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Abstract This investigation introduces the applica-
tion of the nondominated sorting genetic algorithm
to optimize two characteristics of multiscroll chaotic
oscillators: (a) Maximizing the values of the maximum
Lyapunov exponent (MLE), and (b) minimizing the dis-
persions of the phase space portraits (PSP) among all
scrolls in an attractor. As shown in this study, these two
oscillator’s characteristics are in conflict and must be
considered at the same time. The cases of study are
two multiscroll chaotic oscillators based on piecewise-
linear functions, namely: saturated function series and
Chua’s diode (negative slopes). Basically, a very new
procedure to measure the PSP coverture among all gen-
erated scrolls is introduced in the optimization loop for
each feasible solution maximizing the MLE. The best
optimized results are compared with traditional values
of the coefficients of the equations describing the oscil-
lators. Finally, we list the values of the optimized MLE
and their corresponding PSP when generating from 2-
to 6-scroll attractors.
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1 Introduction

In electronics, a great variety of chaotic oscillators has
been implemented with commercially available elec-
tronic devices, as well as with integrated circuits tech-
nology [1–3]. However, those experimental realiza-
tions are not optimized neither to provide a high value
of the maximum Lyapunov exponent (MLE), nor to
have a good distribution in the phase space portraits
(PSP) when generating multiscroll chaotic attractors.
The former characteristic can be taken as an indication
to quantify the chaoticity related to the unpredictability
of the dynamical system [4,5], and the second one indi-
cates that when the trajectories in the PSP are not well
distributed among all the scrolls, some scrolls cannot
be formed, thus leading to a bad electronic implemen-
tation.

As shown by the recent studies [6–10], computing
Lyapunov exponents is in general a good direction to
quantify the asymptotic behaviors of nonlinear dynam-
ical systems when the dynamic models of the systems
are available. On the other hand, when such models are
unknown, as for real world systems, estimating Lya-
punov exponents can be performed by time series from
experimental data [9]. However, applying that approach
one should be aware that time series often assume and
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do not test for exponential divergence of the orbits, and
thus it can have the problem that cannot distinguish
chaos from noise. In this article, we compute the MLE
using the dynamic model of the multiscroll chaotic
oscillators, and also we compute the distribution of
the trajectories in the PSP. These tasks are executed
herein as optimization problems. That way, this inves-
tigation introduces the application of the nondominated
sorting genetic algorithm (NSGA-II) [11] to optimize
those two characteristics in multiscroll chaotic oscil-
lators [12,13]: (a) Maximizing the value of MLE, and
(b) minimizing the dispersions of the PSP among all
scrolls in an attractor. As a contribution, we show that
both characteristics are in conflict and must be consid-
ered at the same time to design optimized multiscroll
chaotic oscillators. Further, once the chaotic oscillators
have been optimized to guarantee chaotic regime and
to provide a good distribution in their PSP, then those
optimized chaotic oscillators can enhance the synchro-
nization [14–17], and realization of secure communi-
cation systems [18], for instance.

Henceforth, this article shows by computer simula-
tions, how does the value of MLE is related with the
distribution of the trajectories in the PSP for two differ-
ent multiscroll chaotic oscillators, which are based on
piecewise-linear functions (PWL) like saturated func-
tion series and Chua’s diode (negative slopes). We show
that those two characteristics for multiscroll chaotic
oscillators, related to unpredictability and PSP cover-
ture, are in conflict. Therefore, that problem is solved
herein by applying a new proposed procedure to mea-
sure the PSP coverture for chaotic oscillators based on
PWL functions, and by solving the multiobjective opti-
mization problem with NSGA-II.

