DOI 10.1007/s11071-014-1239-y

ORIGINAL PAPER

Suppression of harmonic perturbations and bifurcation
control in tracking objectives of a boiler–turbine
unit in power grid

Hamed Moradi · Gholamreza Vossoughi ·
Aria Alasty

Received: 1 July 2013 / Accepted: 4 January 2014 / Published online: 23 January 2014
© Springer Science+Business Media Dordrecht 2014

Abstract In the presence of harmonic disturbances,
boiler–turbine units may demonstrate quasi-periodic
behaviour due to the occurrence of various types of
bifurcation. In this article, a nonlinear model of boiler–
turbine unit is considered in which drum pressure, elec-
tric output and drum water level are controlled via
manipulation of valve positions for fuel, steam and
feed-water flow rates. For bifurcation control in track-
ing problem, two controllers are designed based on gain
scheduling and feedback linearization (FBL). To inves-
tigate the efficiency of control strategies, three cases are
considered for desired tracking objectives (a sequence
of steps, ramps/steps, and a combination of them).
According to the results, FBL controller works suc-
cessfully in suppression of harmonic perturbations and
consequently bifurcation control. As it is implemented,
quasi-periodic solutions (caused by Hopf bifurcation)
are vanished; leading to the appearance of periodic
solutions with low amplitudes. Consequently, appropri-
ate tracking performance with less oscillatory behav-
iour is observed for the drum pressure, electric output,
and drum water level (desirable for the power grid).
In addition, when FBL controller is used, less control
efforts are predicted for the bifurcation control.
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1 Introduction

Boiler–turbine unit is one of the critical components
of the power plants; responsible for producing the
steam with desirable quality. Due to dynamic interac-
tion between the various components, these units con-
stitute complex nonlinear systems. Although the steam
production is varied during the plant operation, out-
put variables such as steam pressure, electric output,
and water level of drum must be maintained at their
respected values [1]. Simplification of nonlinear mod-
els of boiler–turbine units [2], dynamic modelling of
a boiler–turbine unit based on parameter estimation
[3], system identification using neural networks [4] and
modelling based on data logs [5] have been done as the
early works.

Recently, simple dynamic modelling and stability
analysis of a steam boiler drum [6]; development of
various simulation packages for steam plants with nat-
ural and controlled recirculation (e.g., [7]) and using a
computational model for analysis and minimizing the
fuel and environmental costs of a 310-MW fuel oil fired
boiler has been studied [8].

Dynamic nonlinear modelling of power plants has
been investigated through neural networks (e.g., [9]).
Also, other various nonlinear models of boiler–turbine
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units, based on data logs and parameter estimation [10]
and identification of boiler–turbine system based on
T–S fuzzy method [11] have been presented. Recently,
using fuzzy-neural network methods, modelling of a
1000-MW power plant including ultra super-critical
boiler system [12] and numerical simulations of a
small-scale biomass boiler unit [13] have been pre-
sented.

Various control methods have been used for boiler
or boiler–turbine units. In this area, optimal control
[14], decoupling control [15], predictive control based
on local model networks [16], fuzzy-predictive control
based on genetic algorithm [17], pure fuzz-based con-
trol systems [18] and neuro-fuzzy network modelling
with PI control [19] have been presented. In some other
works, model nonlinearity is avoided by selecting the
appropriate operating zones such that the linear con-
troller can perform effectively. By constituting a linear
parameter varying model, gain-scheduled optimal con-
trol have been used [20].

In addition, tracking control based on approxi-
mate feedback linearization [21] and its compari-
son with gain scheduling [22] have been applied.
For robust performance, adaptive–predictive algorithm
[23], backstepping-based nonlinear control [24], adap-
tive control with fuzzy-interpolated model [25], multi-
variable robust control [26] and a comparison between
sliding mode and H∞ techniques [27] have been
presented. Also, for robust state estimation of the
process, an optimum minimum-order observer has
been designed [28].

According to the reviewed literature, dynamic mod-
elling and performance control of boiler–turbine units
have been extensively investigated; while linear theo-
ries have been used to predict the approximate dynamic
system response. In industrial world, without a compre-
hensive pre-knowledge of these nonlinear units behav-
iour against possible disturbances, the designed con-
trollers may lead to the aggressive response of output
variables and also increase in energy consumption.

In the previous recent research [29], nonlinear
dynamics of the boiler–turbine unit was investigated
through the concepts of bifurcation and limit cycles
behaviour. To improve the aperiodic and quasi-periodic
behaviour of the system to the stable periodic one, a
regulator was designed based on feedback lineariza-
tion approach. However, this controller guarantees the
regulation of the system around the fixed points; i.e.,
the controller only keeps the system around its oper-

ating points (set-points), in the presence of harmonic
disturbances.

