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Abstract In this paper, the almost sure asymptotic
stability is investigated for the state estimation problem
of a general class of nonlinear stochastic systems with
Markovian switching. A nonlinear state estimator with
Markovian switching is first proposed, and then, a suf-
ficient condition is given, which guarantees the almost
sure asymptotic stability of the dynamics of the esti-
mation error. Based on this condition, some simplified
criteria are deduced by taking special forms of Lya-
punov functions. Subsequently, an easy-to-verify pro-
cedure is put forward for the state estimation problem of
the linear stochastic system with Markovian switching.
Finally, two numerical examples are used to illustrate
the effectiveness of the main results.
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1 Introduction

It is well known that the state estimation or filtering
is one of the foundational problems in communica-
tions and control systems. The so-called state estimator
is designed from the measured output to estimate the
state of the given system. Over the past few decades,
a lot of effective approaches have been proposed in
this research area (see e.g., [1,3,9,17,19,24,35]). In
particular, the Kalman–Bucy filtering (KBF) technique
has been widely used for the state estimation problem
of linear stochastic systems [2,18,30]. Furthermore, to
handle nonlinear systems, the extended Kalman filter
(EKF) has been developed whose idea is to linearize
about the current mean and covariance. Both KBF
and EKF have found successful applications in state
estimation and machine learning problems [12,24,41].
These two types of filters, however, require not only
the exact system model but also the statistical prop-
erty of the noise in order to achieve desired perfor-
mance. Since modeling errors and incomplete statis-
tical information are often encountered in real-time
applications, robust filtering schemes have recently
received considerable research attention in order to
improve the robustness of the traditional Kalman fil-
ters with respect to parameter uncertainties and exter-
nal noises. The widely used robust filtering algorithms
can be generally categorized as H2 filtering method,
H∞ filtering approach, and mixed H2/H∞ filtering
scheme (see e.g., [11,28,29,34,37,39] and the refer-
ences therein).
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In reality, many physical systems are subject to fre-
quent unpredictable structural changes such as ran-
dom failures and repairs of the components, changes in
the interconnections of subsystems, and sudden envi-
ronment changes. These systems can be appropriately
modeled by the so-called Markovian jump systems
(MJSs) that represent an important family of models
subject to abrupt variations/switches. In the past few
decades, the optimal regulator, controllability, observ-
ability, stability, and stabilization problems have been
extensively studied for Markovian jump linear systems
(MJLSs) and a series of results have been available
in the literature (see e.g., [4–6,10,16,21,38]). Con-
sidering the fact that almost all real-world systems
are essentially nonlinear, the nonlinear systems with
Markovian jumping parameters deserve more research
attention from both the theoretical and practical view-
points, and accordingly, some promising results have
been reported. For example, a robust EKF has been
designed in [41] for discrete-time Markovian jump non-
linear systems with noise uncertainty. In [33], a nonlin-
ear full-order filter has been implemented such that the
dynamics of the estimation error are guaranteed to be
stochastically exponentially stable in the mean square.
The stochastic stability problem has been tackled in
[22,23] for nonlinear stochastic systems with Markov-
ian switching. It should be pointed out that, so far,
although the state estimation problem has been widely
investigated for MJLSs, the state estimation problem of
general nonlinear stochastic Markovian jump systems
has gained much less research attention due probably
to the mathematical complexity.

On the other hand, recognizing that nonlinearity is
commonly encountered in engineering practice, the sta-
bility problems for nonlinear stochastic systems have
long been a focus of research for many researchers. A
large number of results have been published in the liter-
ature on a variety of research topics, including stochas-
tic stability in probability [7,25], pth moment asymp-
totic stability [13,14,23], and exponential mean square
stability [26,27,32]. It is worth mentioning that all the
results mentioned above have been concerned with the
average or probability property (e.g., the mean square
sense) of the performance without much consideration
on the sample properties. However, in practical appli-
cations, it is quite common that only sample behaviors
of a stochastic system can be observed. In this case,
the average property (e.g., mean square stability) is
somewhat too conservative to quantify the system per-

formances. Rather than using the stability concept of
the “average system” or the “ensemble of all possible
systems”, it would make more practical sense to inves-
tigate the almost sure stability which is concerned with
sample path properties. Nevertheless, compared with
the fruitful results on mean square stability of nonlinear
stochastic systems, the corresponding results regarding
almost sure asymptotic stability have received much
less attention simply because of the additional theoret-
ical difficulty. Among the few results available, neces-
sary and sufficient conditions have been established in
[40] on the almost sure stability for a class of nonlin-
ear stochastic differential systems. In [15,36], almost
sure stability problems have been addressed for non-
linear stochastic systems with Markovian switching.
Unfortunately, to the best of the authors’ knowledge,
the almost sure asymptotic stability for the state esti-
mation problem of nonlinear stochastic systems with
Markovian switching has not been fully studied despite
its potential in practical application, and this situation
motivates our present investigation.