This article is organized as follows: in Sect. 2 the
two multiscroll chaotic oscillators based on PWL func-
tions are described; in Sect. 3 the proposed selection
approach is described: the new procedure to take the
measurements of the PSP coverture is introduced, and
it is included also both, a brief description of how
the MLE is calculated, and how the multiobjective
optimization algorithm NSGA-II [6] works. Section
4, summarizes the best experimental results that are
compared with traditional values of the coefficients of
the equations describing the chaotic oscillators, i.e. we
list the values of the optimized MLEs and their cor-
responding PSP when generating from 2- to 6-scroll
attractors. Section 5 presents a discussion on the results
and finally, in Sect. 6 some conclusions are drawn.

2 Multiscroll chaotic oscillators

2.1 PWL function based on saturated function series

This multiscroll chaotic oscillator is described by the
system of ordinary differential equations given by (1)
[12], where a, b, c, and d1 are positive constants that
can have values in the interval [0, 1]. The dynamical
system is controlled by the PWL approximation, e.g.
series of a saturated function f ,

ẋ = y

ẏ = z

ż = −ax − by − cz + d1 f (x;m).

(1)

In the following, we describe in detail how the sat-
urated function f in (1) is obtained. Let f0 be the sat-
urated function:

f0(x;m) =

⎧
⎪⎨

⎪⎩

1, if x > m,
x
m , if |x | ≤ m,

−1, if x < −m,

(2)

where 1/m is the slope of the middle segment and
m > 0; the upper radial { f0(x;m) = 1 |x > m},
and the lower radial { f0(x;m) = −1 |x < −m} are
called saturated plateaus, and the segment { f0(x;m) =
x/m | |x | ≤ m} between the two saturated plateaus is
called saturated slope.

Lets us consider now the saturated functions fh and
f−h defined as:

fh(x;m, h) =

⎧
⎪⎨

⎪⎩

2, if x > h + m,
x−h

m , if |x − h| ≤ m,

0, if x < h − m,

(3)

and

f−h(x;m,−h) =

⎧
⎪⎨

⎪⎩

0, if x > h + m,
x−h

m , if |x − h| ≤ m,

−2, if x < h − m,

(4)

where h is called the saturated delay time and h >

m. Therefore, a saturated function series for a chaotic
oscillator with s scrolls is defined as the function:

f (x;m) =
s−2∑

i=0

f2i−s+2(x;m, 2i − s + 2), (5)

where s > 2.
For example, using f = f0 in (1), a 2-scroll

chaotic oscillator can be generated. Therefore, the satu-
rated function series to generate 3-scroll is f (x;m) =
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f−1(x;m,−1) + f1(x;m, 1). To generate a 4-scroll
attractor it will be f (x;m) = f−2(x;m,−2) +
f0(x;m)+ f2(x;m, 2), and so on.

2.2 PWL function based on Chua’s diode

The equations describing this multiscroll chaotic oscil-
lator [19] are the following:

ẋ = α[y − x − g(x)],
ẏ = x − y + z,

ż = βy,

(6)

where α and β are positive and real constants, and g is
the PWL function defined as:

g(x) = m2n−1x + 1

2

2n−1∑

i=k

×(mi−1 − mi )(|x + bi | − |x − bi |), (7)

where mi are slopes, and contrary to the PWL function
f in (5), here the slopes must have negative values to
derive Chua’s diode characteristic. The constants bi are
real numbers and are associated to break point values.
For this multiscroll chaotic oscillator, and in order to
generate an even number (2n) of scrolls, k takes values
k = 1, 2, 3, . . .. For generating an odd number (2n+1)
of scrolls, k takes values k = 2, 3, 4, . . .

3 Proposed optimization-selection procedure

The flowchart of our proposed selection approach is
shown in Fig. 1. The input information is the number
of scrolls to be generated; then, a bi-objective optimiza-
tion problem is encoded: (i) to maximize the value of

Apply NSGA−II to

Number of scrolls

optimize a bi−objective problem:

maximize positive Lyapunov exponent, and

minimize variability in phase space portrait coverture

Choose one of the solutions
in the Pareto front

Fig. 1 Flowchart of the proposed optimization-selection proce-
dure

MLE, and (ii) to minimize the variability in the oscilla-
tor’s PSP. Those objective functions are solved by using
the NSGA-II algorithm [11].

