
Nonlinear Dyn (2014) 76:1661–1676
DOI 10.1007/s11071-014-1237-0

ORIGINAL PAPER

Spatiotemporal complexity of a three-species
ratio-dependent food chain model

Feng Rao

Received: 29 September 2013 / Accepted: 2 January 2014 / Published online: 29 January 2014
© Springer Science+Business Media Dordrecht 2014

Abstract In this paper, we investigate the complex
dynamics of a ratio-dependent spatially extended food
chain model. Through a detailed analytical study of
the reaction–diffusion model, we obtain some con-
ditions for global stability. On the basis of bifurca-
tion analysis, we present the evolutionary process of
pattern formation near the coexistence equilibrium
point (N∗, P∗, Z∗) via numerical simulation. And the
sequence cold spots → stripe–spots mixtures → stripes
→ hot stripe–spots mixtures → hot spots → chaotic
wave patterns controlled by parameters a1 or c1 in
the model are presented. These results indicate that
the reaction–diffusion model is an appropriate tool for
investigating fundamental mechanism of complex spa-
tiotemporal dynamics.

Keywords Food chain model · Stability · Pattern
formation · Turing/Hopf bifurcation

1 Introduction

Because of the universal existence of prey and preda-
tor and their importance in ecology, the dynamical
relationship between them has long been, and will
continue to be, one of the dominant themes [2].
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Prey–predator interaction is one of the basic inter-
species relations for ecosystems, and it is also the basic
block of more complicated food chain, food web, and
biophysical network structures [3]. Complex networks
play an important role for describing the organization
of biological systems. Evolutionary food web models
provide a mechanistic tool to understand how complex
ecosystems emerge and how they can persist under
changes in their composition and their environment.
In particular, the notion of food chain has proven to be
very useful to capture the basic properties of “who eats
whom” in ecological communities [23]. On ecologi-
cal food chain, species higher can significantly impact
the populations of species below them. And the pro-
ductivity of food chains is thought to be governed by
bottom-up forces, where the populations are resource
limited by the lowest-level species [8]. For example, in
aquatic ecosystems bottom up control occurs in tem-
perate climate zones. The phytoplankton in the water
grow rapidly during the spring when sunlight increases
and the water is nutrient-rich from the winter. This
growth then provides more food for the zooplankton
whose population also increases which in turn pro-
vides more food for fish. Food chain models, as one of
the most important predator–prey systems, have been
extensively studied by many researchers (see, [5,6,11–
13,19,24,27,35,42]), and main interesting results been
obtained, including global stability, persistence, the
extinction of top predator, structures relevant to chaos,
existence, uniqueness and stability of positive periodic
solution, and so on.
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1662 F. Rao

In general, a classical food chain model with the
non-dimensional form can be written as follows:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dN

dt
= N f (N ) − a1g1(N , P)P,

dP

dt
= (b1g1(N , P) − c1)P − a2g2(P, Z)Z ,

dZ

dt
= (b2g2(P, Z) − c2)Z ,

(1)

where N = N (t), P = P(t), and Z = Z(t) stand for,
respectively, the population densities of prey at low-
est level of the food chain, intermediate predator that
prey upon N , and top predator that prey upon P at time
t . All parameters are positive constants, a1 and a2 are
the maximum ingestion rates of intermediate preda-
tor P and top predator Z ; b1 and b2 the conversion
factors of prey to intermediate predator and interme-
diate predator to top predator; c1 and c2 the mortality
rates of the intermediate predator and the top predator,
respectively. The function f (N ) represents the density-
dependent-specific growth rate of prey in the absence
of predator. gi (i = 1, 2) is the functional response, the
prey consumption rate by an average single predator,
which obviously increases with the prey consumption
rate and can be influenced by the predator density. And
ai gi (i = 1, 2) is the amount of prey consumed per
predator per unit time; bi gi (i = 1, 2) the predator
production per capita with predation [23].

From a biological perspective, individual organ-
isms are distributed in space and typically interact
with the physical environment and other organisms
in their spatial neighborhood [7]. The predator–prey
system models such a phenomenon: pursuit–evasion—
predators pursuing prey and prey escaping the preda-
tors [4]. In other words, in nature, there is a tendency
that the prey would keep away from predators and the
escape velocity of the prey may be taken as propor-
tional to the dispersive velocity of the predators. In
the same manner, there is a tendency that the preda-
tors would get closer to the prey and the chase veloc-
ity of predators may be considered to be proportional
to the dispersive velocity of the prey [32,39]. This is
often done in terms of diffusion, as movement of indi-
viduals may be connected with other things, such as
searching for food, escaping high infection risks, and
so on [23]. In the first case, individuals tend to dif-
fuse in the direction of lower density of population,
where there are more resources. In the second case, to
avoid higher infections, individuals may move along

the gradient of infectious individuals [22]. Keeping
these in view, predation models are considered where
the diffusion of individuals is influenced by intraspe-
cific competition pressures and is affected by different
classes [25].