Summarizing the above discussions, in this paper,
we aim to investigate the almost sure asymptotic stabil-
ity for the state estimation problem of a general class of
nonlinear stochastic systems with Markovian switch-
ing. The main contributions of this paper lie in the fol-
lowing aspects. (1) A right-continuous Markov chain
on the probability space and general nonlinearity are
utilized to model the system that may experience prob-
abilistic abrupt changes in nonlinear system structure.
(2) The almost sure asymptotic stability is, for the first
time, investigated for the state estimation problem of
nonlinear stochastic system with Markovian switching.
(3) An easy-to-verify sufficient condition is given for
the state estimation problem of linear stochastic sys-
tem with Markovian switching. The rest of this paper
is outlined as follows. In Sect. 2, the nonlinear state esti-
mator with Markovian switching is proposed and the
problem under consideration is formulated. In Sect. 3,
the main results are given to analyze the almost sure
asymptotic stability for the state estimation problem
of a general class of nonlinear stochastic systems with
Markovian switching, and the corresponding results for
linear systems are obtained as a corollary. In Sect. 4,
two numerical examples are employed to demonstrate
the effectiveness of the main results obtained. Finally,
we conclude the paper in Sect. 5.

Notation The notation used here is fairly standard
except where otherwise stated. R

n and R
n×m denote,
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respectively, the n-dimensional Euclidean space and
the set of all n × m real matrices, and R+ = [0,+∞).
For a vector x = (x1, x2, . . . , xn)T ∈ R

n, |x | is the
Euclidean norm with |x | = (

∑n
i=1 x2

i )
1
2 . a ∨ b =

max{a, b} and a ∧ b = min{a, b}. Moreover, let
(�,F , {Ft }t≥0, P) be a complete probability space
with a natural filtration {Ft }t≥0 satisfying the usual
conditions (i.e., it is right continuous, and F0 contains
all P-null sets). E{x} stands for the expectation of the
stochastic variable x with respect to the given prob-
ability measure P. C2,1(Rn × S × R+; R+) denotes
the class of all nonnegative functions V (x, i, t) on
R

n × S ×R+ that are twice continuously differentiable
in x and once in t . L1(R+; R+) denotes the family of
functions λ : R+ → R+ such that

∫ ∞
0 λ(t)dt < ∞.

K denotes the class of functions γ : R+ → R+ that
are continuous, strictly increasing and γ (0) = 0. K∞
denotes the family of all functions that γ ∈ K and
γ (x) → ∞ as x → ∞.

2 Problem formulation and preliminaries

Let r(t) be a right-continuous Markov chain on the
probability space taking values in the finite space S =
1, 2, . . . , N with generator � = (γi j )N×N given by

P{r(t + �) = j |r(t) = i}
=

{
γi j� + o(�) if i �= j
1 + γi i� + o(�) if i = j

(1)

where � > 0 and lim�→0
o(�)
�

= 0, γi j ≥ 0 is
the transition rate from i to j if i �= j and γi i =
−∑

j �=i γi j .
Consider the following nonlinear stochastic system

with Markovian switching:
{

dx(t)= f (x(t), r(t), t)dt+g(x(t), r(t), t)dW (t)
y(t) = h(x(t), r(t), t)

(2)

with initial value x(0) = x0 ∈ R
p and r(0) =

i0 ∈ S, where x(t) ∈ R
p is the state vector, y(t) ∈

R
q is the actual measured output vector, W (t) =

(w1(t), . . . , wm(t))T is an m-dimensional Brownian
motion defined on the complete probability space
(�,F , {Ft }t≥0, P) and independent of the Markov
chain r(·), and f : R

p × S ×R+ → R
p, g : R

p × S ×
R+ → R

p×m, h : R
p × S × R+ → R

q are nonlin-
ear functions with f (0, i, t) = 0 , g(0, i, t) = 0, and
h(0, i, t) = 0.

We start with constructing the following state esti-
mator for system (2):

dx̂(t) = f (x̂(t), r(t), t)dt

+ K (r(t))[y(t) − h(x̂, r(t), t)]dt (3)

with initial value x̂(0) = 0, where x̂(t) is the state
estimate and K (r(t)) is the estimation gain to be deter-
mined.

Setting η(t) = [xT (t), x̂ T (t)]T , we obtain an aug-
mented system as follows:

dη(t) = fe(η(t), r(t), t)dt

+ ge(η(t), r(t), t)dW (t) (4)

where

fe(η(t), r(t), t)

=
[

f (x(t), r(t), t)
f (x̂(t), r(t), t) + K (r(t))[y(t) − h(x̂, r(t), t)]

]

,

ge(η(t), r(t), t) =
[

g(x(t), r(t), t)
0

]

. (5)

Assumption 1 All f, g, and h are locally Lipschitz
continuous in x(t) ∈ R

p uniformly in t ∈ R+, that is,
there exists a constant CR ≥ 0 such that

| f (x1, i, t) − f (x2, i, t)|2 ∨ |g(x1, i, t) − g(x2, i, t)|2
∨|[h(x1, i, t) − h(x2, i, t)]|2 ≤ CR |x1 − x2|2

for any (t, i) ∈ R+ × S and x1, x2 ∈ R
p with |x1| ∨

|x2| ≤ R.

Remark 1 Suppose that Assumption 1 holds and recall
that f (0, i, t) = 0, g(0, i, t) = 0 and h(0, i, t) = 0.
Then, for any initial value η(0) = [xT

0 , 0]T ∈ R
2p, it is

not difficult to prove that there exists a unique solution
η(t) to stochastic system (4).