For the case of the multiscroll chaotic oscillator
based on saturated function series, the optimization
problem is devoted to find the values of the four coef-
ficient variables a, b, c and d1 in (1) that solve both
objectives (i) and (ii), listed above. Those four coef-
ficients can take values within the range [0.0, 1.0]. In
our investigation, we keep the value for those variables
within four decimal places, i.e. from 0.0001 to 1.0000.

For the case of the multiscroll chaotic oscillator
based on Chua’s diode (with s scrolls), we decided to
optimize s + 3 oscillator’s values: we keep only two
slope values (m0 and m1 for an even number of scrolls,
and m1 and m2 for generating an odd number of scrolls)
in (7); all the others slope values are copies on those
two fixed ones. The number of break points bi is equal
to s − 1, and the values for α and β constants must be
also optimized.

The MLE was measured like described in [4,5].
In the next subsection, our proposed procedure is
described briefly. In addition, a very new procedure to
measure the PSP coverture among all generated scrolls
is included in the optimization loop. Basically, the pro-
cedure consists on counting the number of occurrences
of the state trajectory in generating each scroll. Lets
us explain this procedure with one example: Fig. 2a
shows the PWL function to generate 4 scrolls, the pro-
cedure for distributing the trajectories in the PSP basi-
cally counts how many times the state variable, e.g.
x , crosses the center of saturated levels (horizontal
zones) of function f in this Fig. 2a at the set of values
x = {−3,−1, 1, 3}. The taken quantitative measure,
that represents the distribution in the PSP, is the stan-
dard deviation among all crossings values at the end
of the simulation time. The counting procedure for this
example is shown in Algorithm 1

For the case of Chua’s oscillator the procedure to
count the state variable crossings is slightly different.
In this case, the PSP coverture in variable x is divided in
s zones, where s is the number of scrolls, and it is count-
ing the number of times that variable y crosses the zero
value inside each zone. And again the measure is the
variance of the number of crossings inside all the zones,
as is highlighted by Algorithm 2. As an example, in
Fig. 2b is drawn the PWL function to generate 4-scrolls
in Chua’s chaotic oscillator. There exist four zones and
three thresholds must be calculated as the midpoint
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Fig. 2 Examples of two PWL functions for oscillators generat-
ing 4-scrolls: a saturated function series-based oscillator, and b
Chua’s circuit oscillator

Algorithm 1 Pseudocode for counting the number of
crossings for x state variable for a saturated function
series generating 4 scrolls.
Ensure: The number of crossings are stored in array ‘phases[]‘
1: oldState = 1; � Initialize variable ‘oldState‘
2: for Each simulation step do
3: Simulate the oscillator a time t
4: if x < −3 then
5: newState = 0;
6: else if x < −1 then
7: newState = 1;
8: else if x < 1 then
9: newState = 2;
10: else if x < 3 then
11: newState = 3;
12: else � x > 3
13: newState = 4;
14: if newState ! = oldState then
15: if newState < oldState then
16: phases[ newState ] ++;
17: else
18: phases[ oldState ] ++;
19: oldState = newState;

inside the three slopes with greater value (as the PWL
description is symmetric with the y axis in Fig. 2b, three
break points are necessary), here b1 = 0.1, b2 = 0.66,
and b3 = 0.86, and the three thresholds are calculated
as q1 = (−b3−b2)/2 = −0.76, q2 = (−b1+b1)/2 =
0, and q3 = b2 + b3)/2 = 0.76. The counting proce-
dure for this case is shown in pseudocode 2.