In this paper, tracking of desired set-paths is investi-
gated in the presence of harmonic perturbations; which
is essentially demanded by the power grid. For this
purpose, two controllers are designed based on gain
scheduling (GS) and feedback linearization (FBL).
Such investigation has not been studied in any of pre-
vious works in the power-plant industry. To simulate
realistic conditions, three desired tracking objectives
including a sequence of steps, ramps-steps and a com-
bination of them are considered. For the sake of brevity,
results are presented for drum pressure and electric out-
put (not shown for drum water level). For the control of
output variables, valve positions of the fuel, steam and
feed-water flow rates are manipulated. Performance of
the GS and FBL controllers in tracking of desired set-
paths, bifurcation control and consequently changing
the unstable quasi-periodic solutions into the stable
periodic ones is investigated and compared. In addi-
tion, GS and FBL control efforts, required for keeping
the system around the desired tracking objectives are
compared.

2 Nonlinear dynamics of the boiler–turbine
unit and its performance

Figure 1 shows the schematic of a water-tube boiler in
which preheated water is fed into the steam drum and
flows through the down-comers into the mud drum.
Passing through the risers, water is heated and changed
into the saturation condition. The saturated mixer of
steam and water enters the steam drum, where the steam
is separated from water and flows into the primary and
secondary super-heaters. Then, steam is more heated
and is fed into the header. There is a spray attempera-
tor between two super-heaters that regulates the steam
temperature by mixing low temperature water with the
steam.

As a real case study, nonlinear dynamic model of
the boiler–turbine unit presented by Bell and Astrom
is considered here [10]. This practical model has been
used in many of previous works, especially to inves-
tigate control aspects of the problem. Parameters of
this model were estimated by data measurement from
the Synvendska Kraft AB Plant in Malmo, Sweden.
As shown in Fig. 2 [20], output variables are denoted
by y1 for drum pressure (kgf/cm2), y2 for electric out-
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Suppression of harmonic perturbations and bifurcation control 1695

Fig. 1 Schematic of a
boiler–turbine unit

Fig. 2 a Multivariable
model of the boiler–turbine
unit [20]. b Structure of the
closed-loop control system

put (MW) and y3 for drum water level (m). Input vari-
ables are denoted by u1, u2, and u3 for valves position
of the fuel, steam, and feed-water flows, respectively.
Dynamics of this 160 MW oil-fired unit is given in the
state-space as [10]:

⎧
⎪⎨

⎪⎩

ẋ1 = −α1u2x9/8
1 + α2u1 − α3u3

ẋ2 = (β1u2 − β2)x
9/8
1 − β3x2

ẋ3 = [γ1u3 − (γ2u2 − γ3)x1]/γ4

;
{

y1 = x1

y2 = x2
(1)

where x3 denotes the fluid density (kg/m3) and coef-
ficients αi , βi , γ j i = 1...3, j = 1...4 are given in
Table 1. The output vector is defined as y = [x1 x2 y3]T ,
while the drum water level (y3) is given in terms of

steam quality acs and evaporation rate qe(kg/s) as:

y3 = 0.05(0.13073x3 + 100acs + qe/9 − 67.975)

acs = (1 − 0.001538x3)(0.8x1 − 25.6)

x3(1.0394−0.0012304x1)
;

qe = (0.854u2 − 0.147)x1 + 45.59u1 − 2.514u3

−2.096 (2)

and due to actuator limitations, control inputs and their
rates are limited as:

0 ≤ ui ≤ 1,−0.007 ≤ u̇1 ≤ 0.007,−2 ≤ u̇2≤0.02,

−0.05 ≤ u̇3 ≤ 0.05 (i = 1, 2, 3). (3)

Some typical operating points of the Bell and Astrom
model are given in Table 2; where the nominal model
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Table 1 Dynamic coefficients of the boiler–turbine model by
Bell and Astrom [10]

α1 = 0.0018 β1 = 0.073 γ1 = 141

α2 = 0.9 β2 = 0.016 γ2 = 1.1

α3 = 0.15 β3 = 0.1 γ3 = 0.19

γ4 = 85

coincides with the operating point # 4 [10]. In this
paper, y j

i denotes the output yi at operating point j

while y( j)
i represents the differentiation of yi of order j .