For V ∈ C2,1(R2p × S × R+; R+), introduce the
infinitesimal generator LV : R

2p × S × R+ → R by

LV (η, i, t) = Vt (η, i, t) + Vη(η, i, t) fe(η, i, t)

+ 1

2
trace

[
gT

e (η, i, t)Vηη(η, i, t)ge(η, i, t)
]

+
N∑

j=1

γi j V (η, j, t) (6)

where Vt (η, i, t) = ∂V (η,i,t)
∂t , Vη(η, i, t) = ( ∂V (η,i,t)

∂η1
,

. . . ,
∂V (η,i,t)

∂η2p

)
and Vηη(η, i, t) = ( ∂2V (η,i,t)

∂η j ∂ηk

)
2p×2p.
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Definition 1 The solution of the augmented system (4)
is said to be almost surely asymptotically stable if, for
all i0 ∈ S and η(0) ∈ R

2p, the following holds

P
(

lim
t→∞ |η(t; η(0), i0)| = 0

)
= 1. (7)

The main purpose of this paper is to design a desired
state estimator of the form (3) for the stochastic system
(2) such that the solution of the augmented system (4)
is almost surely asymptotically stable.

3 Main results

Firstly, let us give the following lemmas which will be
used in the proof of our main results.

Lemma 1 [20] (Nonnegative semimartingale conver-
gence) Let A1(t) and A2(t) be two continuously
adapted increasing processes on t ≥ 0 with A1(0) =
A2(0) = 0 almost surely (a.s. for short), M(t) be a
real-valued continuous local martingale with M(0) =
0 a.s., and ζ be a nonnegative F0-measurable ran-
dom variable such that E{ζ } < ∞. Denote X (t) =
ζ + A1(t) − A2(t) + M(t) for all t ≥ 0 . If X (t) is
nonnegative, then
{

lim
t→∞ A1(t) < ∞

}
⊂

{
lim

t→∞ X (t) < ∞
}

∩
{

lim
t→∞ A2(t) < ∞

}
a.s.

where C ⊂ D a.s. means P(C ∩ Dc = ∅) = 0. In
particular, if limt→∞ A1(t) < ∞ a.s., then

lim
t→∞ X (t) < ∞, lim

t→∞ A2(t) < ∞ and

−∞ < lim
t→∞ M(t) < ∞ a.s..

That is, all of the three processes X (t), A2(t), and
M(t) converge to finite random variables with proba-
bility one.

Lemma 2 [31,36] (Generalized Itô’s formula) If V ∈
C2,1(R2p × S × R+; R+), then for any t ≥ 0, the
generalized Itô’s formula is given as

dV (η(t), r(t), t) = LV (η(t), r(t), t)dt

+ Vη(η(t), r(t), t)ge(η(t), r(t), t)dW (t)

+
∫

R

[V (η(t), r(t), t) + l(r(t), m)

− V (η(t), r(t), t)]μ(dt, dm) (8)

where μ(dt, dm) = ν(dt, dm) − n(dm)dt is a mar-
tingale measure, function l : R × S → R is defined
as

l(i, y) =
{

j − i if y ∈ �i j

0 otherwise
(9)

with �12 = [0, γ12), �13 = [γ12, γ12+γ13), . . . ,�1N

= [∑N−1
j=2 γ1 j ,

∑N
j=2 γ1 j ), �21 = [∑N

j=2 γ1 j ,
∑N

j=2

γ1 j + γ21), . . . , �2N = [∑N
j=2 γ1 j + ∑N−1

j=1, j �=2 γ2 j ,
∑N

j=2 γ1 j + ∑N
j=1, j �=2 γ2 j ) and so on. dr(t) =∫

R
l(r(t−, y))ν(dt, dy), and ν(dt, dy) is a Poisson

random measure with intensity dt × n(dy), in which
n is the Lebesgue measure on R.

In particular, taking the expectation on both sides of
(8), we can have the following useful lemma.

Lemma 3 [23] Let V (η(t), r(t), t) ∈ C2,1(R2p ×
S × R+; R+) and τ1, τ2 be bounded stopping times
such that 0 ≤ τ1 ≤ τ2 a.s.. If V (η(t), r(t), t) and
LV (η(t), r(t), t) are bounded on t ∈ [τ1, τ2] a.s., then
we have

E{V (η(τ2), r(τ2), τ2) − V (η(τ1), r(τ1), τ1)}

= E

τ2∫

τ1

LV (η(t), r(t), t)dt. (10)

The following theorem provides a sufficient condi-
tion under which the solution of the augmented system
(4) is almost surely asymptotically stable.

Theorem 1 Consider the stochastic system (4). For
all η ∈ R

2p, t ≥ 0 and i ∈ S, let Assumption 1
hold and suppose that there are Lyapunov function
V (η, r(t), t) ∈ C2,1(R2p × S × R+; R+), λ(t) ∈
L1(R+; R+) , α1, α2 ∈ K∞ and α ∈ K satisfying
the following two conditions

α1(|η|) ≤ V (η, i, t) ≤ α2(|η|) (11)

and

LV (η, i, t) ≤ λ(t) − α(|η|). (12)

Then, for any initial value η(0) = [xT
0 , 0]T ∈ R

2p, the
solution of the stochastic system (4) is almost surely
asymptotically stable.

