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Abstract In this paper, the effect of impulses on the
synchronization of a class of general delayed dynam-
ical networks is analyzed. The network topology is
assumed to be directed and weakly connected with
a spanning tree. Two types of impulses occurred in
the states of nodes are considered: (i) synchronizing
impulses meaning that they can enhance the synchro-
nization of dynamical networks; and (ii) desynchro-
nizing impulses defined as the impulsive effects can
suppress the synchronization of dynamical networks.
For each type of impulses, some novel and less con-
servative globally exponential synchronization criteria
are derived by using the concept of average impulsive
interval and the comparison principle. It is shown that
the derived criteria are closely related with impulse
strengths, average impulsive interval, and topology
structure of the networks. The obtained results not only
can provide an effective impulsive control strategy to
synchronize an arbitrary given delayed dynamical net-
work even if the original network may be asynchro-
nous itself but also indicate that under which impul-
sive perturbations globally exponential synchroniza-
tion of the underlying delayed dynamical networks can
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be preserved. Numerical simulations are finally given to
demonstrate the effectiveness of the theoretical results.
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1 Introduction

Complex dynamical networks consisting of a large
set of interacting dynamical nodes connected by links
have recently received increasing attention from vari-
ous fields of science and engineering [1–3]. The main
reason is that many real systems can be described as
complex dynamical networks, such as Internet, ecosys-
tems, biological neural networks, biomolecular net-
works, and social networks. As one of the most inter-
esting emergent phenomena in dynamical networks,
synchronization of all dynamical nodes has been a
hot research topic due to its potential engineering
applications, such as secure communication, paral-
lel image processing, and pattern recognition. From
the literature, there exist two common phenomena in
many dynamical networks: delay effects and impulsive
effects [4–9]. Time delay is a very familiar phenom-
enon in various systems [4–6]. Due to the finite speeds
of transmission and spreading as well as traffic conges-
tion, a signal or influence traveling through a network
often is associated with time delays [5,6]. It is known
that time delays can result in oscillatory behavior or
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network instability (periodic oscillation and chaos). On
the other hand, the states of nodes in many realistic
networks are often subject to instantaneous perturba-
tions and experience abrupt changes at certain instants,
which may be caused by switching phenomenon, fre-
quency change, or other sudden noise; that is, they
exhibit impulsive effects [7–9]. Impulsive effects can
also be found in many evolutionary processes and bio-
logical systems [7,8]. Recently, impulsive dynamical
systems have drawn increasing attention for their vari-
ous applications in information science, economic sys-
tems, automated control systems, etc [7–10]. Since time
delays and impulses can heavily affect the dynamical
behaviors of the networks, it is imperative to investi-
gate both effects of time delays and impulses on the
synchronization of dynamical networks.

In general, there are two types of impulses in dynam-
ical networks: synchronizing impulses and desynchro-
nizing impulses [10]. An impulsive sequence is said
to be synchronizing if it can enhance the synchroniza-
tion of dynamical networks. Conversely, an impulsive
sequence is said to be desynchronizing if the impulsive
effects can suppress the synchronization of dynamical
networks. In the past decades, much progress has been
made in the study of the synchronization of complex
dynamical networks with synchronizing or desynchro-
nizing impulses [10–21]. For instance, in [10–17], the
synchronization dynamics of complex dynamical net-
works with synchronizing impulses was investigated.
In [18–21], the synchronization problem of complex
dynamical networks with desynchronizing impulses
was addressed.

When the network dynamics are desynchronizing
and the impulsive effects are synchronizing, in order
to ensure synchronization, intuitively, there should not
be overly long intervals between impulses. Hence, a
requirement that the upper bound of the impulse inter-
vals should be smaller than a certain positive constant
is imposed in [11–17] to guarantee the frequency of
synchronizing impulses should not be too low. Con-
versely, when the network dynamics are synchroniz-
ing and the impulsive effects are desynchronizing, the
impulses should not occur too frequently in order to
guarantee synchronization. Thus, there exists a require-
ment that the lower bound of the impulse intervals
should be larger than a certain positive constant in [18–
20] to ensure that the desynchronizing impulses do not
occur too frequently. However, using the upper bound
or lower bound of the impulsive intervals to character-

ize the frequency of impulses would lead the obtained
results to be rather conservative [10]. Recently, Lu et al.
[10] introduced a concept of average impulsive interval
to describe the impulses sequences and then established
a less conservative unified synchronization criterion for
impulsive dynamical networks subject to synchroniz-
ing impulses or desynchronizing impulses. In addi-
tion, using the average impulsive interval approach,
Lu et al. [21] also investigated the exponential syn-
chronization of linearly coupled neural networks with
impulsive disturbances. Unfortunately, the authors of
[10] did not consider time delays, the results in [21]
only investigated coupled delayed neural networks
with desynchronizing impulses. Moreover, both the
results in [10,21] only considered the case of dynam-
ical networks with impulses occurred in the processes
of coupling. They cannot be directly extended to the
case of delayed dynamical networks with impulsive
effects on the nodes’ states; another common phenom-
enon occurred in many realistic networks [7,8,19,20].
Hence, the aim of this paper is to study the synchroniza-
tion problem of general delayed dynamical networks
with impulsive effects on the nodes’ states using the
average impulsive interval approach.

In practice, there usually exist two types of time
delays in complex networks [5,13,22–25]. One is
coupling delays caused by exchange of information
between nodes [5]. The other is internal delays occur-
ring inside the system [13,22–25]. In view of the
fact that internal delays occurring inside the system
are more complex than time delays in the couplings
[13,22–25], time delays in the dynamical nodes will
be considered in this paper.

Motivated by the above discussions, this paper is
concerned with synchronization of general complex
networks with time-varying delays dynamical nodes
and impulsive effects. The directed and weakly con-
nected topology of networks is focused on. Two types
of impulses occurred in the states of nodes are con-
sidered: synchronizing impulses and desynchronizing
impulses. By using the concept of average impulsive
interval and the comparison principle, some novel and
less conservative globally exponential synchroniza-
tion criteria are derived for each type of impulses. It
is shown that besides impulse strengths and average
impulsive interval, the obtained criteria are also closely
related with topology structure of the networks. Our
results not only can provide an effective impulsive con-
trol strategy to synchronize an arbitrary given delayed
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dynamical network even if the original network may be
asynchronous itself but also indicate that under which
impulsive perturbations globally exponential synchro-
nization of the underlying delayed dynamical networks
can be preserved. Numerical examples are also pro-
vided to illustrate the effectiveness of the theoretical
analysis.