In the above sense, a spatial predator–prey model can
be considered as a reaction–diffusion predation model;
it has been shown that such models are capable of self-
organized pattern formation [18]. Turing [34] in 1952
showed that spatial patterns arise not from inhomo-
geneity of initial or boundary conditions, but purely
from the dynamics of the model, i.e., from the inter-
action of nonlinear reactions of growth processes and
diffusion. In mathematics, pattern formation refers to
the process that, by changing a bifurcation parame-
ter, the spatially homogeneous steady states lose sta-
bility to spatially inhomogeneous perturbations, and
stable inhomogeneous solutions arise [37]. It has been
shown that spatiotemporal patterns are very likely to
be found in the neighborhood of Turing and Hopf
bifurcations. The understanding of patterns and mech-
anisms of spatial dispersal of interacting species is
an issue of significant current interest in conservation
biology, ecology, and biochemical reactions [23,25].
In recent years, many studies show that the reaction–
diffusion model is an appropriate tool for investigating
the fundamental mechanism of complex dynamics [15–
17,21,26,29,30,33,41,38,45].

Especially, there has been considerable interest in
ratio-dependent food chain model recently. Hsu et
al. [11] studied a three-trophic level food chain model
with ratio-dependent Michaelis–Menten type func-
tional responses, and pointed out that the model is
rich in boundary dynamics and is capable of gener-
ating such extinction dynamics. A non-autonomous
delayed ratio-dependent food chain model was given
in Hou and Li [10], and sufficient and realistic con-
ditions for the global existence of positive periodic
solutions for the delayed model were obtained. A
non-autonomous ratio-dependent food chain model
is permanence, extinction, and ultimate boundedness;
and global asymptotic stability under some appropri-
ate conditions was discussed in Zeng [44]. Ko and
Ahn [13] investigated a food chain model with ratio-
dependent functional response under homogeneous
Neumann boundary conditions, and focused on the
stability and instability of spatially constant equilibria
and formation of spatially non-constant patterns. Peng
et al. [29] studied the three-species food chain model
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Three-species ratio-dependent food chain model 1663

with diffusion and ratio-dependent predation functional
response. They analyzed the persistent property of the
solution, the stability of the constant positive steady
state solution, and the existence and nonexistence of
non-constant positive steady state solutions. The diffu-
sive ratio-dependent food chain model was considered
by Ko and Ahn in [14] and they provided the suffi-
cient conditions for the existence and nonexistence of
coexistence states.

But, to the best of our knowledge, for a reaction–
diffusion food chain model with ratio-dependent func-
tional response, research on the evolution process of
the spatial pattern formation, the mechanism of pattern
formation emergence, seems rare. Based on these dis-
cussions above, the main objective of the present paper
is to use a type of ratio-dependent food chain model
to investigate the spatiotemporal dynamics of three
species. And, we focus on the following three-species
predation–diffusion model, where predator–prey inter-
actions are nonlinear and are based on ratio-dependent
functional responses [11],
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ N

∂t
= N (1 − N ) − a1 N P

N + P
+ d1∇2 N ,

∂ P

∂t
= b1 N P

N + P
− c1 P − a2 P Z

P + Z
+ d2∇2 P,

∂ Z

∂t
= b2 P Z

P + Z
− c2 Z + d3∇2 Z .

(2)

Note that d1, d2, and d3 are the diffusion coefficients
of the three species, ∇2 = ∂2/∂x2 + ∂2/∂y2 the usual
Laplacian operator in two-dimensional space, and other
parameters are the same definition as those above.

The organization of this paper is as follows. In
Sect. 2, we present our main results about the stability
and bifurcation analysis of model (2), including bound-
edness and stability of solutions for the non-spatial and
spatial model. Then, by performing a series of numer-
ical simulations, we illustrate the emergence of differ-
ent patterns of model (2), which is followed by Sect. 3.
Finally, we give some conclusions and discussions in
Sect. 4.

2 Model analysis

Since the state variable N , P , and Z of model (2) rep-
resent population density, positivity insures that they
never become zero, and population always survive, and
the state space of model (2) is given by R3+ = {(N (t),

P(t), Z(t)) ∈ R3 : N (t) ≥ 0, P(t) ≥ 0, Z(t) ≥
0}. The boundedness may be interpreted as a nat-
ural restriction to growth as a consequence of limited
resources [23].

2.1 Dynamics of the non-spatial model (2)

Theorem 1 In the absence of diffusion, all the solu-
tions of model (2) with nonnegative initial conditions
(that initiate in R3+) are uniformly bounded for all
t ≥ 0.

Proof Let (N (t), P(t), Z(t)) be any solution of the
non-spatial model (2) with positive initial conditions.
Let us consider that W = N + μP + νZ , then

dW

dt
= dN

dt
+ μ

dP

dt
+ ν

dZ

dt
,

where we choose μ = a1/b1 and ν = a1a2/(b1b2).
Using Eq. (2), we have

dW

dt
≤ −θ(N + P + Z) − (N − 1)2 − 1,

where θ = min{1, μc1, νc2}, then

dW

dt
+ θW ≤ 1 − (1 − N )2.

Therefore,

dW

dt
+ θW ≤ 1.

Applying the theory of differential inequality we
obtain

0 < W <
1 − e−θ t

θ
+ W (N (0), P(0), Z(0))e−θ t .

For t → ∞, we have 0 < W < 1/θ .
Hence all the solutions of model (2) in the absence

of diffusion that initiate in R3+ are confined in the region
D = {(N , P, Z) ∈ R3+ : W = 1/θ +ε, for anyε > 0}.
This proves the theorem. 	