Proof We take three steps to prove the assertion in this
theorem.
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Step 1: We shall prove that

∞∫

0

α(|η(s)|)ds < ∞ a.s.. (13)

For V (η, r(t), t) ∈ C2,1(R2p × S × R+; R+), using
the generalized Itô’s formula, one can show that

V (η(t), r(t), t) = V (η(0), r(0), 0)

+
t∫

0

LV (η(s), r(s), s)ds

+
t∫

0

Vη(η(s), r(s), s)ge(η(s), r(s), s)dW (s)

+
t∫

0

∫

R

(V (η(s), i0 + l(r(s), m), s)

− Vη(η(s), r(s), s))μ(ds, dm). (14)

Furthermore, it follows from (11) that

V (η(t), r(t), t) ≤ V (η(0), r(0), 0)

+
t∫

0

λ(s)ds −
t∫

0

α(|η(s)|)ds

+
t∫

0

Vη(η(s), r(s), s)ge(η(s), r(s), s)dW (s)

+
t∫

0

∫

R

(V (η(s), i0 + l(r(s), m), s)

− Vη(η(s), r(s), s))μ(ds, dm). (15)

Since λ(t) ∈ L1(R+; R+), one can see from Lemma 1
that

lim sup
t→∞

V (η(t), r(t), t) < ∞ a.s.. (16)

Taking the expectations on both sides of (15) and letting
t → ∞, one obtains that

E

{ ∞∫

0

α(|η(s)|)ds

}

< ∞, (17)

which implies

∞∫

0

α(|η(s)|)ds < ∞ a.s.. (18)

Step 2: We shall show that

P
(

lim
t→∞ α(|η(t)|) = 0

)
= 1. (19)

As α ∈ K and
∫ ∞

0 α(|η(s)|)ds < ∞ a.s., it is straight-
forward to see that

lim inf
t→∞ α(|η(t)|) = 0 a.s.. (20)

Decompose the sample space into two mutually exclu-
sive events as follows:

D1 =
{

ω : lim sup
t→∞

α(|η(t, ω)|)

= lim inf
t→∞ α(|η(t, ω)|) = 0

}
,

D2 =
{

ω : lim sup
t→∞

α(|η(t, ω)|) > 0 and

lim inf
t→∞ α(|η(t, ω)|) = 0

}
. (21)

Now, we claim P(D2) = 0, and hence, P(D1) = 1,
which implies the desired result immediately since α ∈
K. If this is not true, there exists ε > 0 such that

P{α(|η(·)|) crosses from below ε to above 2ε

and back infinitely many times} ≥ 3ε. (22)

Define the stopping time σr = inf{t ≥ 0 : |η(t)| ≥ r}.
By the generalized Itô’s formula, one can derive that

E{V (η(σr ∧ t), r(σr ∧ t), σr ∧ t)} = V (η(0), r(0), 0)

+ E

{ σr ∧t∫

0

LV (η(s), r(s), s)ds

}

≤ V (η(0), r(0), 0) +
t∫

0

λ(s)ds

− E

{ σr ∧t∫

0

α(|η(s)|)ds

}

≤ V (η(0), r(0), 0) +
t∫

0

λ(s)ds. (23)

By considering λ(t) ∈ L1(R+; R+), there is a constant
M > 0 such that

E{V (η(σr ∧ t), r(σr ∧ t), σr ∧ t)} ≤ M, ∀ r, t ≥ 0.

(24)
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It follows from condition (11) that

inf|η|≥R,i∈S
V (η, i, t) → ∞ as R → ∞. (25)

We can obtain from (11) and (24) that

E{V (η(σr ∧ t), r(σr ∧ t), σr ∧ t)}
≥

∫

{sup0≤s≤t |η(s)|≥r}
V (η(σr ∧ t), r(σr ∧t), σr ∧t)dP

≥ P

(

sup
0≤s≤t

|η(s)| ≥ r

)

inf|η(s)|≥r
V (η(σr ∧ t),

r(σr ∧ t), σr ∧ t), (26)

which yields

P

(

sup
0≤s≤t

|η(s)| ≥ r

)

≤ M

inf |η(s)|≥r V (η(σr ∧ t), r(σr ∧ t), σr ∧ t)
. (27)

As (25) holds, for any given ε1, there exists a K∞ func-
tion β(·) such that

inf|η(s)|≥β(r)
V (η(σr ∧ t), r(σr ∧ t), σr ∧ t)≥ M

ε1
. (28)

It follows readily from (27) and (28) that

P

(

sup
0≤s≤t

|η(s)| < β(r)

)

≥ 1

− M

inf |η(s)|≥β(r) V (η(σr ∧ t), r(σr ∧ t), σr ∧ t)
≥ 1 − ε1.

(29)

For any r > 0, i ∈ S, two functions β1 and β2 can be
defined as follows:

β1(r) � max|η|≤r
sup
t≥0

| fe(η, r(t), t)|,

β2(r) � max|η|≤r
sup
t≥0

|ge(η, r(t), t)|. (30)

Denote sr = min{s, σr } and δr = min{δ, σr }. By C p

inequality, Itô isometry and Doob’s maximal inequal-
ity, we obtain

E{ sup
0≤s≤δ

|η(sr ) − η(0)|2}

= E

{

sup
0≤s≤δ

|
sr∫

0

fe(η, r(t), t)dt

+
sr∫

0

ge(η, r(t), t)dW (t)|2
}

≤ 2E

{

sup
0≤s≤δ

|
sr∫

0

fe(η, r(t), t)dt |2}

+ 2E{ sup
0≤s≤δ

|
sr∫

0

ge(η, r(t), t)dW (t)|2
}

≤ 2β2
1 (r)δ2 + 8E

{

|
δr∫

0

ge(η, r(t), t)dW (t)|2
}

≤ 2β2
1 (r)δ2 + 8E

{ δr∫

0

|ge(η, r(t), t)|2dt

}

≤ 2β2
1 (r)δ2 + 8β2

2 (r)δ. (31)