2 Problem formulation and preliminaries

Consider a general complex network consisting of N
identical time-delayed dynamical nodes. Each node
of the network is an n-dimensional nonautonomous
dynamical system with time-varying delays, which is
described by:

ẋi (t) = f (t, xi (t), xi (t − τ(t)))

+c
N∑

j=1

bi jΓ x j (t), i = 1, . . . , N , (1)

where xi (t) = (xi1(t), xi2(t), . . . , xin(t))� ∈ R
n is

the state vector of node i, f : R × R
n × R

n → R
n

is a continuously vector-valued function governing the
dynamics of isolated nodes. The time delay τ(t)may be
unknown (constant or time-varying) but is bounded by
a known constant, i.e., 0 ≤ τ(t) ≤ τ . The positive con-
stant c is the coupling strength, and Γ > 0 is the inner
connecting matrix describing the individual coupling
between nodes. B = (bi j )N×N is the coupling matrix
representing the underlying topological structure of the
network, and bi j is defined as follows: if there is a link
from node j to node i ( j �= i), then bi j > 0; otherwise,
bi j = 0. This implies that the network is directed, and
the coupling matrix B is asymmetric. In addition, it
is assumed that B satisfies the following properties:∑N

j=1 bi j = 0 and rank(B) = N − 1 [13,26]. As indi-
cated in [27,28], the coupling matrix B can be regarded
as the Laplacian matrix of a weighted graph with a span-
ning tree, and B has an eigenvalue 0 with multiplicity
1. Note that the coupling matrix B is not restricted to be
symmetric or irreducible, and the inner coupling matrix
Γ is not assumed to be diagonal or symmetric.

Due to switching phenomenon, frequency change,
or other sudden noise, the states of nodes in many
realistic networks are often subject to instantaneous
perturbations and experience abrupt changes at cer-
tain instants [8,9,19,20]. Without loss of generality,
we assume that at time instants tk , there are “sudden
changes” (or “jumps”) in the state variable such that

U (k, xi ) = �xi |t=tk
�= xi (t

+
k )− xi (t

−
k ),

i = 1, 2, . . . , N , (2)

where {t1, t2, t3, . . .} is an impulsive sequence satis-
fying tk−1 < tk and limk→∞ tk = +∞, xi (t

+
k ) =

limt→t+k
xi (t) and xi (t

−
k ) = limt→t−k

xi (t).LetU (k, xi )

= dk xi , where dk ∈ R represents the strength of
impulses, then we obtain the following impulsive-
delayed dynamical network:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋi (t) = f (t, xi (t), xi (t − τ(t)))
+ c

∑N
j=1 bi jΓ x j (t), t �= tk,

�xi = xi (t
+
k )− xi (t

−
k )= dk xi (t

−
k ), t = tk, k ∈ Z+,

xi (t0 + s) = ϕi (s), s ∈ [−τ, 0],
i = 1, 2, . . . , N , t ≥ t0,

(3)

where Z+ = {1, 2, . . .} denotes the set of posi-
tive integer numbers. Without loss of generality, it
is assumed that xi (t) is right continuous at t = tk ,
i.e., xi (tk) = xi (t

+
k ). The initial conditions ϕi (s) ∈

PC([−τ, 0],Rn), in which PC([−τ, 0],Rn) denotes
the set of all functions of bounded variation and right-
continuous on any compact subinterval of [−τ, 0]. We
always assume that Eq. (3) has a unique solution with
respect to initial conditions.

Remark 1 Taking into account that the coupled states
x j (t)−xi (t) between connected nodes j and i can sud-
denly change in the form of impulses at discrete times
tk in the process of signal transmission, the impulses
occurred in the process of coupling were studied in
[10,21]. Hence, xi (t

+
k )−x j (t

+
k ) = Sk

(
xi (t

−
k )−x j (t

−
k )

)

was assumed in [10,21]. In this paper, another common
phenomenon that the states of nodes in many realistic
networks are often subject to instantaneous perturba-
tions and experience abrupt changes at certain instants
[7,8,19,20] is considered, and so xi (t

+
k ) − xi (t

−
k ) =

dk xi (t
−
k ) is assumed here. In addition, here the cou-

pling matrix B is not necessarily to be symmetric or
irreducible, and the inner coupling matrix Γ is not
assumed to be diagonal or symmetric. A general struc-
ture of the network is discussed here, that is, the corre-
sponding graph generated by matrix B can be directed
and weakly connected. However, the coupling matrix
B in [10,21] is required to be irreducible, and the inner
coupling matrix Γ is also restricted to be diagonal in
[21].

Assumption 1 [26] For the vector-valued function
f (t, x(t), x(t − τ(t))), suppose the uniform semi-
Lipschitz condition with respect to the time t holds,
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i.e., for any x(t), y(t) ∈ R
n , there exist positive con-

stants L1 > 0 and L2 > 0 such that
(
x(t)− y(t)

)�(
f (t, x(t), x(t − τ(t)))

− f (t, y(t), y(t − τ(t)))
)

≤ L1
(
x(t)− y(t)

)�(
x(t)− y(t)

)

+L2
(
x(t − τ(t))− y(t − τ(t))

)�(
x(t − τ(t))

−y(t − τ(t))
)
.

Remark 2 Assumption 1 gives some requirements for
the dynamics of isolated node in network (1). If the
function describing each node in network (1) satisfies
uniform Lipschitz condition with respect to the time t
[13], i.e., ‖ f (t, x(t), x(t − τ(t))) − f (t, y(t), y(t −
τ(t)))‖ ≤ K1‖x(t) − y(t)‖ + K2‖x(t − τ(t)) −
y(t − τ(t))‖, one can choose L1 = K1 + ωK2/2 and
L2 = K2/(2ω) to satisfy Assumption 1, where ω is
a positive constant. Moreover, it is easy to check that
almost all the well-known chaotic systems with delays
or without delays, such as the Lorenz system, Rössler
system, Chen system, and Chua’s circuit as well as the
delayed Ikeda equations, delayed Hopfield neural net-
works and delayed cellular neural networks, and so on
(see [13,26], and the references therein) also satisfy
Assumption 1.

Definition 1 The impulsive-delayed dynamical net-
work (3) is said to be globally exponentially synchro-
nized if there exist constants λ0 > 0 and M0 > 0 such
that for any initial conditionsϕi (s) ∈ PC([−τ, 0],Rn)

(i = 1, 2, . . . , N )

‖xi (t)− x j (t)‖ ≤ M0e−λ0(t−t0), ∀t ≥ t0.