It can be seen that, in the absence of diffusion,
model (2) has two nonnegative real equilibrium solu-
tions,

(i) E1 =
(

b1−a1(b1−c1)
b1

,
(b1−a1(b1−c1))(b1−c1)

b1c1
, 0

)
cor-

responds to extinction of top predator Z when
0 < a1(b1 − c1) < b1;

(ii) E∗ = (N∗, P∗, Z∗) corresponds to coexistence of
prey and predators, where
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N∗ = b1b2 − a1b2(b1 − c1) + a1a2(b2 − c2)

b1b2
,

P∗ = b2(b1 − c1) − a2(b2 − c2)

b2c1 + a2(b2 − c2)
N∗,

Z∗ = b2 − c2

c2
P∗.

Noting that the conditions ensuring the positiveness of
N∗, P∗, and Z∗ are 0 < a1b1(b1 − c1) < b1b2 +
a1a2(b2 − c2) and 0 < a2(b2 − c2) < b2(b1 − c1). The
Jacobian matrix J(N , P, Z) at any point (N , P, Z) is
given by

J(N , P, Z)

=

⎛

⎜
⎜
⎝

1 − 2N − a1 P2

(N+P)2 − a1 N 2

(N+P)2 0
b1 P2

(N+P)2
b1 N 2

(N+P)2 − c1 − a2 Z2

(P+Z)2 − a2 P2

(P+Z)2

0 b2 Z2

(P+Z)2
b2 P2

(P+Z)2 − c2

⎞

⎟
⎟
⎠ .

Theorem 2 The top predator-free equilibrium point
E1 = (b1−a1(b1−c1)/b1, (b1−a1(b1−c1))(b1−c1)/

(b1c1), 0) is stable if b1c1(b1 −c1) > a1(b2
1 −c2

1)−b2
1

and b2 < c2.

Proof The variational matrix at the equilibrium point
E1 =(b1−a1(b1−c1)/b1, (b1−a1(b1−c1))(b1 − c1)/

(b1c1), 0) is given by

J(E1) =

⎛

⎜
⎜
⎝

a1(b2
1−c2

1)−b2
1

b2
1

− a1c2
1

b2
1

0

(b1−c1)
2

b1
− (b1−c1)c1

b1
−a2

0 0 b2 − c2

⎞

⎟
⎟
⎠ .

The eigenvalues of variational matrix at E1 are b2 − c2

and the roots of the equation

λ2 −
(

a1(b2
1 − c2

1) − b2
1

b2
1

− (b1 − c1)c1

b1

)

λ

+ (b1 − c1)c1

b1
− a1c1(b1 − c1)

2

b2
1

= 0.

Hence, the equilibrium point E1 is locally asymptoti-
cally stable if b2 < c2 and

b1c1(b1 − c1) > a1(b
2
1 − c2

1) − b2
1.

	

From biological point of view, the stability of the

nontrivial steady state E∗ = (N∗, P∗, Z∗) which
ensures the coexistence of the three species is of inter-
est.

Theorem 3 The interior equilibrium point E∗ = (N∗,
P∗, Z∗) is locally asymptotically stable if (a2b2 −
b2c1 + a2c2)

2 < b1b2
2c1 + a2b1(b2 − c2)

2.

Proof The variational matrix at the equilibrium point
E∗ = (N∗, P∗, Z∗) is given by

J(E∗) =
⎛

⎝
J11 J12 J13

J21 J22 J23

J31 J32 J33

⎞

⎠ ,

where

J11 = −b2
1b2

2(1 − a1) + a1(a2(b2 − c2) + b2c1)
2

b2
1b2

2

,

J12 = −a1(b2c1 + a2(b2 − c2))
2

b2
1b2

2

, J13 = 0,

J21 = (a2(b2 − c2) − b2(b1 − c1))
2

b1b2
2

,

J22 = 1

b1b2
2

(
−b1b2

2c1 − a2b1(b2 − c2)
2

+(a2b2 − b2c1 + a2c2)
2
)

,

J23 = −a2c2
2

b2
2

, J31 = 0,

J32 = (b2 − c2)
2

b2
,

J33 = − (b2 − c2)c2

b2
.

The characteristic equation at the interior equilib-
rium point E∗ is

λ3 + Q1λ
2 + Q2λ + Q3 = 0,

where

Q1 = −(J11 + J22 + J33),

Q2 = J11 J22 − J12 J21 + (J11 + J22)J33 − J23 J32,

Q3 = J11 J23 J32 − J11 J22 J33 + J12 J21 J33.

It is clear that

J11 < 0, J12 < 0, J21 > 0, J23 < 0,

J32 > 0, J33 < 0.

Here Q1 > 0 and Q2 > 0 if J22 < 0 and obviously
Q3 > 0.

Now Q1 Q2 − Q3 = (J22 + J33)(J23 J32 − J22 J33)−
(J11+J22+J33)(J11 J22−J12 J21+J11 J33)−J12 J21 J33.
If J22 < 0, then (J22 + J33)(J23 J32 − J22 J33) > 0,
J12 J21 J33 > 0, J11 + J22 + J33 < 0, and J11 J22 −
J12 J21 + J11 J33 > 0. Thus, Q1 Q2 − Q3 > 0.