Applying Chebyshev’s inequality for any ξ > 0, one
has

P

(

sup
0≤s≤δ

|η(sr ) − η(0)|2 > ξ

)

≤ E{sup0≤s≤δ |η(sr ) − η(0)|2}
ξ2

≤ 2β2
1 (r)δ2 + 8β2

2 (r)δ

ξ2 . (32)

It is not difficult to see that α(·) ∈ K is uniformly
continuous in the closed ball B = {η ∈ R

2p : |η| ≤
β(|η0|)}, and therefore, there is a function γ (·) ∈ K
such that for all x, y ∈ B, |x − y| ≤ γ (ν) implies
|α(x) − α(y)| ≤ ν for all ν > 0. Now, it follows from
(32) that

P

{

sup
0≤s≤δ

|α(|η(s)|) − α(|η(0)|)| >
ε

2

}

≤ P

{

sup
0≤s≤δ

|η(s) − η(0)| > γ
(ε

2

)
and

sup
0≤s≤δ

|η(s)| < β(|η(0)|)
}

+ P

{

sup
0≤s≤δ

|η(s)| ≥ β(|η(0)|)
}
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≤ P

{

sup
0≤s≤δ

|η(sβ(|η(0)|)) − η(0)| > γ
(ε

2

)
}

+ ε1

≤ 2β2
1

(
β(|η(0)|))δ2+8β2

2

(
β(|η(0)|))δ

γ 2
(

ε
2

) + ε1. (33)

If we choose ε1 = 1
2 , there exists a δ∗ = δ∗(|η(0)|, ε

2 )

> 0 such that

P

{

sup
0≤s≤δ

|α(|η(s)|) − α(|η(0)|)| ≤ ε

2

}

≥ 1

4
,

∀ δ ∈ (0, δ∗]. (34)

A sequence of stopping times can be defined as follows:

τ1 = inf{t ≥ 0 : α(|η(t)|) ≥ 2ε},
τ2 = inf{t ≥ τ1 : α(|η(t)|) ≤ ε},
τ2k+1 = inf{t ≥ τ2k : α(|η(t)|) ≥ 2ε},
τ2k+2 = inf{t ≥ τ2k+1 : α(|η(t)|)≤ε} k =1, 2, 3, . . .

Note that inf ∅ = ∞. As α(η(·)) ∈ K, it is easy to
know that τ2k, τ2k+1 → ∞ almost surely as k → ∞.
By the result of Step 1, we can obtain that

∞ > E

{ ∞∫

0

α(|η(s)|)ds

}

≥
∞∑

k=1

E

{

Iτ2k<σr

τ2k∫

τ2k−1

α(|η(s)|)ds

}

≥ ε

∞∑

k=1

E

{

Iτ2k<σr (τ2k − τ2k−1)

}

= ε

∞∑

k=1

E

{

Iτ2k<σr E(τ2k − τ2k−1|Fτ2k−1)

}

. (35)

If ω ∈ {τ2k−1 < σr }∩ {sup0≤s≤δ∗ |α(|η(s + τ2k−1)|)−
α(|η(τ2k−1)|)| < ε

2 }, it follows from (34) that

E(τ2k −τ2k−1|Fτ2k−1)≥δ∗ P
{

sup
0≤s≤δ∗

|α(|η(s+τ2k−1)|) − α(|η(τ2k−1)|)| <
ε

2
|Fτ2k−1

}

(36)

where δ∗ = δ∗(|η(0)|, ε
2 ). Then, we have

∞ >

∞∑

k=1

δ∗

4
εP{τ2k−1 < σr }. (37)

Applying Borel–Cantelli lemma, one has

P{τ2k−1 < σr for infinitely many k} = 0, (38)

and then, it is obvious that

P{τ2k−1 <∞ for infinitely many k and σr =∞}=0.

(39)

Next, we prove that P{σr = ∞} → 1 holds almost
surely as r → ∞.

Letting t → ∞ in (22), we have

P

(

sup
s≥0

|η(s)| ≥ r

)

≤ M

inf |η(s)|≥r V (η(σr ∧ t), r(σr ∧ t), σr ∧ t)
, ∀r > 0.

(40)

It follows from (40) that

P{σr = ∞} ≥ P

(

sup
s≥0

|η(s)| ≤ r

)

≥ 1

− M

inf |η(s)|≥r V (η(σr ∧ t), r(σr ∧ t), σr ∧ t)
, ∀r > 0,

(41)

which implies that P{σr = ∞} → 1 almost surely as
r → ∞. Up to now, we have P(limt→∞ α(|η(t)|) =
0) = 1. It is clear that the set {σr = ∞} is increasing
with r . If we can prove that P{σr = ∞} → 1 almost
surely as r → ∞, then it is not difficult to see that

P{τ2k−1 < ∞ for infinitely many k} = 0. (42)

Obviously, it contradicts (22), and this yields the
desired result of this step directly.