Algorithm 2 Pseudocode for counting the number of
crossings for state variable x and y for a Chua’s 4-scroll
oscillator
Require: s is the number of scrolls
Ensure: The number of crossings are stored in array ‘phases[]‘
1: yOldState = 1; � Initialize variable ‘yOldState‘
2: for Each simulation step do
3: Simulate the oscillator a time t
4: flag= 0;
5: for j = 1 : s do
6: if x < q j then
7: xzone = j ;
8: flag++;
9: break;
10: if ! flag then � ’flag’ is equal to zero
11: xstate = j ;
12: if y < 0 then
13: yNewState = 0;
14: else
15: yNewtate = 1;
16: if yNewState ! = yOldState then phases[ xzone ] + +;
17: yOldState = yNewState;

3.1 Computing Lyapunov exponents

Lyapunov exponents (LE) are asymptotic measures that
characterize the average rate of growth (or shrinking)
of small perturbations to the solutions of a dynamical
system. LEs provide quantitative measures of response
sensitivity of a dynamical system to small changes in
initial conditions [20].

To measure the three LEs of the original chaotic
oscillator system in (1) or (6), this original system is
observed by expanding it with other three systems that
change according to the derivative of (1) or (6), respec-
tively. If u = [ẋ, ẏ, ż]T, u ∈ R

3, represents one state of
the original dynamical system at any t > 0, the state of
the new observed system will be v = [u, u1, u2, u3]T,
v ∈ R

12, where ui , for i = {1, 2, 3}, are the three added
systems that will measure precisely the change of those
small perturbations on each orthogonal directions, for
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each of the three state variables in (1) or (6). The initial
state of the expanded system is set to

v0 ∈ R
12

v0 = [uT
0 , eT

1 , eT
2 , eT

3 ]T
(8)

where u0 is the vector of initial conditions [x0, y0, z0]T;
[e1, e2, e3] = I , and I is the identity matrix of size
3 × 3. Thus, ei , for i = {1, 2, 3}, are each unitary
column vectors of the identity matrix I .

The observational system is integrated by several
steps until a period TO is reached. After this step, the
state of the variational system is orthonormalized by
using the standard Gram-Schmidt method [21]. The
next integration is carried out by using the new ortho-
normalized vectors as initial conditions.

The LEs measure the long time sensitivity of the
flow in u with respect to the initial data u0 at the
directions of every orthonormalized vector. This mea-
sure is taken when the variational system is orthonor-
malized. If v = [u, p1, p2, p3]T is the state after the
matrix [u1, u2, u3] is orthonormalized, the LE λi , for
i = {1, 2, 3} is calculated by

λi ≈ 1

T

k∑

j=1

ln ‖pi‖, (9)

where the number of summations k is calculated as
� T

TO
�, and T is the simulation time.

As in [4], the period of time TO is selected by using
the minimum absolute value of all the eigenvalues of
the system as

TO = 1

lmin

where lmin represents the value of the minimum eigen-
value of system in (1) or (6).

3.2 NSGA-II algorithm

In multiobjective problems, there exist several opti-
mal solutions: one solution that improves one objective
could not improve the other objective. Then, to com-
pare two solutions, the Pareto dominance is used: one
vector solution dominates other one if all its values are
less or equal to the other, and at least in one element it
is strictly lesser than the other. All the nondominated
solutions form the set called “Pareto front”.

In our problem, one could define a new single func-
tion that sum both objectives, perhaps weighting each
objective, and optimizing this new single problem. This

solution leads to a single point in the Pareto front and in
general it is not clear in which part of the Pareto front
this new solution is.

The NSGA-II was proposed by Deb et al. [11] and
is now a state of the art algorithm to solve multiobjec-
tive problems. The main goal in which NSGA-II was
designed is to give and to spread all solutions on the
Pareto front. As any evolutionary algorithm, it uses a
set of solutions (or a set of vectors, called population)
that is evolved by applying genetic operators (as muta-
tion and crossover) to generate new solutions (a vector
is called individual); and only the best solutions survive
to the iteration of the algorithm. NSGA-II presents two
ideas that try to improve the common performance of
traditional multiobjective algorithms.