3 Why the bifurcation control in tracking
objectives of boiler–turbine units?

Due to varying operating conditions and load demands
by the power grid, control systems must be able to sat-
isfy some requirements. Electric output must be fol-
lowed by the variation in demands from a power net-
work while the steam pressure of the collector must
be maintained constant. The amount of water in the
steam drum must be kept constant to prevent over-
heating of drum components or flooding of steam
lines. On the other hand, to avoid over-heating of the
super-heaters and to prevent wet steam entering tur-
bines, the steam temperature must be maintained at the
desired level [20]. In addition, the physical constraints
exerted on the actuators must be satisfied by the control
signals.

Under the above expectations and constraints, var-
ious types of perturbations are one of the major hin-
drances to achieve appropriate performance of the
boiler–turbine units. In addition, in the presence of
perturbations, changing some model parameters may
lead to the occurrence of bifurcation and consequently

unstable quasi-periodic behaviour. Such phenomenon
was observed in the previous investigation [29]. To
provide an overview of that investigation, some brief
results adopted from [29] are presented in Fig. 3.

When the value of coefficient α1 decreases, at the
critical value of α1crit = 0.00093, secondary Hopf
bifurcation occurs (for more details on bifurcation, see
e.g., [30]). Figure 3a shows the unstable quasi-periodic
orbit of the electric output for α1 = 0.0005, which
is located far from the nominal operating point x4

2 =
66.65 MW. Similarly, as the value of β3 increases, at
the critical value of β3crit = 0.84, Hopf bifurcation
occurs (e.g., see Fig. 3b for β3 = 0.9).

In research [29], a FBL controller was designed to
regulate the dynamic system around its fixed points by
improving the quasi-periodic limit cycles into the peri-
odic ones. However, both regulation and tracking of the
load variation commands for the output variables are
important when the controller is designed to overcome
the hindrance of perturbations. Therefore, besides the
regulation of dynamic system, its performance in track-
ing of desired set-paths (determined by the power grid),
is another important objective.

4 Controller design based on gain scheduling
& feedback-linearization approaches
for tracking objectives

The general structure of the closed-loop control system
is shown in Fig. 2b. In this section and for the purpose
of desired tracking in the presence of perturbations,
two controllers are designed based on gain schedul-
ing (GS) and feedback linearization (FBL) methods. In
these approaches, the nonlinear system is transferred
into a fully or partly linear one. Then, various powerful
linear control techniques can be applied to complete the

Table 2 Typical operating
points of Bell and Astrom
model [10]

# 1 # 2 # 3 # 4 # 5 # 6 # 7

x0
1 75.6 86.4 97.2 108 118.8 129.6 140.4

x0
2 15.27 36.65 50.52 66.65 85.06 105.8 128.9

x0
3 299.6 342.4 385.2 428 470.8 513.6 556.4

u0
1 0.156 0.209 0.271 0.34 0.418 0.505 0.6

u0
2 0.483 0.552 0.621 0.69 0.759 0.828 0.897

u0
3 0.183 0.256 0.34 0.433 0.543 0.663 0.793

y0
3 −0.97 −0.65 −0.32 0 0.32 0.64 0.98
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Suppression of harmonic perturbations and bifurcation control 1697

Fig. 3 The quasi-periodic behavior of electric output (MW) after
the occurrence of secondary Hopf (Neimark) bifurcation at: a
α1 = 0.0005 and, b β3 = 0.9 (adopted from the source [29])

control design process. It is assumed that all state vari-
ables are available for construction of feedback control
law, either by direct measurement or by using a state
observer. The procedure of a robust observer design has
been presented in the previous research [28].

Detailed formulation of the FBL controller design
was presented in the previous research [29] (also, it
is presented briefly in Appendix 1). It should be men-
tioned that in the previous research [22], this approach
was implemented for tracking objectives in the absence
of perturbations (for a nominal model without distur-
bance). In this section, design of GS controller is pre-
sented.

Dynamic model given by Eq. (1) is considered. To
maintain the system around each operating point of
Table 2 at state vector x̄0 = [x0

1 x0
2 x0

3 ], a constant

input vector ū0 = [u0
1 u0

2 u0
3] must be imposed. For

math simplicity, let’s define the new variables as

ξ1 = x0
1 , ξ2 = x0

2 , ξ3 = x0
3

η1 = u0
1, η2 = u0

2, η3 = u0
3 (4)

Linearizing the Eq. (1) around any operating points of
Table 2, yields

˙̄xδ = A(ξi , ηi )x̄δ + B(ξi , ηi )ūδ i = 1, 2, 3

x̄δ = x̄ − x̄0, ūδ = ū − ū0 (5)

where

A(ξi , ηi ) =
⎡

⎢
⎣

−1.125α1η2ξ
1/8
1 0 0

1.125(β1η2 − β2)ξ
1/8
1 −β3 0

− 1
γ4
(γ2η2 − γ3) 0 0

⎤

⎥
⎦ ;