Therefore, the non-spatial model (2) is locally stable
at the interior equilibrium E∗ = (N∗, P∗, Z∗) if
(a2b2 − b2c1 + a2c2)

2 < b1b2
2c1 + a2b1(b2 − c2)

2.
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2.2 Dynamics of the spatial model (2)

The spatial model (2) is to be analyzed under the fol-
lowing non-zero initial conditions

N (x, y, 0) > 0, P(x, y, 0) > 0, Z(x, y, 0) > 0,

(x, y) ∈ Ω = [0, Lx] × [0, Ly] (3)

and zero-flux boundary conditions

∂ N

∂n
= ∂ P

∂n
= ∂ Z

∂n
= 0, (x, y) ∈ ∂Ω. (4)

In the above, Lx and Ly give the size of the model
in the directions of x and y, respectively. n is the out-
ward unit normal vector of the boundary ∂Ω , which we
assume is smooth. The main reason for choosing such
boundary conditions is that we are interested in the self-
organization of pattern; zero-flux conditions imply no
external input [23].

Next, we will analyze the stability of the positive
equilibrium E∗ of the reaction–diffusion model (2).

Theorem 4 If P + Z > a1a2 P∗Z∗/(b1 N∗(P∗ + Z∗))
and a1/b1 > P∗/Z∗ > b2/a2, then the uniform steady
state E∗ = (N∗, P∗, Z∗) of model (2) is globally
asymptotically stable.

Proof Define a Liapunov function

V1(N , P, Z) =
N∫

N∗

χ − N∗

χ
dχ +

P∫

P∗

ξ − P∗

ξ
dξ

+
Z∫

Z∗

η − Z∗

η
dη. (5)

Note that V1(N , P, Z) is nonnegative and V1(N , P,

Z)=0 if and only if (N (t), P(t), Z(t))=(N∗, P∗, Z∗).
Furthermore, the time derivative of V1 along the solu-
tions of model (2) without diffusion is

dV1

dt
= N − N∗

N

dN

dt
+ P − P∗

P

dP

dt
+ Z − Z∗

Z

dZ

dt
.

Substituting the expressions of dN/dt, dP/dt , and
dZ/dt from model (2) in the absence of diffusion, we
obtain

dV1

dt
= (N − N∗)

(

1 − N − a1 P

N + P

)

+ (P − P∗)
(

b1 N

N + P
− c1 − a2 Z

P + Z

)

+ (Z − Z∗)
(

b2 P

P + Z
− c2

)

.

Using the fact that

N∗ + a1 P∗

N∗ + P∗ = 1,
b1 N∗

N∗ + P∗ − a2 Z∗

P∗ + Z∗ = c1,

b2 P∗

P∗ + Z∗ = c2,

and if b1 N∗(P∗ + Z∗)(P + Z) > a1a2 P∗Z∗, a1
b1

>

P∗
Z∗ > b2

a2
, we can get

dV1

dt
≤ −

(

1 − a1 P∗

(N∗ + P∗)(N + P)

)

(N − N∗)2

−
(

b1 N∗

(N + P)(N∗ + P∗)
− a2 Z∗

(P∗ + Z∗)(P + Z)

)

×(P − P∗)2

− b2 P∗

(P + Z)(P∗ + Z∗)
(Z − Z∗)2

≤ 0.

Then, we choose the following Liapunov function for
the spatial model (2)

V2 =
∫∫

Ω

V1(N , P, Z)dΛ, (6)

and differentiating V2 with respect to time t along the
solutions of model (2), we have

dV2

dt
=

∫∫

Ω

dV1

dt
dΛ +

∫∫

Ω

(

d1
∂V1

∂ N
�N + d2

∂V1

∂ P
�P

+ d3
∂V1

∂ Z
�Z

)

dΛ.

Using Green’s first identity in the plane

∫∫

Ω

F∇2Gdxdy =
∫

∂Ω

F
∂G

∂n
ds−

∫∫

Ω

(∇F · ∇G)dxdy.

(7)

And considering the zero-flux boundary conditions (4),
we obtain

dV2

dt
=

∫∫

Ω

dV1

dt
dΛ

− d1

∫∫

Ω

∂2V1

∂ N 2

((
∂ N

∂x

)2

+
(

∂ N

∂y

)2
)

dΛ

− d2

∫∫

Ω

∂2V1

∂ P2

((
∂ P

∂x

)2

+
(

∂ P

∂y

)2
)

dΛ

− d3

∫∫

Ω

∂2V1

∂ Z2

((
∂ Z

∂x

)2

+
(

∂ Z

∂y

)2
)

dΛ,
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where

∂2V1

∂ N 2 > 0,
∂2V1

∂ P2 > 0,
∂2V1

∂ Z2 > 0.

From the above analysis, if dV1/dt < 0, then we have
dV2/dt < 0. This implies that if the positive equilib-
rium point E∗ = (N∗, P∗, Z∗) of model (2) without
diffusion is globally asymptotically stable, then in the
presence of diffusion, E∗ = (N∗, P∗, Z∗) of model (2)
will remain globally asymptotically stable. 	