The nondominated sort is the first mechanism used
in NSGA-II. It sorts the solutions according to Pareto
nondomination. A rank value is created according to the
number of individuals that dominated each solution.
The nondominated solutions receive a rank equal to
one, and the others receive a rank value according to
how many subsets they dominate.

Also, to preserve a good spread of the final solutions,
NSGA-II uses the second mechanism called crowding
distance. This distance measures the average size of the
cuboid formed with the points that enclose a solution
in the population.

The main idea behind NSGA-II is to use a selec-
tion that preserves the individuals with the lowest
rank value. When almost all the solutions exist in the
first rank, the algorithm selects the solutions with the
highest value of the crowding distance. Algorithm 3
describes how NSGA-II evolves the solutions.

Algorithm 3 Pseudocode of NSGA-II
Require: number of generations G, number of individuals
1: Randomly generate the population P0
2: Evaluate the population
3: Apply genetic operators in P0 to generate Q0
4: for i := 0 : G − 1 do
5: Set Ri = Pi ∪ Qi
6: Calculate the rank value of Ri
7: Calculate the crowding distance of Ri
8: Pi ← select the N individuals with the lowest rank and

highest crowding distance
9: Apply genetic operators in Pi to generate Qi

4 Results

For all the simulations, NSGA-II was executed by using
a population of 100 individuals, crossover probability
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Fig. 3 Solutions obtained for a 4-scroll chaotic oscillator. The
final chosen solution is marked with �

of 0.9 and mutation probability of 0.5. NSGA-II was
run three times with different seeds for the random
number generator. From the three runs, the nondom-
inated solutions were calculated again and only one
solution was chosen from the Pareto front. We use the
fourth order Runge–Kutta integrator with a fixed inte-

gration time step of 0.01 sec. TO was rounded to the val-
ues nearest multiple of 0.01. Also, the initial condition
was set for all the simulations to u0 = [0.1, 0.0, 0.0]T.

4.1 Saturated function series-based oscillators

For this type of oscillator, the simulations were exe-
cuted first for 400 sec and then for another 3,500-s
duration, where the Lyapunov exponents were mea-
sured.

As an example of our procedure, in Fig. 3, we show
the solutions found for a 4-scroll saturated function
series-based chaotic oscillator. The solutions are in the
Pareto front trading both objectives: the value of the
MLE and the PSP coverture. The final chosen solution
is marked with symbol �, it was the one with nearest
and below the value of 10 in its PSP coverture. Phase
portraits of the two outermost solutions in Fig. 3 are
shown in Fig. 4: the oscillator with the lesser MLE value
and minimum variance in PSP is shown in Fig. 4a, and
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Fig. 4 PSPs of the two outermost points in Fig. 3. Details in text

123



Optimizing the maximum Lyapunov exponent and phase space portraits 1509

Table 1 Coefficient values,
MLE values, and standard
deviation, of PSP coverture
[σ (PSPC)] for
nonoptimized and optimized
saturated function series
chaotic oscillators

Osc. Scr. Coefficients [a, b, c, d1] MLE σ

1 2 0.7000 0.7000 0.7000 0.7000 0.11177 8

2 2 0.9997 0.8158 0.5369 0.7387 0.23998 0

3 3 0.7000 0.7000 0.7000 0.7000 0.14263 214

4 3 0.8116 0.7550 0.3641 0.9900 0.25217 6

5 4 0.7000 0.7000 0.7000 0.7000 0.16535 122

6 4 0.9225 0.8420 0.3577 0.9909 0.27110 4

7 5 0.7000 0.7000 0.7000 0.7000 0.15667 89

8 5 0.9059 0.8151 0.2153 0.9950 0.27487 8

9 6 0.7000 0.7000 0.7000 0.7000 0.17212 69

10 6 0.9043 0.6229 0.2600 0.9919 0.28405 7

Table 2 Counting values,
means, and standard
deviations, σ , of the phase
transitions for the
nonoptimized and optimized
saturated function series
chaotic oscillators showed
in Table 1