B(ξi , ηi ) =
⎡

⎢
⎣

α2 −α1ξ
9/8
1 −α3

0 β1ξ
9/8
1 0

0 − γ2
γ4
ξ1

γ1
γ4

⎤

⎥
⎦ . (6)

In state feedback control scheme, to achieve desired
locations of closed-loop control system and conse-
quently desired performance of the system, the control
vector ūδ is constructed as:

ūδ = −K (ξi , ηi )ē,

ē = x̄δ − r̄δ, r̄δ = ȳR − ȳ0 (7)

where K (ξi , ηi ) is the variable gain matrix adjusted
according to the monitored scheduling variables, ē is
the error vector, ȳR is the command vector signal that
must be tracked. ȳ0 = [y0

1 y0
2 y0

3 ] is the output vector,
defined by Eqs. (1) and (2), at each operating point
of Table 2. Substituting Eqs. (6) and (7) in the first
derivative of Eq. (5), yields

˙̄xδ = [A(ξi , ηi )− B(ξi , ηi )K (ξi , ηi )]x̄δ
+B(ξi , ηi )K (ξi , ηi )r̄δ. (8)

The procedure of designing the feedback gain matrix
for the MIMO system is given in Appendix 2. It is
assumed that a maximum overshoot of Mp = 10 % and
settling time of about ts = 200 s in tracking behaviour of
all output variables is desired. To achieve this, closed-
loop poles of the system (including a far non-dominant
pole, μ3 = −0.2) must be assigned as:

μ1,2 = −0.02 ± 0.0266 j, μ3 = −0.2.

Finding transformation � and matrices Ad , F, P and�
(as given in Appendix 2), and using Eq. (29), feedback
gain matrix K (ϕi , ψi ) is found.
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1698 H. Moradi et al.

Fig. 4 Desired set-paths for tracking objectives in switching between the operating points #1 to #7 for: a a sequence of steps, b
ramps-steps, and c a combination of them (drum pressure left column, electric output right column)
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Fig. 5 Time response of the: a drum pressure (kg f/cm2) and b
electric output (MW) in tracking a sequence of steps (case ‘a’
of Fig. 4) after implementation of GS controller (light blue line)
and FBL controller (thick black line); in the presence of Hopf
bifurcation. (Color figure online)

5 Simulation results and discussion

5.1 Characteristics of the simulation conditions

In this section, the effect of controllers in desired track-
ing objectives of the boiler–turbine unit is investigated
in the presence of the harmonic perturbations and bifur-
cations. In general, perturbations are caused by the
environmental factors affecting the boiler–turbine units
or by the occurrence of mismatches in the model para-
meters of the units. As it is well known, any tran-
sient function can be mathematically expanded through
its Fourier series components. Therefore, if dynamic
behaviour of the system is identified against harmonic
perturbations, its behaviour will be also recognized
against any other transient perturbation.

Fig. 6 Periodic and quasi-periodic orbits of: a drum pressure
(kg f/cm2) and b electric output (MW) in tracking a sequence
of steps (case “a”); after implementation of GS controller (light
blue line) and FBL controller (thick black line). (Color figure
online)

Simulation results are obtained via Simulink Tool-
box of Matlab (based on ODE45 algorithm). For
the sake of brevity, time responses and limit cycles
behaviour are presented for the drum pressure and
electric output. Due to similarity, it is not shown
for water level of drum. As a case study, real har-
monic disturbances in state variables are considered
as:

�x1 = 10 sin 0.021t; �x2 = 6 sin 0.021t;
�x3 = 40 sin 0.021t. (9)

For instance, �x2 = 6 sin 0.021t physically means
a harmonic variation of the electric output (x2) with
amplitude of 6 (MW) around the nominal value of
x4

2 = 66.65 (MW); during the interval time of
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Fig. 7 Time response of the required a fuel flow rate, u1, b
steam flow rate, u2 (c) feed-water flow rate, u3 for the Hopf
bifurcation control in tracking a sequence of steps (case “a”);
when GS controller (light blue line) and FBL controller (thick
black line) are used. (Color figure online)

τ = 2π/0.021 = 300 s = 5 min. It should be
mentioned that the magnitudes of disturbances (Eq. 9)
are chosen arbitrarily around 10 % of the magnitudes of

Fig. 8 a Time response of the drum pressure (kg f/cm2) and b its
related periodic orbits in tracking a sequence of steps (case “a”)
after implementation of FBL controller; with nominal values of
perturbation amplitudes �xi = �x̄i (black solid line), �xi =
2�x̄i (green dot line/circles) and �xi = 4�x̄i (blue dashed
line/squares). (Color figure online)

nominal operating point # 4, (i.e., �x1 ≈ 0.1x4
1 ≈ 10,

�x2 ≈ 0.1x4
2 ≈ 6, �x3 ≈ 0.1x4

3 ≈ 40);
with arbitrary frequency of ω = 0.021rad/s. Simi-
larly, all the simulation results can be presented in a
straightforward manner for other values of disturbance
magnitudes and frequency. Therefore, the following
analysis can be accomplished for other harmonic
disturbances.