Step 3: By (25) and (29), we have

sup
0≤t<∞

|η(t, ω)| < ∞. (43)

From the result of Step 2, there is an �0 ⊂ � with
P(�0) = 1 such that

lim
t→∞ α(|η(t, ω)|) = 0 and

sup
0≤t<∞

|η(t, ω)| < ∞, ∀ ω ∈ �0. (44)

Now, we claim

lim
t→∞ η(t, ω) = 0, ∀ ω ∈ �0. (45)

If it is not true, then there is an ω̄ ∈ �0 such that

lim sup
t→∞

η(t, ω̄) > 0, (46)
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and it can be deduced that there is a subsequence
{η(tk, ω̄)}k≥1 of {η(t, ω̄)}t≥0 such that

|η(tk, ω̄)| ≥ ζ, ∀ k ≥ 1, (47)

for some ζ > 0. Note from (43) that {η(tk, ω̄)}k≥1 is
bounded. Thus, by Bolzano–Weierstrass theorem, there
is an increasing subsequence {t̄k}k≥1 and a constant c
satisfying c ≥ ζ such that

{t̄k}k≥1 → c as k → ∞ (48)

and therefore, we have

α(c) = lim
k→∞ α(|η(tk, ω)|) > 0, (49)

which contradicts with (46). So, (45) holds, which
means that the solution of the stochastic system (4) is
almost surely asymptotically stable. The proof is now
complete. ��
Remark 2 The techniques developed in Theorem 1 can
be used to deal with the problem of almost sure asymp-
totic stability for other nonlinear stochastic systems
such as those in [8,22]. Particularly, if we do not con-
sider Markovian switching, the result of [8] can be seen
as a special case of this paper when λ(t) = 0.

Remark 3 It should be pointed out that our result can
be extended to the case of nonlinear stochastic delay
systems with Markovian switching. In fact, we just
need to replace the condition (12) in Theorem 1 by
LV (η1, η2, i, t) ≤ λ(t) − α(|η1|) + ᾱ(|η2|) where
α, ᾱ ∈ K, and α(|η1|) > ᾱ(|η1|).

A very general condition is given in Theorem 1,
which guarantees the almost sure asymptotic stability
for the state estimation problem of nonlinear stochastic
system with Markovian switching. To gradually reduce
the difficulty in verifying such a condition, we are going
to introduce several simplified conditions by choosing
different forms of Lyapunov functions.

Take the Lyapunov function

V (η, r(t), t) = V 1(x, r(t), t) + V 2(x̂, r(t), t)

where V 1(x, r(t), t), V 2(x̂, r(t), t) ∈ C2,1(Rp × S ×
R+; R+).

The following corollaries can be obtained from
Theorem 1.

Corollary 1 Consider the stochastic system (4). Under
Assumption 1, for all (x, i, t), (x̂, i, t) ∈ R

p ×S×R+,
if there exist two Lyapunov functions V 1(x, r(t), t),

V 2(x̂, r(t), t) ∈ C2,1(Rp × S × R+; R+), λ(t) ∈
L1(R+; R+), constants C1, C2, C3, C4, C5, and C6 ∈
R+ satisfying the following conditions

C1|x |2 ≤ V 1(x, i, t) ≤ C2|x |2 and

C3|x̂ |2 ≤ V 2(x̂, i, t) ≤ C4|x̂ |2 (50)

and

LV 1(x, i, t)+LV 2(x̂, i, t)≤λ(t)−C5|x |2−C6|x̂ |2,
(51)

then for any initial value η(0) = [xT
0 , 0]T ∈ R

2p, the
solution of the stochastic system (4) is almost surely
asymptotically stable.

Proof By Theorem 1, we only need to set the Lya-
punov function as V (η, r(t), t) = V 1(x, r(t), t) +
V 2(x̂, r(t), t), where η = [xT , x̂ T ]T . It can be easily
seen from (50) that min{C1, C3}|η|2 ≤ V 1(η, i, t) ≤
max{C2, C4}|η|2, and min{C1, C3}|η|2, max{C2, C4}
|η|2 ∈ K∞. Moreover, since

∂V T

∂x
(η, r(t), t) = V 1

x
T
(x, r(t), t),

∂V T

∂ x̂
(η, r(t), t) = V 2

x̂
T
(x̂, r(t), t),

∂2V

∂x2 (η, r(t), t) = V 1
xx (x, r(t), t),

∂2V

∂ x̂2 (η, r(t), t) = V 2
x̂ x̂ (x̂, r(t), t),

∂2V

∂xT ∂ x̂
(η, r(t), t) = ∂2V

∂xT ∂ x̂
(η, r(t), t) = 0,

we have

LV (η, i, t) = LV 1(x, i, t) + LV 2(x̂, i, t) ≤ λ(t)

− C5|x |2 − C6|x̂ |2 ≤ λ(t) − min{C5, C6}|η|2
where it is obvious that min{C5, C6}|η|2 ∈ K.
Therefore, the rest of the proof follows directly from
Theorem 1. ��

In what follows, we take a more special form of
the Lyapunov function in order to deduce more simpli-
fied condition. By considering V (η, i, t) = xT Pi x +
x̂ T Qi x̂ , the following corollary can be obtained, which
guarantees the solution of the stochastic system (4) is
almost surely asymptotically stable for any initial value
η(0) = [xT

0 , 0]T ∈ R
2p.

Corollary 2 Consider the stochastic system (4). Under
Assumption 1, for all (x, i, t), (x̂, i, t) ∈ R

p ×S×R+,
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if there exist positive define matrices Pi = PT
i > 0

and Qi = QT
i > 0, λ(t) ∈ L1(R+; R+), constants

C1, C2 ∈ R+ satisfying the following condition

2xT Pi f (x, i, t) + 2x̂ T Qi f (x̂, i, t)

+ 2x̂ T Qi K (i)[h(x, i, t) − h(x̂, i, t)]

+ trace[gT (x, i, t)Pi g(x, i, t)] +
N∑

j=1

γi j xT Pi x

+
N∑

j=1

γi j x̂ T Qi x̂

≤ λ(t) − C1|x |2 − C2|x̂ |2, (52)

then for any initial value η(0) = [xT
0 , 0]T ∈ R

2p, the
solution of the stochastic system (4) is almost surely
asymptotically stable.