Definition 2 [10] (Average Impulsive Interval) The
average impulsive interval of the impulsive sequence
ζ = {t1, t2, t3, . . .} is equal to (N0, Ta) if there exist
positive integer N0 and positive number Ta, such that

T − t

Ta
− N0 ≤ Nζ (T, t) ≤ T − t

Ta
+ N0,

∀T ≥ t ≥ 0, (4)

where Nζ (T, t) denotes the number of impulsive times
of the impulsive sequence ζ on the interval (t, T ).

Let s(t) = 1
N

∑N
l=1 xl(t) and ei (t) = xi (t) −

s(t) (1 ≤ i ≤ N ) be synchronization errors, then we

have

ėi (t) = ẋi (t)− ṡ(t)

= f̃ (t, ei (t), ei (t − τ(t)))

+ c
N∑

j=1

bi jΓ e j (t)+ J, t �= tk,

�ei (tk) = ei (t
+
k )− ei (t

−
k ) = xi (t

+
k )− xi (t

−
k )

− (
s(t+k )− s(t−k )

)

= xi (t
+
k )− xi (t

−
k )− 1

N

N∑

l=1

(
xl(t

+
k )− xl(t

−
k )

)

= dk xi (t
−
k )− dk

N

N∑

l=1

xl(t
−
k ) = dkei (t

−
k ), t = tk,

N∑

i=1

ei (t) =
N∑

i=1

(
xi (t)− s(t)

)
=

N∑

i=1

xi (t)− Ns(t)

=
N∑

i=1

xi (t)−
N∑

l=1

xl(t) = 0,

where f̃ (t, ei (t), ei (t−τ(t)))= f (t, ei (t)+s(t), ei (t−
τ(t)) + s(t − τ(t))) − f (t, s(t), s(t − τ(t))), and
J = f (t, s(t), s(t−τ(t)))− 1

N

∑N
l=1 f (t, xl(t), xl(t−

τ(t))) − c
N

∑N
l=1

∑N
j=1 bl jΓ x j (t). Note that xi (t) is

right continuous at t = tk , i.e., xi (tk) = xi (t
+
k ), the

error dynamical system then can be written as follows:
⎧
⎪⎪⎨

⎪⎪⎩

ėi (t) = f̃ (t, ei (t), ei (t − τ(t)))
+c

∑N
j=1 bi jΓ e j (t)+ J, t �= tk, t ≥ t0,

ei (tk) = (1 + dk)ei (t
−
k ),

t = tk, k ∈ Z+, i = 1, 2, . . . , N .

(5)

It is easy to see that globally exponential synchroniza-
tion of the dynamical network (3) is achieved if the zero
solution of the error dynamical system (5) is globally
exponentially stable.

Remark 3 When |(1 + dk)| < 1, i.e., the impulsive
strengths −2 < dk < 0, the impulses are beneficial for
the synchronization of the impulsive- delayed dynam-
ical network (3), since the absolute values of the syn-
chronization errors are reduced. Thus, the impulses are
synchronizing impulses if −2 < dk < 0. Conversely,
when |(1 + dk)| > 1, i.e., the impulsive strengths
dk > 0 or dk < −2, the impulses are desynchro-
nizing impulses, since the absolute values of the syn-
chronization errors are enlarged. In addition, when
|(1 + dk)| = 1, i.e., the impulsive strengths dk = 0 or
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dk = −2, the impulses are neither beneficial nor harm-
ful for the synchronization of the impulsive-delayed
dynamical network (3), since the absolute values of
the synchronization errors are unchanged. This type
of impulses are called inactive impulses [10]. We will
not discuss this trivial case in this paper because they
have no effect on the synchronization dynamics of the
impulsive-delayed dynamical network (3).

Lemma 1 [29] Let 0 ≤ τ(t) ≤ τ and F(t, x, y) :
[t0,∞)× R × R → R be nondecreasing in y for each
fixed (t, x), and Ik(x) : R → R be nondecreasing in x.
Suppose that u(t), v(t) ∈ PC([t0 − τ,∞),R) satisfy
{

D+u(t) ≤ F(t, u(t), u(t − τ(t)), t ≥ t0,
u(tk) ≤ Ik(u(t

−
k )), k ∈ Z+,

{
D+v(t) > F(t, v(t), v(t − τ(t)), t ≥ t0,
v(tk) ≥ Ik(v(t

−
k )), k ∈ Z+.

If u(t) ≤ v(t), for t0 − τ ≤ t ≤ t0, then u(t) ≤
v(t), t ≥ t0.

3 Main results

Hereafter, let the matrix B̃ be defined as B̃
�= (B +

B�) − �, where � = diag(δ1, δ2, . . . , δN ) with
δ j = ∑N

k=1 bkj . Then the matrix B̃ is a symmetrical
irreducible matrix with zero-sum and nonnegative off-
diagonal elements. This implies that zero is an eigen-
value of B̃ with multiplicity 1, and all the other eigen-
values of B̃ are strictly negative [27,28]. Its eigenvalues
can be ordered as 0 = λ̃1 > λ̃2 ≥ · · · ≥ λ̃N .

3.1 Synchronization criteria for synchronizing
impulses

In this subsection, some less conservative globally
exponential synchronization criteria for the impulsive-
delayed dynamical network (3) with synchronizing
impulses will be derived. It will be shown that an appro-
priate sequence of impulses can make an unsynchro-
nized delayed dynamical network (1) globally expo-
nentially synchronous.

Theorem 1 Consider the impulsive-delayed dynami-
cal network (3) with synchronizing impulses. Suppose
that Assumption 1 holds, and the average impulsive
interval of impulsive sequence ζ = {t1, t2, t3, . . .} is

equal to (N0, Ta). Then the impulsive-delayed dynami-
cal network (3) is globally exponentially synchronized
if there exists a positive constant 0 < d < 1 such that

(i) (1 + dk)
2 ≤ d, k ∈ Z+,

(ii) 

�= ln d

Ta
+ 2L1 + rλ(r)+ 2d−N0 L2 < 0

where

r = c
(
λ̃2 + max

1≤k≤N
δk

)
with λ(r)

=
⎧
⎨

⎩

λmax(Γ ), if r > 0,
0, if r = 0,
λmin(Γ ), if r < 0.