Oscillator Counting values Mean σ

1 472, 488 480 8

2 502, 502 502 0

3 188, 611, 130 310 214

4 464, 477, 466 469 6

5 80, 325, 368, 134 227 122

6 346, 342, 334, 338 340 4

7 96, 272, 255, 233, 56 182 89

8 348, 344, 342, 338, 324 339 8

9 64, 229, 167, 143, 235, 66 151 69

10 307, 321, 305, 323, 318, 320 316 7

the oscillator with greater MLE and maximum variance
in PSP coverture is shown in Fig. 4b. The chaotic oscil-
lator corresponding to diagrams in Fig. 4a was obtained
with optimized coefficients a = 0.8658, b = 0.6964,
c = 0.4116, and d1 = 0.9995, and the one in Fig. 4b
was obtained with coefficient values a = 0.9944,
b = 0.7339, c = 0.2532, and d1 = 0.9992. As one
sees, both objectives are in conflict, thus one can select
the appropriated one from the Pareto front in Fig. 3.

Table 1 shows the chosen solutions and their com-
parison with the traditional design of the multiscroll
chaotic oscillator using the coefficients values [0.7, 0.7,
0.7, 0.7]. In Table 2 are shown the counting values that
help us estimate the distribution of the trajectories in the
PSP for each oscillator in Table 1. In Fig. 5, one can see
the chaotic oscillator behavior when generating from 2
to 6 scrolls. It is pretty clear from this figure that the
optimized oscillators not only present a better chaotic
behavior, but also the distributions of the trajectories
among the scrolls is well done.

To have more clarity in the description of the distri-
bution of trajectories vs the MLE, in Fig. 6, we show
how the surface of the search space is for the 4-scroll
oscillator optimized by NSGA-II.

4.2 Chua’s circuit chaotic oscillator

All the simulations of this type of oscillator were exe-
cuted during 5 s, and then aditional 3,200 s time was
needed for measuring the Lyapunov exponents.

As an example of the suggested procedure for this
class of oscillator, Fig. 7 shows all the nondominated
solutions found for a Chua’s 4-scroll oscillator. As one
sees from this figure, both objectives are in conflict,
and thus one needs to select the appropriate solution
from the Pareto front. In this case, the solution with
value PSP coverture nearer and below to the value of
10 was chosen, and it is marked with symbol � in Fig. 7.
Phase portraits of the two outermost solutions in Fig. 7
are shown in Fig. 8: the oscillator with the lesser MLE
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Fig. 5 Diagrams of the cases in Table 1. For each case, the upper
row and the bottom row correspond to the nonoptimized and the
optimized ones, respectively. Two diagrams are shown: the x val-

ues against time, and the PSP between x-y state variables. a Two
scrolls, b three scrolls, c) four scrolls, d five scrolls, and e six
scrolls

value, and the minimum variance in PSP is shown in
Fig. 8a; and the oscillator with greater MLE and maxi-
mum variance in PSP coverture is shown in Fig. 8b. The
chaotic oscillators corresponding to diagrams in Fig. 8a
were obtained with optimized variables m0 = −2.234,
m1 = −0.329, b1 = 0.392, b2 = 1.386, b3 = 1.492,
α = 9.012, and β = 13.128; the ones in Fig. 8b

were obtained with variable values m0 = −1.148,
m1 = −0.370, b1 = 0.400, b2 = 0.618, b3 = 1.450,
α = 11.874, and β = 14.192.