To better understand the spatial dynamics of
model (2), we consider the linearized form of (2) about
E∗ = (N∗, P∗, Z∗) as follows:

∂U1

∂t
= J11U1 + J12U2 + J13U3 + d1∇2U1,

∂U2

∂t
= J21U1 + J22U2 + J23U3 + d2∇2U2,

∂U3

∂t
= J31U1 + J32U2 + J33U3 + d3∇2U3, (8)

where we will introduce small perturbations U1 =
N − N∗, U2 = P − P∗, and U3 = Z − Z∗, (|U1|, |U2|
and |U3| � 1). Define D = diag(d1, d2, d3) as the
diffusion matrix. Referring to Malchow et al. [20], any
solutions of model (8) can be expanded into a Fourier
series

U1(r, t) =
∞∑

i, j=0

ni j (r, t) =
∞∑

i, j=0

αi j (t) sin kr,

U2(r, t) =
∞∑

i, j=0

pi j (r, t) =
∞∑

i, j=0

βi j (t) sin kr,

U3(r, t) =
∞∑

i, j=0

zi j (r, t) =
∞∑

i, j=0

γi j (t) sin kr, (9)

where r = (x, y) and 0 < x < Lx, 0 < y < Ly. Note
that k = (ki , k j ) and ki = iπ/Lx, k j = jπ/Ly are
the corresponding wavenumbers.

Having substituted ni j , pi j , and zi j with (8), we
obtain
dαi j

dt
= (J11 − d1k2)αi j + J12βi j + J13γi j ,

dβi j

dt
= J21αi j + (J22 − d2k2)βi j + J23γi j ,

dγi j

dt
= J31αi j + J32βi j + (J33 − d3k2)γi j , (10)

where k2 = k2
i + k2

j . A general solution of (10) has the

form C1eλ1t + C2eλ2t + C3eλ3t , the constants C1, C2,
and C3 are determined by the initial conditions (3) and

the exponents λ1, λ2, and λ3 are the eigenvalues of the
following matrix:

Ĵ =
⎛

⎝
J11 − d1k2 J12 J13

J21 J22 − d2k2 J23

J31 J32 J33 − d3k2

⎞

⎠ .

(11)

Correspondingly, λ1, λ2, and λ3 arise as the solution
of the following equation:

λ3 + A(k2)λ2 + B(k2)λ + C(k2) = 0, (12)

where

A(k2) = (d1 + d2 + d3)k
2 − (J11 + J22 + J33),

B(k2) = (d1d2 + d1d3 + d2d3)k
4 − (d1(J22 + J33)

+ d2(J11 + J33) + d3(J11 + J22))k
2

+ (J11 J22+ J11 J33 + J22 J33 − J12 J21 − J23 J32),

C(k2) = d1d2d3k6 − (d1d2 J33 + d1d3 J22 + d2d3 J11)k
4

+ (d1 J22 J33−d1 J23 J32+d2 J11 J33−d2 J13 J31

+ d3 J11 J22 − d3 J12 J21)k
2

+ (J11 J23 J32 + J12 J21 J33 − J11 J22 J33).

It is well known that the reaction–diffusion model
leads to the characterization of two basic types of sym-
metry breaking bifurcations—Hopf and Turing bifur-
cations, which are responsible for the emergence of
spatiotemporal patterns. Where the space-independent
Hopf bifurcation breaks the temporal symmetry of a
system and gives rise to oscillations that are uniform
in space and periodic in time. The Turing bifurcation
breaks spatial symmetry, leading to the formation of
patterns that are stationary in time and oscillatory in
space [1,40,43].

By using the bifurcation theory, the Hopf bifurca-
tion, mathematically speaking, occurs when

Im(λ(k)) �= 0, Re(λ(k)) = 0 at k = 0.

And the Turing bifurcation occurs when

Im(λ(k)) = 0, Re(λ(k)) = 0 at k �= 0.

Setting parameters a2 = 0.52, b1 = 1.5, b2 =
2, c2 = 1.05, d1 = 0.02, d2 = 0.2, and d3 = 1,
linear stability analysis yields a bifurcation diagram
for varying a1 and c1 as shown in Fig. 1. In the
figure, the red solid line is Hopf bifurcation curve,
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the blue-dotted line is Turing bifurcation curve. And
the black-dashed line is critical state that above the
dashed line, prey and their predators cannot coex-
ist; under the line, the three species are coexistence.
The Hopf and Turing bifurcation curves separate the
coexistence space into four domains. Domain I is the
region of pure Turing instability. When the parameters
correspond to domain II, which is located above all
two bifurcation lines, both Hopf and Turing instability
occur. Domain III is the region of pure Hopf instabil-
ity. Domain IV, located below two bifurcation curves,
the uniform steady state is the only stable solution of
model (2).