Proof Let e(t) = (e�
1 (t), e�

2 (t), . . . , e�
N (t))

�, con-
sider the following Lyapunov function:

V (t)= 1

2
e�(t)(IN ⊗ In)e(t) = 1

2

N∑

i=1

e�
i (t)ei (t). (6)

Calculating the upper Dini derivative of V (t) along the
solution of Eq. (3), by using Assumption 1 and note
that

∑N
i=1 ei (t) = 0, we get

D+V (t) =
N∑

i=1

e�
i (t)

[
f̃ (t, ei (t), ei (t − τ(t)))

+ c
N∑

j=1

bi jΓ e j (t)+ J
]

=
N∑

i=1

e�
i (t) f̃ (t, ei (t), ei (t − τ(t)))

+ ce�(t)(B ⊗ Γ )e(t)+
N∑

i=1

e�
i (t)J

=
N∑

i=1

e�
i (t) f̃ (t, ei (t), ei (t − τ(t)))

+ ce�(t)(B ⊗ Γ )e(t)

≤
N∑

i=1

L1e�
i (t)ei (t)+

N∑

i=1

L2e�
i

×(t−τ(t))ei (t − τ(t))+ce�(t)(B⊗Γ )e(t)
≤ 2L1V (t)+ 2L2V (t − τ(t))

+ ce�(t)(B ⊗ Γ )e(t)

= 2L1V (t)+ 2L2V (t − τ(t))

+ c

2
e�(t)

(
(B + B�)⊗ Γ

)
e(t)

= 2L1V (t)+ 2L2V (t − τ(t))

+ c

2
e�(t)

(
(B̃ +�)⊗ Γ

)
e(t), t �= tk . (7)
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On the other hand, since B̃ is a symmetrical matrix,
there exists a unitary matrix U = (u1, . . . , uN ) with
UU� = IN such that B̃ = Udiag(λ̃1, λ̃2, . . . , λ̃N )U�.
Introduce a transformation Z(t) = (U� ⊗ In)e(t),
where Z(t) = (z�

1 (t), z�
2 (t), . . . , z�

N (t))
�, zk ∈ R

n ,
then one has

Z�(t)Z(t) =
N∑

i=1

e�
i (t)ei (t). (8)

Note that λ̃1 = 0 is an eigenvalue of the matrix B̃,
and its corresponding eigenvector is u1 = ( 1√

N
, 1√

N
,

. . . , 1√
N
)�, then we get

z1(t) = (u�
1 ⊗ In)e(t) = 1√

N

N∑

i=1

ei (t) = 0. (9)

From Eqs. (8) and (9), we have

ce�(t)
(
(B̃ +�)⊗ Γ

)
e(t)

= ce�(t)(U ⊗ In)
((

diag(λ̃1, λ̃2, . . . , λ̃N )

+ U��U
)

⊗ Γ
)
(U� ⊗ In)e(t)

≤ cZ�(t)
((

diag(λ̃1, λ̃2, . . . , λ̃N )

+ λmax(U
��U )IN

)
⊗ Γ

)
Z(t)

≤ cZ�(t)
((

diag(λ̃1, λ̃2, . . . , λ̃N )

+ max
1≤k≤N

δk IN

)
⊗ Γ

)
Z(t)

= c
N∑

i=1

(λ̃i + max
1≤k≤N

δk)z
�
i (t)Γ zi (t)

= c
N∑

i=2

(λ̃i + max
1≤k≤N

δk)z
�
i (t)Γ zi (t)

≤ c
N∑

i=2

(λ̃2 + max
1≤k≤N

δk)z
�
i (t)Γ zi (t)

=
N∑

i=1

c(λ̃2 + max
1≤k≤N

δk)z
�
i (t)Γ zi (t)

≤ rλ(r)
N∑

i=1

e�
i (t)ei (t) = 2rλ(r)V (t). (10)

Substituting (10) into (7) gives

D+V (t) ≤ (
2L1 + rλ(r)

)
V (t)

+2L2V (t − τ(t)), t �= tk . (11)

When t = tk , we have

V (tk) = 1

2

N∑

i=1

e�
i (tk)ei (tk)

= 1

2

N∑

i=1

(1 + dk)
2e�

i (t
−
k )ei (t

−
k ) ≤ dV (t−k ). (12)

Denote p = 2L1 + rλ(r) and q = 2L2. For any
ε > 0, let με(t) be a unique solution of the follow-
ing impulsive- delayed dynamical system:
⎧
⎨

⎩

μ̇ε(t)= pμε(t)+ qμε(t−τ(t))+ε, t �=tk, t ≥ t0,
με(tk) = dμε(t

−
k ), k ∈ Z+,

με(t) = supt0−τ≤s≤t0 ‖V (s)‖, t0 − τ ≤ t ≤ t0.
(13)

Let M0 = d−N0 supt0−τ≤s≤t0 ‖V (s)‖ andη = −(ln d)/
Ta − p. In the following, we shall prove that condition
(ii) implies

με(t) < M0e−λ(t−t0) + ε

(η − d−N0q)d N0
, t ≥ t0,

(14)

where λ > 0 is a unique positive solution of

λ+ ln d

Ta
+ p + d−N0qeλτ = 0. (15)

Denote H(λ) = λ−η+d−N0 q expλτ . From condition
(ii), we have η − d−N0q > 0, d −N0q ≥ 0, and so
H(0) < 0, H(+∞) > 0, and dH(λ)

dλ > 0. Using the
continuity and the monotonicity of H(λ), the equation
(15) has an unique positive solution λ > 0. By the for-
mula for the variation of parameters [29,30], we obtain

με(t) = W (t, t0)με(t0)

+
t∫

t0

W (t, s)
[
qμε(s − τ(s))+ ε

]
ds, t ≥ t0,

(16)

where W (t, s), t, s ≥ t0 is the Cauchy matrix of linear
system [29,30]

{
ψ̇(t) = pψ(t), t �= tk, t ≥ t0,
ψ(tk) = dψ(t−k ), k ∈ Z+. (17)

Let Nζ (t, t0) be the number of impulsive times of the
impulsive sequence ζ in the interval (t0, t), according
to the representation of the Cauchy matrix [29,30], we
have

W (t, s) =
(

∏

s<tk≤t

d

)
ep (t−s)

= d Nζ (t,s)ep (t−s), t > s ≥ t0. (18)
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Since the average impulsive interval of the impulsive
sequence ζ = {t1, t2, . . .} is equal to (N0, Ta), we have
Nζ (t, s) ≥ t−s

Ta
− N0, ∀t > s ≥ t0. Notice that 0 <

d < 1, we obtain

W (t, s) = d Nζ (t,s)ep (t−s)

≤ d−N0 d
t−s
Ta e(−η−

ln d
Ta
)(t−s)

= d−N0 e
(t−s)

Ta
ln de(−η−

ln d
Ta
)(t−s)

= d−N0 e−η(t−s), t > s ≥ t0. (19)

Substituting (19) into (16) gives

με(t) ≤ d−N0 e−η(t−t0)με(t0)

+
t∫

t0

d−N0 e−η(t−s)
[
qμε(s − τ(s))+ ε

]
ds

= M0e−η(t−t0) +
t∫

t0

e−η(t−s)
[
d−N0qμε(s

−τ(s))+ d−N0ε
]
ds, t ≥ t0. (20)