To investigate the efficiency of designed controllers
in switching between various operating points # 1 to # 7
(Table 2), three arbitrary cases of desired set-paths are
considered for the drum pressure and electric output
(as shown in Fig. 4). A sequence of steps, ramps-steps
and a combination of them are considered as cases ‘a’,
‘b’, and ‘c’, respectively.
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Fig. 9 Time response of the
required a fuel flow rate, u1
(b) steam flow rate, u2 (c)
feed-water flow rate, u3 for
the Hopf bifurcation control
in tracking a sequence of
steps (case “a”) after
implementation of FBL
controller; for nominal
values of perturbation
amplitudes �xi = �x̄i
(black solid line) and
�xi = 4�x̄i (blue dashed
line). (Color figure online)

5.2 Implementation of GS & FBL controllers for
bifurcation control in tracking

5.2.1 Case ‘a’

In the following simulations, it is assumed that Hopf
bifurcation occurs either by a small value of α1 or

a large value of β3. Figure 5 shows time response
of the drum pressure (x1 = y1) and electric output
(x2 = y2) in tracking a desired sequence of steps (case
‘a’ in Fig. 4), after the implementation of GS and FBL
controllers. As it is observed, both controllers satisfy
the tracking objective. But the GS controller cannot
guarantee the suppression of unstable quasi-periodic
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Fig. 10 Time response of the a drum pressure (kg f/cm2) and b
electric output (MW) in tracking ramps-steps (case “b” of Fig. 4)
after implementation of GS controller (light blue line) and FBL
controller (thick black line); in the presence of Hopf bifurcation.
(Color figure online)

solutions, arisen by Hopf bifurcation occurrence. As
FBL controller is implemented, unstable quasi-periodic
solutions with large oscillations are changed to the sta-
ble periodic solutions with low oscillations, around the
desired operating points # 1–7.

Related limit cycles’ behaviour (in correlation with
Fig. 5) are shown in Fig. 6. As it is observed, FBL con-
troller acts efficiently in transferring the large quasi-
periodic limit cycles into the small periodic ones. It
should be noticed that in all next plots, fixed points
#1–#7, i.e., operating points of the system given in
Table 2, are depicted by red stars. In addition, the size
of small diameter of elliptical limit cycles indicates the
amount of oscillations around the operating points. As
Fig. 6 shows, FBL controller is successful in maintain-
ing the system around its operating points with small

Fig. 11 Periodic and quasi-periodic orbits of: a drum pressure
(kg f/cm2) and b electric output (MW) in tracking ramps-steps
(case “b”); after implementation of GS controller (light blue line)
and FBL controller (thick black line). (Color figure online)

oscillatory behaviour. It should be mentioned that the
rough appearance of quasi-periodic limit cycles, e.g.,
for electric output in Fig. 6b, is due to the type of
algorithm used (ODE45). Using other types of ODE
solvers, it is possible to obtain smooth limit cycles;
but for consistency, all simulations are presented with
ODE45 solver.

Required variation of valve positions for fuel (u1),
steam (u2), and feed-water (u3) flow rates for the pur-
pose of bifurcation control in tracking of case “a”,
is shown in Fig. 7. As it is observed, less amount of
control efforts is required when the FBL controller is
used (in comparison with GS controller). Moreover, the
required control efforts by FBL controller satisfies the
constrain condition (0 ≤ ui ≤ 1), given by Eq. (3).
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Fig. 12 Time response of the required a fuel flow rate, u1 b steam
flow rate, u2 c feed-water flow rate, u3 for the Hopf bifurcation
control in tracking ramps-steps (case “b”); when GS controller
(light blue line) and FBL controller (thick black line) are used.
(Color figure online)

Finally, the effect of perturbations intensity on
dynamic system behaviour is shown in Fig. 8 (it is
shown only for FBL controller due to its effective-

ness). Figure 8a shows the time response of drum pres-
sure in the presence of nominal values of perturba-
tions, i.e., �xi = �x̄i as given by Eq. (9), and the
values of �xi = 4�x̄i (due to similarity, it is not
shown for electric output). Related limit cycles’ behav-
iour is shown in Fig. 8b. As it is physically expected,
when the perturbations increase, relatively more oscil-
latory behaviour (but still acceptable periodic values)
is observed in tracking objectives. Required variation
of control efforts for the nominal case of perturbation
(�xi = �x̄i ) and the case of (�xi = 4�x̄i ) is shown
in Fig. 9. Again, as physically expected, more control
actuation is required when the amplitude of perturba-
tions increases. Due to similar conclusions, this investi-
gation on the intensity of perturbations is not presented
next for cases “b” and “c”.