Proof Set V 1(x, i, t) = xT Pi x and V 2(x̂, i, t) =
x̂ T Qi x̂ . Clearly, for all (x, i, t), (x̂, i, t) ∈ R

p × S ×
R+,

min{λmin(Pi ), λmin(Qi )}|η|2 ≤ V (η, i, t)

≤ max{λmax(Pi ), λmax(Qi )}|η|2.
It is obvious that min{λmin(Pi ), λmin(Qi )}|η|2,
max{λmax(Pi ), λmax(Qi )}|η|2 ∈ K∞. Furthermore,
since

∂V T

∂x
(η, r(t), t)=2xT Pi ,

∂V T

∂ x̂
(η, r(t), t)=2x̂ T Qi ,

and

1

2
trace[gT (x, i, t)V 1

xx g(x, i, t)]
= trace[gT (x, i, t)Pi g(x, i, t)],

we have

LV (η, i, t) = 2xT Pi f (x, i, t) + 2x̂ T Qi f (x̂, i, t)

+ 2x̂ T Qi K (i)[h(x, i, t) − h(x̂, i, t)]
+ trace[gT (x, i, t)Pi g(x, i, t)]

+
N∑

j=1

γi j xT Pi x +
N∑

j=1

γi j x̂ T Qi x̂

≤ λ(t) − C1|x |2 − C2|x̂ |2
≤ λ(t) − min{C1, C2}|η|2

the conclusion now follows from Corollary 1. ��
Remark 4 In Theorem 1, Corollaries 1 and 2, a series of
sufficient conditions of almost sure asymptotic stability

for the state estimation of nonlinear stochastic system
(2) have been obtained. Nevertheless, it might be diffi-
cult to verify the conditions since nonlinear functions
are involved. Next, let us see how to check the almost
sure asymptotic stability for the state estimation prob-
lem when the system (2) and the state estimator (3) are
both in linear forms.

If we take f (x, r(t), t) = A(r(t))x(t), g(x, r(t), t)
= B(r(t))x(t), and h(x, r(t), t) = C(r(t))x(t), then
the augmented system (4) can be expressed as follows:

dη(t) = fe(η(t), r(t), t)dt + ge(η(t), r(t), t)dW (t)

(53)

where

fe(η(t), r(t), t)

=
[

A(r(t))x(t)
A(r(t))x̂(t) + K (r(t))C(r(t))[x(t) − x̂(t)]

]

,

ge(η(t), r(t), t) =
[

B(r(t))x(t)
0

]

. (54)

Corollary 3 Consider the stochastic system (53). For
all (x, i, t), (x̂, i, t) ∈ R

p × S × R+, suppose that
there exist positive define matrices Pi = PT

i > 0 and
Qi = QT

i > 0, constants C1, C2 ∈ R+ satisfying the
following conditions

2Pi A(i) + I + BT (i)Pi B(i) +
N∑

j=1

γi j Pi ≤ 0 (55)

and

2Qi A(i) + CT (i)K T (i)QT
i Qi K (i)C(i)

−2Qi K (i)C(i) +
N∑

j=1

γi j Qi ≤ 0. (56)

Then, for any initial value η(0) = [xT
0 , 0]T ∈ R

2p, the
solution of the stochastic system (53) is almost surely
asymptotically stable.

Proof By replacing f (x, i, t), g(x, i, t), and h(x, i, t)
with A(i)x(t), B(i)x(t), and C(i)x(t), respectively, it
can be easily known that (55) and (56) imply (51).
Therefore, the rest of the proof follows from Corollary
2 immediately. ��
Remark 5 It is noted that the conditions derived in
Corollary 3 can be easily transformed into linear matrix
inequalities (LMIs). Therefore, the state estimator for
linear stochastic system with Markovian switching can
be designed by using MATLAB LMI Toolbox.
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Remark 6 Up to now, we have obtained a series of
almost sure asymptotic stability criteria for the state
estimation problem of a general class of nonlinear sto-
chastic systems with Markovian switching. Theorem 1
offers a sufficient condition that guarantees the almost
sure asymptotic stability of the dynamics of the estima-
tion error. Such a sufficient condition is decoupled into
some auxiliary ones by taking special form of Lya-
punov functions. As a consequence, some simplified
conditions are obtained to solve the parameter design
problem of state estimator for a linear stochastic sys-
tem with Markovian switching. In the next section, two
numerical examples will be given to illustrate the effec-
tiveness of the main results.

4 Illustrative examples

In this section, we shall present two examples to
demonstrate the results derived in this paper.