Since ε, λ, η − d−N0q > 0, and 0 < d < 1, we have

με(t) ≤ d −N0 sup
t0−τ≤s≤t0

‖V (s)‖ < M0e−λ(t−t0)

+ ε

(η − d−N0q)d N0
, t0 − τ ≤ t ≤ t0. (21)

Now, we show that (14) holds. If it is not true, from
(21), then there must exist a t∗ > t0 satisfying

με(t
∗) ≥ M0e−λ(t∗−t0) + ε

(η − d−N0q)d N0
, (22)

με(t) < M0e−λ(t−t0) + ε

(η − d−N0q)d N0
,

t0 − τ ≤ t < t∗. (23)

By (15), (20) and (23), we have

με(t
∗) ≤ M0e−η(t∗−t0)

+
t∗∫

t0

e−η(t∗−s)
[
d−N0qμε(s − τ(s))+ d−N0ε

]
ds

≤ e−η(t∗−t0)
{

M0

+
t∗∫

t0

eη(s−t0)
[
d−N0q M0e−λ

(
s−τ(s)−t0

)

+ εd−N0q

(η − d−N0q)d N0
+ d−N0ε

]
ds

}

≤ e−η(t∗−t0)
{

M0 + d−N0q M0eλτ
t∗∫

t0

e(η−λ)(s−t0)ds

+ εη

(η − d−N0q)d N0

t∗∫

t0

eη(s−t0)ds

}

< M0e−λ(t∗−t0) + ε

(η − d−N0q)d N0
. (24)

This contradicts (22), and so (14) holds. Denote
F(t, x, y) = p x + qy with x(t) = V (t) and y(t) =
V (t − τ(t)), and Ik(x) = dx with x(t) = V (t), then
the function F and Ik satisfy the monotonicity given
in Lemma 1. Since V (t) ≤ sup

t0−τ≤s≤t0
‖V (s)‖ = με(t),

for t0 − τ ≤ t ≤ t0, it follows from (11)–(13) and
Lemma 1 that

V (t) ≤ με(t) < M0e−λ(t−t0) + ε

(η − d−N0q)d N0
,

t ≥ t0.

Letting ε → 0+, then we have

V (t) ≤ M0e−λ(t−t0), t ≥ t0.

This means the zero solution of the error system (5) is
globally exponentially stable. The proof of Theorem 1
is thus completed. ��
Remark 4 When d < 1, i.e., the impulsive effects are
synchronizing, condition (ii) still holds if Ta is replaced
by supk∈Z+{tk −tk−1}; then condition (ii) in Theorem 1
becomes:


sup
�= ln d

supk∈Z+{tk − tk−1}
+2L1 + rλ(r)+ 2d−N0 L2 < 0. (25)

Note that ln d < 0 and Ta < supk∈Z+{tk −tk−1}, condi-
tion (ii) derived by using Ta is thus easier to be satisfied
and less conservative than inequality (25) obtained by
using supk∈Z+{tk − tk−1}. This point will be further
verified by numerical examples.

Remark 5 Theorem 1 indicates that globally exponen-
tial synchronization of the impulsive-delayed dynami-
cal network (3) with synchronizing impulses depends
mainly on the impulsive strengths dk , the average
impulsive interval Ta, and the eigenvalue λ̃2. Just as
stated in [31–33], the synchronizability of the dynam-
ical network can also be characterized by the second
largest eigenvalue λ̃2 of the specific matrix B̃. There-
fore, the results show that the network topology also
has a great impact on synchronization dynamics of the
impulsive- delayed dynamical network.
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Remark 6 From the proof of Theorem 1, we can see
that the condition −p > q ≥ 0, that is, L1+rλ(r)/2 <
−L2, is not required here. This means that the under-
lying delayed dynamical network (1) without impul-
sive effects can be asynchronous [34]. Theorem 1 can
thus be used to synchronize an unsynchronized delayed
dynamical network via impulses. Consequently, Theo-
rem 1 provides an effective impulsive control strategy
to synchronize an arbitrary given delayed dynamical
network even if the original networks may be asyn-
chronous itself.

For simplicity, we consider the impulsive strengths
dk ≡ d0, k ∈ Z+. Then, the following result can be
obtained readily from Theorem 1.

Corollary 1 Consider the impulsive-delayed dynami-
cal network (3) with synchronizing impulses. Suppose
that Assumption 1 holds, and the average impulsive
interval of impulsive sequence ζ = {t1, t2, t3, . . .} is
equal to (N0, Ta). Then the impulsive-delayed dynami-
cal network (3) is globally exponentially synchronized
if the following condition holds



�= 2 ln |1 + d0|

Ta
+ 2L1 + rλ(r)

+2(1 + d0)
−2N0 L2 < 0, −2 < d0 < 0. (26)

3.2 Synchronization criteria for desynchronizing
impulses

In this subsection, globally exponential synchroniza-
tion of the impulsive-delayed dynamical network (3)
with desynchronizing impulses will be studied. In this
case, the impulses can potentially destroy the synchro-
nization. Thus it is necessary to have some criteria
under which the synchronization of a delayed dynam-
ical network can be preserved under impulsive pertur-
bations. The main results are stated as follows.

Theorem 2 Consider the impulsive-delayed dynami-
cal network (3) with desynchronizing impulses. Sup-
pose that Assumption 1 holds, and the average impul-
sive interval of impulsive sequence ζ = {t1, t2, t3, . . .}
is equal to (N0, Ta). Then the impulsive-delayed
dynamical network (3) is globally exponentially syn-
chronized if there exists a positive constant d > 1 such
that

(iii) (1 + dk)
2 ≤ d, k ∈ Z+,

(iv) 
 ∗ �= ln d

Ta
+ 2L1 + rλ(r)+ 2d N0 L2 < 0

where

r = c
(
λ̃2 + max

1≤k≤N
δk

)
with λ(r)

=
⎧
⎨

⎩

λmax(Γ ), if r > 0,
0, if r = 0,
λmin(Γ ), if r < 0.

Proof Consider the following Lyapunov function:

V (t) = 1

2
e�(t)(IN ⊗ In)e(t) = 1

2

N∑

i=1

e�
i (t)ei (t).

Then, similar to the proof of Theorem 1, we can prove
that condition (iv) implies

V (t) ≤ M0e−λ(t−t0), t ≥ t0,

where λ > 0 is an unique positive solution of the equa-

tion λ+ ln d

Ta
+ p +d N0qeλτ = 0, if we note that when

d > 1

W (t, s) =
(

∏

s<tk≤t

d

)
ep(t−s) = d Nζ (t,s)ep(t−s)

≤ d N0 d
t−s
Ta e(−η−

ln d
Ta
)(t−s)

= d N0 e−η(t−s), t > s ≥ t0.