In Fig. 9 are shown the PSPs for the chaotic oscilla-
tors before and after the optimization. For the nonop-
timized oscillators in Table 3 and shown in Fig. 9, for
generating an even number of scrolls, the values m0 =
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Fig. 7 Solutions obtained for a Chua’s 4-scroll chaotic oscillator.
The final chosen solution is marked with �

−3.036, m1 = −0.276, b1 = 0.1, α = 10, and β = 15
were used. For generating an odd number of scrolls,
the same values were used except m1 = −0.276 and
m2 = −3.036, and the initial break point is b2 = 0.8.
The subsequent break points are calculated as in [22],
evaluating

bi+1 =
2

∑i
j (m j − m j−1)b j

1+ mi
− bi , (10)

where the slopes with an even index are equal to m0

(or m2), and those with the odd ones are equal to m1.
In (10), j is equal to 1 for an even scroll number, and
j is equal to 2 for an odd scroll number.

Finally, in Table 3 are shown the variable values
for the nonoptimized and optimized oscillators, and in
Table 4 are shown the counting values that help us esti-

mate the distribution of trajectories in the PSP for each
oscillator in Table 3.

5 Discussion

The optimization problem for the saturated function
series oscillators is encoded to search for the feasible
values of variables a, b, c, and d1 to design a more
robust chaotic oscillator. The search space for a single
variable is 2×10×10×10×10 (first digit can take two
values 0 or 1, and each one of the other four decimal
places can take ten values, from 0 to 9), equal to 2×104.
The total search space is (for four variables) (2×104)4,
or equal to 1.6 × 1017. Because of this huge search
space, the use of heuristics, as the NSGA-II algorithm,
is well justified.

For the Chua’s oscillator, the optimization problem
is more difficult because it is search for s+3 variables,
where s is the number of scrolls; therefore, five vari-
ables are optimized for 2-scroll oscillator, and up to
9 variables for a 6-scroll oscillator. The methodology
presented in this article opens the possibility to design
oscillators with different values for each slope, and also
for different values of the break points, so that the PWL
function for the Chua’s diode will increase in a nonsys-
tematic way, but the description remains the same as
for (7).

After performing the optimization process with
NSGA-II, several feasible solutions of the bi-objective
optimization problem are in the Pareto front; however,
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Fig. 8 PSPs of the two outermost points in Fig. 7. Details in text

we decided to take a solution with a low variance in the
PSP distribution, and it was with a value around 10.

It is clear by observing the graph in Fig. 3 that the two
objectives used in our proposed selection procedure—
the value of the oscillator’s MLE, and the variability in
the oscillator’s PSP—are in conflict. This means that
an oscillator with high variability in the oscillator’s tra-
jectories has a higher value in its MLE, and vice versa;
the PSPs of these two extreme oscillators are shown
in Fig. 4. If both objectives have not in conflict at all,
then a single solution should be obtained, meaning that
the optimization problem could be solved with any
single objective solver and not with a multiobjective
solver.

All our results show new optimized coefficient val-
ues of the multiscroll chaotic oscillators with higher
MLE and low variance in the PSP, as can be verified
from Tables 1 and 3. Although there is no rule for
selecting a solution from the Pareto front, the elec-

tronic implementation can be performed considering
the trade-off between the values of the MLE and the
variance for the PSP coverture. In this manner, one
can select the appropriate one according to the applica-
tion at hand. For instance, as inferred from the Pareto
fronts, a design showing a good distribution in the PSP,
i.e., a low standard deviation will have a low value for
the MLE. The unpredictability may not be robust, but
chaos is guaranteed, and the oscillator will show all
scrolls uniformly. On the other hand, when selecting a
solution with the maximum MLE, the scrolls will not
appear uniformly and in the worst case, one scroll may
appear just for a few times. This leads us to suppose how
to implement a random number generator: for instance,
where one can trade unpredictability versus uniformity
in the PSP. In this case, our contribution on identifying
this trade-off between the values of the MLE and its
PSP coverture provides a solution by applying evolu-
tionary algorithms, e.g. NSGA-II.
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Fig. 9 Diagrams of the cases in Table 3 for Chua’s circuit chaotic
oscillators. For each case, the upper row and the bottom row cor-
respond to the nonoptimized and the optimized one, respectively.