5.2.2 Cases “b” and “c”

Time responses and corresponding limit cycles of the
drum pressure and electric output in tracking desired
paths of ramps-steps (case “b” in Fig. 4) are shown
in Figs. 10 and 11, respectively. To be obvious, inside
area of periodic limit cycles is gray-shaded. As it is
observed, FBL controller is able to change the unsta-
ble quasi-periodic behaviour of the system into a stable
periodic one (around the fixed points). Required con-
trol efforts for bifurcation control and maintaining the
system around the desired set-path of case “b” is shown
in Fig. 12. It is observed that when FBL controller is
implemented, less amount of control efforts is required
(in comparison with the GS approach).

Dynamic behaviour of the boiler–turbine unit, in
tracking a desired combination of ramps and steps
(case “c” of Fig. 4), is shown in Fig. 13 through 15.
As it is shown in Figs. 13 and 14, similar to the
previous cases “a” and “b”; implementation of FBL
controller leads to the suppression of unstable quasi-
periodic orbits. Moreover, less manipulation of valves
position for fuel, steam and feed-water flow rates is
required when FBL controller is applied (Fig. 15).
As another remark in all three cases, when FBL con-
troller is used, less oscillatory behaviour is observed
for the electric output, in comparison with the drum
pressure (as shown in Figs. 5, 10, and 13). This is more
desirable for the power grid where less oscillations of
electric output around the desired operating points is
expected.
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Fig. 13 Time response of
the: a drum pressure
(kg f/cm2) and b electric
output (MW) in tracking a
combination of ramps/steps
(case “c” of Fig. 4) after
implementation of GS
controller (light blue line)
and FBL controller (thick
black line); in the presence
of Hopf bifurcation. (Color
figure online)

In summary, according to the results of previous
research [29], where the regulation problem around the
desired set-points was discussed; and presented results
of this research, where the tracking problem around
the desired set-paths is studied, it can be concluded
that feedback linearization controller works efficiently
in suppression of perturbations and bifurcation control
of boiler–turbine units.

6 Conclusions

In this paper, the performance of two controllers based
on gain scheduling (GS) and feedback linearization
(FBL) in tracking problem of a boiler–turbine unit is
investigated. Their influence on suppression of pertur-
bations and bifurcation control is predicted and com-
pared. In the considered nonlinear model of boiler–
turbine unit, drum pressure, electric output, and water
level of drum are controlled via manipulation of valve

positions for fuel, steam, and feed-water flow rates. To
simulate the realistic conditions that may demanded in
the real world, three arbitrary desired tracking objec-
tives including a sequence of steps, ramps-steps and
a combination of them are considered (nominated as
case studies “a”, “b” and “c”, respectively). For the
sake of brevity, results are presented for drum pressure
and electric output (not shown for water level of drum,
due to similarity). According to the results obtained,
the following conclusions can be obtained:

1. Both GS and FBL controllers satisfy the tracking
objective. But the GS controller cannot guarantee
the suppression of unstable quasi-periodic solu-
tions, arisen by Hopf bifurcation occurrence. Con-
sequently (unlike the GS controller), when the FBL
controller is implemented, a more stable physical
response can be obtained for the electric output and
drum pressure, even in the presence of perturba-
tions/bifurcations.
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Fig. 14 Periodic and quasi-periodic orbits of: a drum pressure
(kg f/cm2) and b electric output (MW) in tracking a combination
of ramps/steps (case “c”); after implementation of GS controller
(light blue line) and FBL controller (thick black line). (Color
figure online)

2. For all three cases of desired tracking objec-
tives and in the presence of bifurcation, FBL
controller acts efficiently in improving the unsta-
ble quasi-periodic solutions into the stable peri-
odic ones. Consequently, small oscillations of
drum pressure and electric output, around the
desired set-paths and operating points #1–# 7, are
obtained in practice. This stable behaviour is espe-
cially observed for the electric output. It physi-
cally means that a more smooth (while desired)
behaviour can be obtained for the electric out-
put, which is essentially demanded by the power
grid.