��
Remark 7 When impulsive effects are desynchroniz-
ing, i.e., |(1 + dk)| > 1, condition (iv) is still true if Ta

is replaced by infk∈Z+{tk − tk−1}; then condition (iv)
in Theorem 2 becomes:


 ∗
inf

�= ln d

infk∈Z+{tk − tk−1}
+ 2L1 + rλ(r)+ 2d N0 L2 < 0. (27)

It is easy to see that condition (iv) derived by using Ta

can be satisfied more easily and less conservative than
inequality (27) obtained by using infk∈Z+{tk − tk−1}
because ln d > 0 and Ta > infk∈Z+{tk − tk−1}. Such
statement will be further verified through numerical
examples.

Remark 8 From condition (iv), one has L1+rλ(r)/2+
d N0 L2 < 0 since (ln d)/Ta > 0, that is, p+qd N0 < 0.
This results in −p > q > 0, which implies that the
underlying delayed dynamical network (1) in fact is
globally exponential synchronization itself in this case
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[7,18]. Thus, Theorem 2 indicates that under which
desynchronizing impulses globally exponential syn-
chronization of the original-delayed dynamical net-
work (1) can be preserved. In addition, similar to Theo-
rem 1, Theorem 2 also shows that globally exponential
synchronization of the impulsive-delayed dynamical
network (3) with desynchronizing impulses is closely
related with impulse strengths, average impulsive inter-
val, and topology structure of the networks.

Let the impulsive strengths dk ≡ d0, k ∈ Z+. Then,
we can derive the following result from Theorem 2.

Corollary 2 Consider the impulsive-delayed dynam-
ical network (3) with desynchronizing impulses. Sup-
pose that Assumption 1 holds, and the average impul-
sive interval of impulsive sequence ζ = {t1, t2, t3, . . .}
is equal to (N0, Ta). Then the impulsive-delayed
dynamical network (3) is globally exponentially syn-
chronized if the following condition holds


 ∗ �= 2 ln |1 + d0|
Ta

+ 2L1 + rλ(r)+ 2(1 + d0)
2N0

L2 < 0, d0 > 0 or d0 < −2. (28)

Remark 9 In [11–17], the synchronization problem
with synchronizing impulses was investigated. In order
to ensure synchronization, a requirement that
supk∈Z+{tk − tk−1} ≤ ε1 for a certain positive con-
stant ε1 is needed in [11–17] to guarantee the frequency
of synchronizing impulses should not be too low. In
[18–20], the synchronization dynamics with desyn-
chronizing impulses was studied. In order to guaran-
tee synchronization, there exists a requirement that
infk∈Z+{tk − tk−1} ≥ ε2 for a certain positive con-
stant ε2 in [18–20] to ensure that the desynchroniz-
ing impulses do not occur too frequently. In this paper,
the synchronization problem of impulsive dynamical
networks with time-varying delays dynamical nodes
is considered, and two types of impulses occurred in
the sates of nodes are discussed. Different from the
results in [11–20], here the average impulsive inter-
val Ta is used to derive synchronization criteria. Since
supk∈Z+{tk − tk−1} > Ta, our synchronization crite-
ria increase the impulses distances of synchronizing
impulses than the results obtained in [11–17] by using
the upper bound of the impulsive intervals. Similarly,
due to infk∈Z+{tk − tk−1} < Ta, our synchronization
criteria decrease the impulses distances of desynchro-
nizing impulses than the results derived in [18–20]
by using the lower bound of the impulsive intervals.

Hence, results of this paper are less conservation than
those in [11–20]. Recently, synchronization of impul-
sive dynamical networks was investigated in [10,21] by
using the average impulsive interval approach. How-
ever, the authors of [10] did not consider time delays;
the results in [21] only investigated coupled delayed
neural networks with desynchronizing impulses. More-
over, both the results in [10,21] only considered the
case of dynamical networks with impulses occurred
in the processes of coupling. They cannot be directly
extended to the case of delayed dynamical networks
with impulsive effects on the nodes’ states; another
common phenomenon occurred in many realistic net-
works [7,8,19,20]. Hence, our results are new and
extend those in [10–21]. Furthermore, as shown in
[10,21], impulsive signals with a wider range of impul-
sive interval can also be described by utilizing the con-
cept of average impulsive interval. Therefore, our syn-
chronization criteria can be applicable to a wider range
of impulsive signals.

Remark 10 In this paper, for simplicity’s sake, the net-
work model is assumed to be time-invariant. However,
in reality, complex networks are more likely to be time-
varying networks, that is, the coupling coefficients bi j

and the coupling matrix Γ are time-varying [2]. By
referring to [2,16,29], the results in this paper can actu-
ally be generalized to the case of general time-varying
dynamical network model. We will give a detailed
analysis for this case and present it elsewhere.

4 Numerical examples

4.1 The examples of simulations

In this subsection, two simulation examples, one for
synchronizing impulses and the other for desynchro-
nizing impulses, are given to illustrate the effective-
ness of our theoretical results. The Chua oscillator with
time-delayed nonlinearity is used as uncoupled node in
network (1). A single time-delayed Chua oscillator is
given by [26]

ẋ(t) = f (t, x(t), x(t − τ(t)))

= Ax(t)+ g1(x(t))+ g2(x(t − τ(t))), (29)

where x(t) = (x1(t), x2(t), x3(t))� ∈ R
3, g1(x(t)) =( − 1

2α(m1 − m2)(|x1(t)+ 1| − |x1(t)− 1|), 0, 0
)� ∈

R
3, g2(x(t−τ(t))) = (

0, 0,−β� sin(vx1(t−τ(t)))
)�

∈ R
3,
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A =
⎡

⎣
−α(1 + m2) α 0

1 −1 1
0 −β −ω

⎤

⎦ , (30)

and α = 10, β = 19.53, ω = 0.1636, m1 =
−1.4325, m2 = −0.7831, v = 0.5, � = 0.2, and
τ(t) = 0.02. Figure 1 shows the chaotic attractor of the
time-delayed Chua oscillator (29). It is easy to check
that
(

x(t)− y(t)
)�(

f (t, x(t), x(t − τ(t)))

− f (t, y(t), y(t − τ(t)))
)

≤ 1

2

(
x(t)− y(t)

)�
(A + A�)

(
x(t)− y(t)

)

+ |α(m1 − m2)|
(

x1(t)− y1(t)
)2

+β�v|x3(t)− y3(t)||x1(t − τ(t))− y1(t − τ(t))|
≤ λmax( Ã)

(
x(t)− y(t)

)�(
x(t)− y(t)

)

+ (β�v)/(2ω)
(

x(t − τ(t))

− y(t − τ(t))
)�(

x(t − τ(t))

− y(t − τ(t))
)

= L1

(
x(t)− y(t)

)�(
x(t)− y(t)

)

+ L2

(
x(t − τ(t))− y(t − τ(t))

)�(
x(t

− τ(t))− y(t − τ(t))
)
.

where Ã =
(
(A + A�)/2 + diag

(|α(m1 − m2)|, 0, ω

(β � v)/2
))
, L1 = λmax( Ã), L2 = (β�v)/(2ω), and

ω is a positive constant. Thus, the condition of Assump-
tion 1 is satisfied.