3 Pattern formation

In this section, we perform extensive numerical sim-
ulations of the spatially extended model (2) in two-
dimensional space to illustrate the results obtained in
Sect. 2, and the qualitative results are shown here.
We run the simulations until they reach a stationary
state or until they show a behavior that does not seem
to change its characteristics anymore. Since the three
species exhibit qualitatively similar behavior, for illus-
tration, only the prey abundance is shown in this paper.
All our numerical simulations employ non-zero initial
conditions (3) and zero-flux boundary conditions (4)
with a system size of Lx × Ly, where Lx = Ly = 200
discretized through x → (x0, x1, x2, . . . , xn) and y →
(y0, y1, y2, . . . , yn) with n = 600. We use the stan-
dard five-point approximation for the two-dimensional
Laplacian which in the discrete model describes dif-
fusion [9]. The time evolution can be solved by using
an explicit Euler method, which means approximat-
ing the value of the concentration at the next time step
based on the rate of change of the concentration in the
previous time step. More precisely, the concentrations
(N n+1

i, j , Pn+1
i, j , Zn+1

i, j ) at the moment (n + 1)τ at the
mesh point (xi , y j ) are given by

N n+1
i, j = N n

i, j + τd1�h N n
i, j + τ f1(N n

i, j , Pn
i, j , Zn

i, j ),

Pn+1
i, j = Pn

i, j + τd2�h Pn
i, j + τ f2(N n

i, j , Pn
i, j , Zn

i, j ),

Zn+1
i, j = Zn

i, j + τd3�h Zn
i, j + τ f3(N n

i, j , Pn
i, j , Zn

i, j ),

with the Laplacian defined by

�h N n
i, j =

N n
i+1, j +N n

i−1, j +N n
i, j+1+N n

i, j−1−4N n
i, j

h2 ,

Fig. 1 Bifurcation diagram for model (2) using c1 and a1 as para-
meters with a2 = 0.52, b1 = 1.5, b2 = 2, c2 = 1.05, d1 =
0.02, d2 = 0.2, and d3 = 1. The red solid line is Hopf bifurca-
tion curve, the blue-dotted line is Turing bifurcation curve, and
the black-dashed line is the dividing curve of coexistence and
non-coexistence of prey and their predators. Hopf and Turing
bifurcation curves separate the coexistence parameter space into
four domains. (Color figure online)

where the space step size h = 1/4 and a time step size
of τ = 1/100.

We are mainly interested in investigating the behav-
ior of model (2) around the interior equilibrium point,
so we shall put emphasis on the positive equilibrium
point E∗ = (N∗, P∗, Z∗). The entire system is initially
placed in the stationary state (N∗, P∗, Z∗) and the
propagation velocity of the initial perturbation is thus
of the order of 5 × 10−4 space units per time unit [28].
Based on the analysis of Sect. 2 and bifurcation diagram
(see Fig. 1), the results of computer simulations show
that the type of the model dynamics is determined by
the values of a1 and c1. For different sets of parameters,
the features of the spatial patterns become essentially
different if a1 exceeds the Turing and Hopf bifurcation
curves, respectively, which depend on c1.

In the following Figs. 2, 3, and 4, which we con-
sider the pattern formation for the parameters (c1, a1)

located in domain I (see Fig. 1), the region of pure
Turing instability occurs while Hopf stability occurs,
four different snapshots during the temporal evolution
of model (2) are presented in two-dimensional space.
These figures are the prey species density levels as a
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Fig. 2 Snapshots of contour pictures of the time evolution of prey N at different times with a1 = 1.838 and other parameters are taken
as (13) in the text. Time steps: a t = 0, b t = 100, c t = 1,000, and d t = 5,000

function of space and time on a color scale, with blue
corresponding to the lowest density state and red corre-
sponding to the highest density state. Figures 2, 3, and 4
depict spatial patterns in two-dimensional space under
different values of a1, respectively, and other parame-
ters are fixed as

a2 = 0.52, b1 = 1.5, b2 = 2, c1 = 0.61,

c2 = 1.05, d1 = 0.02, d2 = 0.2, d3 = 1. (13)

With the parameters set, the critical value of Turing
bifurcation is a1T = 1.82864 and that of Hopf bifurca-
tion is a1H = 2.13736. So, the value of a1 we adopt is
between a1T and a1H.

In Fig. 2, we plot the evolution of spatial pattern
for prey N of the spatial model (2) at time t =
0, 100, 1,000, and 5,000. Here, we choose a1 = 1.838
and the nontrivial stationary state is (N∗, P∗, Z∗) =
(0.21211, 0.15914, 0.14399). In this case, one can see
that after irregular transient patterns (see Fig. 2a–c),
the pattern takes a long time to settle down and the
regular spotted patterns prevail over the whole domain
at last (see Fig. 2d), which is time-independent. This
pattern consists of blue spots (minimum density of
N ) on a red (maximum density of N ) background,
that is, isolated zones with low population densities.
For this type pattern, we called “cold” spots pat-
tern. Baurmann et al. [1] used the names “hot spots”
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Fig. 3 Snapshots of contour pictures of the time evolution of prey N at different times with a1 = 1.89 and other parameters are taken
as (13). Time steps: a t = 0, b t = 200, c t = 1,000, and d t = 5,000

and “cold spots” in pattern formation of predator–
prey model. von Hardenberg et al. [36] in describ-
ing the vegetation pattern used the words “spots” and
“holes,” corresponding to “hot spots” and “cold spots,”
respectively.