3. For the purpose of bifurcation control and sup-
pression of perturbations, less amount of control

Fig. 15 Time response of the required a fuel flow rate, u1 b steam
flow rate, u2 c feed-water flow rate, u3 for the Hopf bifurcation
control in tracking a combination of ramps/steps (case “c”); when
GS controller (light blue line) and FBL controller (thick black
line) are used. (Color figure online)

efforts is required when the FBL controller is used;
in comparison with the GS controller (in all three
cases). Therefore, less amount of input energy is
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invested for the actuators when the FBL controller
is implemented (for instance, less amount of motor
torque is required to move the valve positions for
the fuel, steam and feed-water flow rates). In addi-
tion, FBL controller satisfies the constraint condi-
tion (0 ≤ ui ≤ 1). Accordingly, with FBL con-
troller, it is physically possible to prevent the sat-
uration and fatigue of actuators and consequently
increasing their working life.

4. When the intensity of perturbations is increased,
relatively more oscillatory behaviour (but still
acceptable values) is observed in tracking objec-
tives (with FBL controller). Moreover, higher con-
trol efforts are required to suppress quasi-periodic
solutions into the stable periodic ones. It phys-
ically means that as the perturbations amplitude
increases, more oscillatory behaviour (but still
acceptable) is observed for both of the drum pres-
sure and electric output. Also, more actuator efforts
must be expensed to overcome the intense pertur-
bations. It should be mentioned that the existence
of very large values of perturbations amplitude is a
mathematical assumption which may not occur in
practice. But, to evaluate the controller efficiency,
this case was also investigated.

Finally, it should be mentioned that the procedure
used in this research can be extended in a straight-
forward manner to any other industrial boiler–turbine
unit; which its dynamic model has been extracted from
experimental data logs.
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Appendix 1: Design of controller based on feedback
linearization

In feedback linearization (FBL) approach, the nonlin-
ear terms of the dynamic system are eliminated by
means of state variables feedback. Then a suitable con-
troller is designed to stabilize the desired trajectories of
the system [31]. In this section, a brief overview on the
design of FBL controller is presented. More details of
this approach were discussed in [29]. Consider a square
MIMO system in the neighbourhood of the operating
point x̄0 as [31]

˙̄x = �(x̄)+�(x̄)ū; ȳ = H(x̄) (10)

where x̄ is n × 1 the state vector, ū is r × 1 control
input vector,ȳ is m × 1 outputs vector; � and H are
smooth vector fields and � is a n × r smooth matrix
(in this paper, m = r = 3). Assume that δi is the
smallest integer that at least one of the inputs appears
in y(δi )

i , then (in this paper, y( j)
i represents the j order

differentiation of yi ):

y(δi )
i = L�δi Hi +

r∑

j=1

L� j L�δi −1Hi u j (11)

with repeated Lie derivatives L� j L�δi −1 Hi (x) �= 0 for
at least one j in the vicinity of x̄0; while Lie derivative
of H with respect to � is a scalar function defined as:

L�H = ∇H ·�; L�0 H = H

L�i H = L�(L�i−1H) = ∇(L�i−1 H) ·�. (12)

Similarly, if � is another vector field, then the scalar
function L�L�H(x) is

L�L�H = ∇(L�H) ·�. (13)

Applying the same procedure for each output yi , yields
[

y(δ1)
1 . . . y(δm )

m

]T = [
L�δ1 H1(x̄) L�δ2 H2(x̄)

. . . L�δm Hm(x̄)
]T + N(x̄)ū.

(14)

If N(x̄) is invertible over the region �, the input trans-
formation

ū = N−1 [
v1 − L�δ1 H1 v2 − L�δ2 H2

· · · vm − L�δm Hm
]T (15)

yields a simpler form of mequations as

y(δi )
i = vi . (16)

In this research, it is assumed that the third state vari-
able (x3) is measured either directly or by estimation
through a robust state observer (with a general design
as presented in the previous research [28]). To avoid
tedious computations caused by differentiation of y3

as given in Eq. (2), third state variable is chosen as
the third output (instead of water level of drum, the
fluid density is considered as the third output,y3 = x3).
Through simulations, it can be shown that this defini-
tion of y3 will not affect the control of real output (i.e.,
drum water level) represented by Eq. (2). The validity
of this assumption was discussed in [29]. Following
the same procedure given above (while δi = 1), FBL
control laws are determined for the dynamic system of
Eq. (1) as [29]:
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[
u1 u2 u3

]T

= N−1
[
v1 v2 + β3x2 + β2x9/8

1 v3 − γ3
γ4

x1

]T ;

N =
⎡

⎢
⎣

α2 −α2x9/8
1 −α3

0 β1x9/8
1 0

0 −(γ2/γ4)x1 (γ1/γ4)