Example 1 (Nonlinear stochastic systems with Marko-
vian switching) Let W (t) be a one-dimensional Brown-
ian motion and r(t) be a right-continuous Markov chain
taking values in S = {1, 2} with generator

� = (γi j )2×2 =
[−1 1

1 −1

]

and assume that W (t) and r(t) are independent. Con-
sider the following nonlinear stochastic system with
Markovian switching
{

dx(t) = f (x(t), r(t), t)dt + g(x(t), r(t), t)dW (t)
y(t) = h(x(t), r(t), t)

(57)

where

f (x(t), 1, t) = −7

5
3
√

x, g(x(t), 1, t) = 4

3
3
√

x2,

h(x(t), 1, t) = 3
√

x cos t2;
f (x(t), 2, t) = −5

3
3
√

x +
5
√

x

2
√

1 + t
,

g(x(t), 2, t) = 3
√

x2 cos t,

h(x(t), 2, t) = 3
√

x . (58)

By choosing a state estimator (3) with K (1) =
1 and K (2) = 1

6 , then the coefficients of augmented
system (4) are given by

fe(η(t), 1, t) =
[− 7

5
3
√

x
− 7

5
3
√

x̂ + 3
√

x cos t2 − 3
√

x̂ cos t2

]

,

ge(η(t), 1, t) =
[

4
3

3
√

x2

0

]

,

fe(η(t), 2, t) =
⎡

⎣
− 5

3
3
√

x + 5√x
2
√

1+t

− 5
3

3
√

x̂ + 5√x̂
2
√

1+t
+ 1

6 [ 3
√

x − 3
√

x̂]

⎤

⎦ ,

ge(η(t), 2, t) =
[ 3

√
x2 cos t

0

]

. (59)

We consider a Lyapunov function candidate V : R
2 ×

S × R+ → R+ as V (η, i, t) = η2 for i = 1, 2. By the
generalized Itô formula (8) and Young’s inequality, we
have

LV (η, 1, t) ≤ − 47

180
η

4
3 ,

LV (η, 2, t) ≤ 2

5(1 + t)5
− 33

40
η

4
3 . (60)

It follows from the above inequality that

LV (η, i, t) ≤ 2

5(1 + t)5
− 47

180
η

4
3 (61)

for all (η, i, t) ∈ R
2 × S × R+.

By Theorem 1, we claim that for any given initial
value η(0) = [xT

0 , 0]T ∈ R
2, the solution of the aug-

mented system is almost surely asymptotically stable.

Remark 7 In general, the state estimator is not unique.
For example, if we chose K (1) = K (2) = 1

8 ,
then by the generalized Itô formula (8) and Young’s

inequality, we also have LV (η, 1, t) ≤ − 691
1440η

4
3

and LV (η, 2, t) ≤ 2
5(1+t)5 − 401

480η
4
3 . It means that

LV (η, i, t) ≤ 2
5(1+t)5 − 691

1440η
4
3 for all (η, i, t) ∈

R
2 × S × R+. Then, for any given initial value η(0) =

[xT
0 , 0]T ∈ R

2, the solution of the augmented system
is almost surely asymptotically stable.

Example 2 (Linear stochastic systems with Markovian
switching) Let W (t) and r(t) be chosen as in Example
1. Consider the two-dimensional linear stochastic sys-
tem with Markovian switching as follows:
{

dx(t) = A(r(t))x(t)dt + B(r(t))x(t)dW (t)
y(t) = C(r(t))x(t)

(62)

where

A(1) =
[−80 1

2 −15

]

, B(1) =
[

2 3
4 −4

]

,

C(1) =
[

1 0
0 0

]

;
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A(2) =
[−20 1

2 −11

]

, B(2) =
[

1 3
−2 4

]

,

C(2) =
[

0 0
0 1

]

. (63)

By choosing a state estimator (3) with K (1) =[
10 −3
−3 9

]

and K (2) =
[

30 1
7 2

]

, then the coeffi-

cients of augmented system (53) are given by

fe(η(t), i, t) =
[

A(i)x(t)
A(i)x̂(t) + K (i)C(i)[x(t) − x̂(t)]

]

and

ge(η(t), i, t) =
[

B(i)x(t)
0

]

i = 1, 2. (64)

Consider a Lyapunov function candidate V : R
4 ×

S × R+ → R+ as V (η, i, t) = xT Pi x + x̂ T Qi x̂ for
i = 1, 2. Pi and Qi can be chosen as follows:

P1 =
[

1 0
0 1

]

, Q1 =
[

1 0
0 2

]

and

P2 =
[

1 0
0 2

]

, Q2 =
[

1 0
0 2

]

.

It is not difficult to verify that (55) and (56) are true.
By Corollary 3, for any given initial value η(0) =
[xT

0 , 0]T ∈ R
4, the solution of the augmented system

is almost surely asymptotically stable.

Remark 8 As mentioned in Remark 7, here, the desired
estimation gain K (r(t)) is not unique. For instance, we

can use K (1) =
[−5 2

1 4

]

andK (2) =
[−11 4

−2 3

]

. It

is easy to verify that (55) and (56) are true. Then, for any
given initial value η(0) = [xT

0 , 0]T ∈ R
4, the solution

of the augmented system is almost surely asymptoti-
cally stable.

5 Conclusions

In this paper, we have investigated the almost sure
asymptotic stability for the state estimation problem
of a class of general nonlinear stochastic systems
with Markovian switching. A sufficient condition that
guarantees the almost sure asymptotic stability of the
dynamics of the estimation error has been derived
for the nonlinear stochastic system with Markovian
switching. Subsequently, the Lyapunov function in the
sufficient condition has been replaced with a special
form, which can be verified easily. Then, we have

obtained some more simplified conditions directly from
the main results. Moreover, the almost sure asymptotic
stability has been investigated for the state estimation
problem of linear stochastic systems with Markovian
switching as a special case. Finally, the main results of
this paper have been demonstrated by two numerical
examples.
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