When increasing a1 to a1 = 1.89 and other para-
meters values are fixed as (13), Fig. 3 shows the evolu-
tion of spatial pattern of N at t = 0, 200, 1,000, and
5,000 of model (2). In this case, starting with the steady
state (N∗, P∗, Z∗) = (0.18982, 0.14242, 0.12886),
the random initial distribution leads to the formation
of stripe–spots mixtures (see Fig. 3d).

As the parameter a1 is further increased, there is
a drastic influence on the pattern formation, which is

illustrated in Fig. 4 with a1 = 2.03 and other para-
meters are taken as (13). Figure 4 shows the evolu-
tion of spatial pattern of N at t = 0, 200, 1,000,
and 5,000. Starting with (N∗, P∗, Z∗) = (0.12981,

0.09739, 0.08812), the random perturbations lead to
the formation of stripes and spots (see Fig. 4b, c), and
ending with stripes only (see Fig. 4d).

For the sake of learning more about these evolu-
tionary processes, in Fig. 5, we illustrate time-series
plots for prey N , intermediate predator P , and top
predator Z of the spatial model (2) with initial value
(N∗, P∗, Z∗) and different a1, respectively, corre-
sponding to the patterns in Figs. 2, 3, and 4. In Fig. 5a,
a1 = 1.838, corresponding to Fig. 2, one can see that
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Fig. 4 Snapshots of contour pictures of the time evolution of prey N at different times with a1 = 2.03 and other parameters are taken
as (13). Time steps: a t = 0, b t = 200, c t = 1,000, and d t = 5,000

when t > 2,000 the three-species population change
slowly, and N ∈ (0.22, 0.23), P ∈ (0.162, 0.164),
and Z ∈ (0.1429, 0.1431). In Fig. 5b, a1 = 1.89,
corresponding to Fig. 3, the prey N and intermedi-
ate predator P population change over time, and when
t > 1,000, Z ∈ (0.127, 0.13). In Fig. 5c, a1 = 2.03,
corresponding to Fig. 4, the prey N and intermedi-
ate predator P population change over time, and when
t > 1,000, Z ∈ (0.103, 0.108). That is to say, when
a1 increases from 1.838 to 2.03, namely, the ingestion
rate of intermediate predator P increases, the values of
prey N change with time and that of top predator Z
will decrease.

In the following, we consider the pattern formation
in domain II (see Fig. 1), in which both Turing and
Hopf instability occur. When other parameters are fixed
as (13), we choose a1 between the Hopf bifurcation
curve a1H = 2.13736 and the maximize value of the
coexistence of prey and their predators a1c = 2.33281.

In Fig. 6, we show two typical patterns obtained
with model (2) at time t = 5,000 and time-series plots
for three species. The patterns consist of red stripe–
spots and spots on a blue background, respectively. We
call them as “hot stripe-spots” (see Fig. 6a) and “hot
spots” (see Fig. 6b). In Fig. 6a, with a1 = 2.139 and
other parameters are taken as (13), (N∗, P∗, Z∗) =
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Fig. 5 Time-series plots of three species of model (2). a a1 =
1.838, b a1 = 1.89, c a1 = 2.03, and other parameters are taken
as (13)

(0.08308, 0.06234, 0.05640), the hot stripe–spots are
isolated zones with high prey densities. In this case,
the predators are in low density obviously. While in
Fig. 6b, increasing a1 to a1 = 2.3 and other parameters
are fixed as (13), (N∗, P∗, Z∗) = (0.01407, 0.01055,

0.00955), hot spots are isolated zones with high prey
density. From Fig. 6a, b, one can see that a transi-
tion from stripe–spots mixture patterns growth to spots
replication, that is, stripes decay and the spots pattern
emerges. In Fig. 6c, time-series plots with a1 = 2.139,
corresponding to Fig. 6a, when t > 1,000, N ∈
(0.22, 0.27), P ∈ (0.11, 0.12), and Z ∈ (0.09, 0.093).
That shows the stable population distribution of the
three species. In Fig. 6d, a1 = 2.3, corresponding to
Fig. 6b, when t < 1,000, the three-species population
give rise to drastically oscillations, while t > 1,000
the values of prey N , intermediate predator P , and
top predator Z are asymptotically stable. It is proved
that the parameter a1 has a stabilizing effect, that is,
increases the local stability of the interior equilibrium
E∗ = (N∗, P∗, Z∗).

Moreover, in order to investigate quantitatively the
evolution of spatial patterns of model (2) with para-
meter a1 in domain II (see Fig. 1), in Fig. 7 we show
spacetime plots which display the evolution process of
prey N throughout time t and space x with different a1.

The method of spacetime plots is to let y be a con-
stant, choose the line y = 100 from each pattern snap-
shot, and pile these lines in time order [31]. In Fig. 7,
time increases from bottom to top, and the horizontal
axis represents the spatial location. From Fig. 7a, b, the
single parameter of model (2) namely a1, which is the
ingestion rate of P , can lead to dramatic changes in the
qualitative dynamics of solutions. From a biological
perspective, the ingestion rate plays an important role
in the pattern formation of the prey, that is, changes the
pattern into irregular spatial pattern with time.