⎤

⎥
⎦ (17)

after decoupling the outputs dynamics (Eq. 16), a PI
controller is designed as:

vi = −K1i ei − K2iσi , σ̇i = ei = yi − ri (18)

where ri is the command input signal that is desired to
be tracked (Fig. 4). Differentiating from Eq. (16), using
Eq. (18), and transforming the result into the Laplace
domain, yields

Yi (s)

Ri (s)
= K1i s + K2i

s2 + K1i s + K2i
. (19)

To have a characteristic equation similar to the standard
second-order system as:

s2 + 2ζωns + ω2
n = 0, ωn > 0, 0 < ζ < 1. (20)

Control signal gains must be adjusted as

K1i = 2ζiωi , K2i = ω2
i . (21)

Appendix 2: Structure of the feedback
control law in MIMO system

Dynamic model of boiler–turbine unit is of rank n = 3.
Since the controllability matrix

C = [B AB A2 B . . . An−1 B]
is of rank 3, dynamic system is completely state control-
lable. Using the similarity transformation � as x̄ = �z̄,
Eq. (5) is represented as:

˙̄zδ = ÂG z̄δ + B̂Gūδ

ÂG = �−1 A�, B̂G = �−1 B (22)

where z̄δ is the new introduced state vector. Also, using
the following transformations:

ūδ = Fw̄δ; w̄δ = v̄δ − Pz̄δ. (23)

Equation (22) is described as:

˙̄zδ = AG z̄δ + BG v̄δ

AG = ÂG − B̂G F P, BG = B̂G F (24)

where v̄δ is the new control input vector and AG, BG

has the general canonical form with elements of

[Ai ]γi ×γi , [Bi ]γi ×1, i = 1, 2, .., r and
∑r

i=1 γi = n
as [32]:

AG =

⎡

⎢
⎢
⎣

[A1] 0 . . . 0
0 [A2] . . . 0

.

0 0 . . . [Ar ]

⎤

⎥
⎥
⎦

n×n

,

BG =

⎡

⎢
⎢
⎣

[B1] 0 · · · 0
0 [B2] · · · 0

.

0 0 · · · [Br ]

⎤

⎥
⎥
⎦

n×r

,

[Ai ] =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 · · · 0
0 0 1 · · · 0

.

0 0 0 · · · 1
0 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎦

γi ×γi

, [Bi ] =

⎡

⎢
⎢
⎢
⎢
⎣

0
0
.

.

1

⎤

⎥
⎥
⎥
⎥
⎦

γi ×1

(25)

where r is the number of input variables (in this case,
r = 3). Introducing the modified controllability matrix
as:

C̄ = [b1b2 ... br
...Ab1 Ab2 ... Abr

... . . .
...An−r b1

An−r b2 ... An−r br]
where bi are the columns of matrix B given by Eq. (6);
regular basis of C̄ is developed as

Ĉ = [b1 Ab1 ... Aγ1−1b1
... b2 Ab2 ... Aγ2−1b2

... ...
...br

Abr ... Aγr −1br] (26)

where each column, A j bi , i = 1, ..., r, j = 0, ..., r , is
independent from its previous columns. Inverse of Ĉ

given by Eq. (26) is displayed as ([]′ stands for trans-
pose of the [] quantity):

Ĉ
−1 =

[

e′
11 .. e

′
1γ1

...e′
21 ... e

′
2γ2

... ...
...e′

r1 ... e
′
rγr

]′
.

Similarity transformation � is defined as [32]:

� =
([

e′
1γ1

e′
1γ1

A, ... e′
1γ1

Aγ1−1...e′
2γ2

e′
2γ2

A ... e′
2γ2

Aγ2−1 ... . . .
... e′

rγr
e′

rγr
A ... e′

rγr
Aγr −1

]′)−1

.

(27)

Considering again Eq. (24) and constructing the feed-
back control law as vδ = −�zδ , yields:

˙̄zδ = Ad z̄δ, Ad = AG − BG� (28)

where Ad is the desired state matrix including coeffi-
cients representing desired closed loop poles
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(|sI − Ad | = (s −μ1)(s −μ2) . . . (s −μn)); having the
general form of AG as given by Eq. (25). Considering
Eqs. (7), (B-2) and similarity transformation x̄δ = �z̄δ ,
yields the feedback control law of the system as:

ūδ = −K (ξi , ηi )x̄δ

K (ξi , ηi ) = F[� + P]�−1 (29)

where F, P , and � are obtained using Eqs. (23), (24),
and (28) as follows:

F = (B ′
G B̂G)

−1, P = B ′
G(AG − ÂG),

� = B ′
G(AG − Ad). (30)
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