For most real-world impulsive signals, the occur-
rence of impulses is not uniformly distributed. In the
following, we consider a special nonuniformly distrib-
uted impulsive signal ζ = {t1, t2, t3, . . .} described by
[10]

tk − tk−1

=
{
ε0, if mod(k, N0) �= 0,
N0(Ta − ε0)+ ε0, if mod(k, N0) = 0,

(31)

where ε0 and Ta are positive numbers satisfy ε0 < Ta,
and N0 is a positive integer. It follows from Defini-
tion 2 that the average impulsive interval of impul-
sive signal ζ in (31) is equal to (Ta, N0). From the
structure of the impulsive signal ζ , we can obtain that
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3
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−4

0
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0

0.5

1

X
1

X
3

X
2

Fig. 1 Chaotic attractor of the time-delayed Chua oscillator (29)
with initial conditions x1(0) = 0.5, x2(0) = 0.1, x3(0) = 1.2

infk∈Z+{tk − tk−1} = ε0 and supk∈Z+{tk − tk−1} =
N0(Ta − ε0) + ε0. When ε0 is small and N0 is large,
the quantity infk∈Z+{tk − tk−1} = ε0 will be small, and
the quantity supk∈Z+{tk − tk−1} = N0(Ta − ε0) + ε0

will be large. In such case, the results in [11–20] may
not be applicable.

Example 1 In this example, we consider a nearest-
neighbor unidirectional coupled delayed dynamical
network (3) with synchronizing impulses. The coupling
matrix B of this network is of the form

B =

⎛

⎜⎜⎜⎜⎜⎝

−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
. . .

. . .
...

0 · · · 0 −1 1
1 0 · · · 0 −1

⎞

⎟⎟⎟⎟⎟⎠

N×N

.

Clearly, the coupling matrix B is an asymmetrical
Laplacian matrix of a weighted graph with a spanning
tree. In this simulation, choosing N=100, then one has
λ̃2 = −0.0039 and max1≤k≤N δk = 0. Let the cou-
pling strength c = 5, and the inner coupling matrix
Γ = I3. By simple calculation, one can obtain that
rλ(r) = −0.0195.

Let the synchronizing impulsive strengths dk ≡
d0 = −0.30, k ∈ Z+, and the impulsive signal
ζ satisfy (31) with average impulsive interval Ta =
0.02, ε0 = 0.005, and N0 = 4. Select ω = 10, one has
L1 = 15.7098 and L2 = 0.0977. Then, we can obtain
that 
 = −0.8779. According to Corollary 1, it can
be concluded that the delayed dynamical network with
synchronizing impulses is globally exponentially syn-
chronized. Figure 2 shows the synchronizing impulses
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Fig. 2 Synchronizing impulsive sequence with Ta = 0.02, ε0 =
0.005, N0 = 4, and d0 = −0.30 in time interval [0 1]
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Fig. 3 Change process of the sate variables of the nearest-
neighbor unidirectional coupled delayed dynamical network with
impulsive strength d0 = 0 in time interval [0 100]

sequence, and Fig. 3 visualizes the change process
of the sate variables of the nearest-neighbor unidirec-
tional coupled delayed dynamical network with impul-
sive strength d0 = 0, which clearly shows desynchro-
nization of the underlying delayed dynamical network
without impulses. Error trajectories of the nearest-
neighbor unidirectional coupled delayed dynamical
network with synchronizing impulses d0 = −0.30
are plotted in Fig. 4. We can see that the network
achieves quickly synchronization under the synchro-
nizing impulses.

For the impulsive signal shown in Fig. 2, the upper
bound of the impulsive interval is 0.0650. If we use
supk∈Z+{tk − tk−1} = 0.0650 instead of Ta, then we
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Fig. 4 Error trajectories of the nearest-neighbor unidirec-
tional coupled delayed dynamical network with synchronizing
impulses d0 = −0.30 in time interval [0 1]
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Fig. 5 Change process of the sate variables of the scale-free
coupled delayed dynamical network without impulses in time
interval [0 50]

get 
sup = 23.8150, and so inequality (25) is not sat-
isfied. Hence, for this example, inequality (25) fails to
judge whether the impulsive-delayed dynamical net-
work can be synchronized if supk∈Z+{tk − tk−1} is uti-
lized. Consequently, condition (ii) is less conservative
than the results in [11–17], which are obtained by using
supk∈Z+{tk − tk−1}.
Example 2 A BA scale-free [35] coupled delayed
dynamical network (3) with desynchronizing impulses
is taken as the second example. The parameters of the
BA model are given by m0 = m = 4 and N = 100.
In this simulation, one obtains that λ̃2 = −4.5003
and max1≤k≤N δk = 0. Let the coupling strength
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Fig. 6 Desynchronizing impulsive sequence with Ta = 0.30,
ε0 = 0.025, N0 = 3, and d0 = 0.1 in time interval [0 5]

0 1 2 3 4 5
−20

−10

0

10

20

Time

X
i1

(t
),

X
i2

(t
),

X
i1

(t
)(

i=
1,

2,
...

,1
00

) X
i1

(t)

X
i2

(t)

X
i3

(t)

Fig. 7 Synchronization of the scale-free coupled delayed
dynamical network with desynchronizing impulses d0 = 0.10
in time interval [0 5]

c = 6 and the inner coupling matrix Γ = I3. Select
ω = 1, one has L1 = 11.3931 and L2 = 0.9765.
Then, 2L1 + rλ(r) + 2L2 = −2.2624 < 0, that is,
−p > q > 0. Thus, the underlying delayed dynami-
cal network without impulses is globally exponentially
synchronized itself in this example, as shown in Fig. 5.