Two diagrams are shown: the x values against time, and the PSP
between x-y state variables. a Two scrolls, b three scrolls, c four
scrolls, d five scrolls, and e six scrolls

6 Conclusion

A methodology to select the best parameter values of
chaotic oscillators, based on saturated function series

and in Chua’s circuit, to guarantee chaotic regime by
maximizing the MLE and higher distribution of scrolls
in the PSP coverture, has been proposed. We demon-
strated that both objectives are in conflict. We proposed
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Table 3 Comparison between nonoptimized and optimized coefficients for the Chua’s circuit chaotic oscillator

Osc. Scrolls Variable values MLE σ (PSPC)

Slopes m0 (or m2), m1 Break points Coef. (α, β)

11 2 −3.036, −0.276 0.1 10, 15 0.21256 9.0

12 2 −1.131, −0.395 2.618 11.991, 14.997 0.52559 7.5

13 3 −3.036,−0.276 0.8, 1.37 10, 15 0.21121 272

14 3 −1.220,−0.385 0.234, 2.394 10.297, 12.565 0.43266 4

15 4 −3.036− 0.276 0.1, 0.66, 0.86 10, 15 0.16851 241

16 4 −3.981− 0.397 0.101, 1.206, 1.467 11.489, 14.674 0.49122 9

17 5 −3.036,−0.276, 0.8, 1.37, 2.97, 3.54 10, 15 0.22363 62

18 5 −2.813,−0.356, 0.893, 1.559, 3.432, 4.114 10.227, 11.786 0.58500 11

19 6 −3.036,−0.276 0.10, 0.66, 0.86, 1.42, 1.62 10, 15 0.12587 227

20 6 −1.464,−0.381 0.19, 0.70, 1.58, 2.21, 3.31 10.556, 11.415 0.43326 17

Table 4 Counting values,
their means, and standard
deviations (σ ) of the phase
transitions for the
nonoptimized and optimized
Chua’s circuit chaotic
oscillators shown in Table 3

Oscillator Counting values Mean σ

11 1833, 1815 1824.0 9.0

12 1411, 1426 1418.5 7.5

13 996, 1603, 1061 1220 272

14 900, 908, 908 905 4

15 597, 897, 1276, 887 914 241

16 784, 780, 771, 761 774 9

17 620, 745, 774, 801, 716 731 62

18 585, 579, 583, 558, 587 578 11

19 942, 862, 379, 357, 641, 475 609 227

20 400, 434, 403, 404, 434, 438 419 17

a new procedure to take the measurement of the PSP
coverture. In this manner, we applied NSGA-II to solve
a biobjective optimization problem encoded to maxi-
mize the value of MLE exponent and minimize the
variability in the oscillator’s phase transitions. The pro-
posed approach has been demonstrated for the opti-
mization of two kinds of chaotic oscillators: one based
on saturated functions series, and other one based on
Chua’s circuit.

Both oscillators are based on PWL functions that,
in all the reported studies, there is an increase in the
number of their segments in a systematic way accord-
ing to the number of scrolls to be generated. However,
as mentioned in Sect. 2, both PWL functions described
by (5) and (7) can be increased in a nonsystematic way.
It means that for the saturated function series, the sat-
urated levels, the slopes, and the shifted values can be
all different, as well as for Chua’s diode where the neg-
ative slopes and break points can be different. Further,

by applying the proposed approach of this study, one
may find optimal solutions that maximize the MLE and
minimize the dispersions in the PSPs in a better way.
Finally, in Figures 5 and 9, we list the optimized results
for both kinds of oscillators showing a high MLE and
a very good distribution of the trajectories in the PSP.
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