Comparing with Figs. 2, 3, 4, and 6, we can find
that these patterns are quite different on account of the
varying of a1 of the spatial model (2). That is, the behav-
ior of the reaction–diffusion model undergoes drastic
changes when the varying of parameter a1. From these
figures, one can see that, with fixed parameters (13), on
increasing the control parameter a1, a pattern sequence
“cold spots → stripe–spots mixtures → stripes → hot
stripe–spots mixtures → hot spots” can be observed.
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Fig. 6 Dynamics behavior of varying a1. The first column: a1 = 2.139, the second column: a1 = 2.3, and other parameters are taken
as (13). a, b Two categories of pattern formations of prey N at t = 5,000; c, d time-series plots of three species of model (2)

Fig. 7 Spacetime plots of prey N of model (2). The time interval shown is 1,000. a a1 = 2.139, b a1 = 2.3, and other parameters are
taken as (13)
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Fig. 8 Snapshots of contour pictures of the time evolution of prey N at different times with a1 = 5.11, c1 = 1.065, and other parameters
are taken as (13). Time steps: a t = 0, b t = 400, c t = 600, and d t = 5,000

In addition, when parameters (c1, a1) locate in
domain III in Fig. 1, that pure Hopf instability occurs,
we consider the pattern formation in Fig. 8. As an
example, Fig. 8 shows the evolution of the chaotic
pattern of prey N at t = 0, 400, 600, and 5,000
with (c1, a1) = (1.065, 5.011). With other fixed para-
meters (13), the critical value of Hopf bifurcation is
a1H = 4.95168 and the Turing bifurcation value equals
a1T = 5.04843. For the sake of learning the pattern
formation of Fig. 8 in model (2) further, we show time-
series plot of N and phase portrait in Fig. 9 with para-
meters used in Fig. 8. In Fig. 9a, one can see that the
prey density takes place drastically ruleless fluctua-

tion in time. Figure 9b displays that there exhibits a
“local” phase plane of the model obtained in a fixed
point (N∗, P∗, Z∗) = (0.35955, 0.05152, 0.04661)

inside the region invaded by the irregular spatiotempo-
ral oscillations.

Figure 10 shows the spacetime plot with t from
500 to 1,000, which displays the processes of pat-
tern formation of prey N throughout time t and
space x , and other parameter values are mentioned
in Fig. 8. From that we can see the evolution of
wave pattern formation distinctly. That is, the densi-
ties of prey N are oscillating in time with periodic
amplitude.
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Fig. 9 Dynamical behavior of model (2). a Time-series plot of N and b phase portrait. The parameters are the same as in Fig. 8

Fig. 10 Spacetime plot of prey N . The parameters are the same
as in Fig. 8

A plausible biological implication of our findings
in this section (see Figs. 2, 3, 4, 5, 6) is that given a
prey (N )–intermediate predator (P)–top predator (Z )
interaction, the three species are very sensitive to their
effectiveness in catching their preys, which is measured
by parameter a1. If intermediate predator P is a vora-
cious one (characterized as having high values of a1) for
prey N , then high (may over prey on N ) effective inter-
mediate predators P and low effective top predators Z
may occur. In other words, a more voracious intermedi-
ate predator may slightly increase further the average
intermediate predator level and decrease average top
predator level at the expense of destabilizing such sta-

ble coexistence. If predator P is not so voracious for
prey N , then high effective top predators Z occur while
low and medium effective ones may endure. Moreover,
chaotic phenomena are observed and are controlled by
parameters a1 and c1 (see Fig. 8). Our results show that,
if the parameters are properly chosen, both the general
stationary pattern and more interesting pattern can arise
as a result of a1 or c1.

4 Conclusions and remarks

In this paper, we make an attempt to investigate the
spatiotemporal dynamics in a ratio-dependent spatially
extended food chain model analytically and numeri-
cally. We adopt the Laplacian operator � = ∂2/∂x2 +
∂2/∂y2 to approximate the diffusive process, i.e., the
diffusion of prey species N and their predators species
P, Z is random in the xy-plane. By qualitative analy-
sis of the spatial model (2), we observe that the posi-
tive equilibrium E∗ = (N∗, P∗, Z∗) of the reaction–
diffusion model is globally asymptotically stable if it
is globally stable in the absence of diffusion.

Based on the stability and bifurcation analysis, com-
plete variety of stationary and non-stationary patterns
are presented for choices of parameter values within
the Turing, Turing–Hopf, and Hopf domains. We show
the evolution process of pattern formation of the two-
dimensional reaction–diffusion model of three-species
interaction via numerical simulations. In the numerical
simulations, we adopt a1 and c1 in model (2) as the
control parameters, which are strictly nonnegative. For
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the coexistence equilibrium point E∗ = (N∗, P∗, Z∗),
on increasing the value of a1 or c1, we observe the
sequence cold spots → stripe–spots mixtures → stripes
→ hot stripe–spots mixtures → hot spots → chaotic
wave patterns. This demonstrates that, in an ecological
model, different ingestion rate a1 or mortality rate c1

of intermediate predator may play essentially different
roles in developing spatial patterns. The ingestion rate
and mortality rate of intermediate predator can enhance
the oscillation of the species’ density and form large
clusters in space. The two-dimensional spatial patterns
may indicate the vital role of phase transience regimes
in the spatiotemporal organization of the predation food
chain model.

The methods and results in the present paper may
enrich research into pattern formation in the food chain
model with diffusion in ecosystems.
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