Let the desynchronizing impulsive strengths dk ≡
d0 = 0.10, k ∈ Z+, and the impulsive signal ζ satisfy
(31) with average impulsive interval Ta = 0.03, ε =
0.025, and N0 = 3. Then, one has
 ∗ = −0.1203. By
Corollary 2, globally exponential synchronization of
the scale-free coupled delayed dynamical network with
the desynchronizing impulses is maintained. Figure 6
depicts the desynchronizing impulsive sequence, and

corresponding trajectories of the impulsive-delayed
dynamical network are displayed in Fig. 7.

For the impulsive signal shown in Fig. 6, the lower
bound of the impulsive interval is 0.025. If we uti-
lize infk∈Z+{tk − tk−1} = 0.025 instead of Ta, then

 ∗

inf = 6.8691, and so inequality (27) is not satisfied.
Hence, inequality (27) fails to judge whether the impul-
sive delayed dynamical network can maintain globally
exponential synchronization if infk∈Z+{tk − tk−1} is
used. Consequently, condition (iv) is less conservative
than the results in [18–20], which are derived by utiliz-
ing infk∈Z+{tk − tk−1}.

4.2 The example of application

In the following, we provide one example to show
some potential real-world application of our theoret-
ical results.

As we know now, many real-world complex net-
works contain several significantly recurring nontriv-
ial patterns of interconnections, termed network motifs
[40,41]. Network motifs were suggested to be elemen-
tary building blocks that carry out key functions in the
networks [40,41]. As typical network motifs, the feed-
forward loops (FFLs) have been intensively investi-
gated in various fields over the last decade [41,42]. The
FFLs, depending on the nature of the regulating interac-
tions, can be of eight different types which can again be
classified into two categories: coherent FFLs (CFFLs)
and incoherent FFLs (ICFFLs) [41]. Moreover, exten-
sive research shows most biological networks are com-
plex networks with scale-free characteristic [43,44].
Therefore, we take FFLs as basic elements to synthe-
size a complex network, and consider a BA scale-free
[35] coupled genetic networks consisting of N FFLs
motifs. In this subsection, we just discuss the type-1
CFFL with SUM logic [41], other types of FFLs with
different logics can be similarly analyzed. A typical
mathematical model of the type-1 CFFL with SUM
logic is described by [41,42]

ẋ(t) = f (t, x(t)) = Ax(t)+ g1(x(t)), (32)

where x(t) = (x1(t), x2(t), x3(t))� ∈ R
3, A =

diag
(
β1, β2, β3

)
, g1(x(t)) = (

α1x1, α2xn
1 /(K

n
1 +xn

1 ),

α3xn
1 /(K

n
2 +xn

1 )+α4xn
2 /(K

n
3 +xn

2 )
)� ∈ R

3. The para-
meters β1 = −0.2, β2 = −0.05, β3 = −0.07, α1 =
0.2, α2 = 0.9, α3 = 1.2, α4 = 1.2, K1 = 10, K2 =
20, K3 = 10, and n = 2. The biological mean-
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Fig. 8 Trajectories of the state variables of the scale-free coupled
genetic networks in time interval [0 20]
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Fig. 9 Desynchronizing impulsive sequence with Ta = 0.20,
ε0 = 0.05, N0 = 3, and d0 = 0.1 in time interval [0 4]

ing of these parameters can be founded in [41,42].
By using mean value theorem [45], Assumption 1 is
obviously satisfied with L1 = 0.0375 and L2 = 0.
In this example, the parameters of the BA model are
given by m0 = m = 3 and N = 100, then we get
λ̃2 = −2.8634 and max1≤k≤N δk = 0. Let the cou-
pling strength c = 1 and the inner coupling matrix
Γ = I3. Through simple calculation, one can obtain
that 2L1 + rλ(r) + 2L2 = −2.7884 < 0. Hence, the
scale-free coupled genetic networks are globally expo-
nentially synchronized, as indicated in Fig. 8.

Since the states of biological networks often exhibit
impulsive effects [9,10,21], we consider the scale-
free coupled genetic networks with desynchronizing
impulses. Let the desynchronizing impulsive strengths
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Fig. 10 Synchronization of the scale-free coupled genetic net-
works with desynchronizing impulses d0 = 0.10 in time interval
[0 4]

dk ≡ d0 = 0.10, k ∈ Z+, and the impulsive sig-
nal ζ satisfy (31) with average impulsive interval Ta =
0.2, ε = 0.05, and N0 = 3, as depicted in Fig. 9. Then,
one has 
 ∗ = −1.0853. By Corollary 2, globally
exponential synchronization of the scale-free coupled
genetic networks with the desynchronizing impulses is
preserved, as shown in Fig. 10. The synchronization
of genetic networks is essential for the understanding
of living organisms at both molecular and cellular lev-
els [45]. Our result shows that under some impulsive
disturbances the synchronization of genetic networks
can be preserved . It sheds some light on the potential
real-world applications of our theoretical results.

5 Conclusion and future research issues

In this paper, a detailed analysis has been carried out for
the synchronization of directed complex networks with
time-varying delays dynamical nodes and impulsive
effects. Two types of impulses occurred in the states of
nodes have been discussed. Without assuming symme-
try and irreducibility of coupling structure, some glob-
ally exponential synchronization criteria for general
impulsive- delayed dynamical networks with weakly
connected topology have been established for each type
of impulses by using the concept of average impul-
sive interval and the comparison principle. The derived
results not only can provide an effective impulsive con-
trol strategy to synchronize an arbitrary given delayed
dynamical network even if the original network may be
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asynchronous itself but also indicate that under which
impulsive perturbations globally exponential synchro-
nization of the underlying delayed dynamical networks
can be preserved. Numerical examples and their sim-
ulations have been given to verify the effectiveness of
the theoretical results. According to theoretical analysis
and numerical examples, our results have been proved
to be less conservative.

Recently, the consensus problem for multi-agent
systems has attracted much attention due to its exten-
sive applications in real-world distributed computation,
rendezvous tasks, flocking, swarming, biological sys-
tems, sensor networks, and so on [36–39]. For example,
in [38], the flocking of multi-agent nonholonomic sys-
tems with proximity graphs was studied. In [39], the
consensus of a discrete-time multi-agent system with
transmission nonlinearity and time-varying delays was
investigated. As the authors of [36] pointed out, the
topic of synchronization of coupled nonlinear oscilla-
tors is closely related to the consensus of multi-agent
systems. Hence, it would be of great interest to extend
the recent results of consensus in [38,39] to the case of
synchronization discussed in this paper. Moreover, it
is worth mentioning that applying the analysis method
presented in this paper to the synchronization problem
of complex-switched dynamical networks with impul-
sive effects also presents an interesting and important
topic for future research.
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