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Abstract In this paper, we show that a state feedback
method, which has successfully been used to control
unstable steady states or periodic orbits, provides a tool
to control the Hopf bifurcation for a novel congestion
control model, i.e., the exponential RED algorithm with
a single link and single source. We choose the gain
parameter as the bifurcation parameter. Without con-
trol, the bifurcation will occur early; meanwhile, the
model can maintain a stationary sending rate only in a
certain domain of the gain parameter. However, outside
of this domain the model still possesses a stable send-
ing rate that can be guaranteed by the state feedback
control, and the onset of the undesirable Hopf bifurca-
tion is postponed. Numerical simulations are given to
justify the validity of the state feedback controller in
the bifurcation control.
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1 Introduction

In the past decades, we have witnessed a rapidly grow-
ing interest of bifurcation control due to its promising
potential applications in various areas [1]: the preven-
tion of voltage collapse in electric power systems, the
stabilization of rotating stall and surge in axial flow
compressors, the regulation of human heart rhythms
and neuronal activity behavior, the elimination of seiz-
ing activities in human cerebral cortex, and so on. In
general, bifurcation control refers to the control of
bifurcation properties of nonlinear dynamic systems,
thereby resulting in some desired output behaviors of
the systems, such as delaying the onset of an inher-
ent bifurcation, stabilizing an unstable bifurcated solu-
tion or branch, and changing the critical values of
an existing bifurcation [2]. Various bifurcation control
approaches have been proposed in the literature [3–10].
Particularly, for the problem of relocating an inherent
Hopf bifurcation, a dynamic state feedback control law
incorporating a washout filter was proposed [3]. Later,
the state feedback scheme was successfully developed
to control Hopf bifurcations of autonomous systems
[6,10]. However, much less is known in the case of
applying the state feedback to control bifurcations aris-
ing from time-delayed systems. In this paper, the state
feedback is adopted to control Hopf bifurcations of a
time-delayed congestion control model.

Internet congestion control is an algorithm to reg-
ulate the sending rates of the sources such that high
network utilization, small amounts of queuing delay,
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and some degree of fairness among users are obtained,
so as to avoid congestion collapse. The whole Internet
congestion and avoidance mechanism is a combina-
tion of the end-to-end TCP congestion control mech-
anism [11,12] at the end hosts and the queue man-
agement mechanism at the routers. The basis of TCP
congestion control lies in the Additive Increase Mul-
tiplicative Decrease (AIMD) mechanism that halves
the congestion window for every window containing
a packet loss, and increases the congestion window by
roughly one segment per round trip time (RTT) other-
wise [13]. The queue management mechanism is meant
to control the congestion level at each router through
different kinds of Active Queue Management (AQM)
mechanisms, e.g., Drop Tail [12], Random Early Detec-
tion (RED) [14], Random Early Marking (REM) [15],
Virtual Queue (VQ) [16], and Adaptive Virtual Queue
(AVQ) [17]. The stability, bifurcation, and control of
the congestion control algorithm in the Internet have
been the focus of intense research in the last few years
[18–31].

The exponential RED algorithm model with a single
link and single source can be described by

ẋ(t) = x(t − τ)
[

1−p(t)
τ 2x(t)

− kx(t)p(t)
]
,

ṗ(t) = β
c p(t)(x(t − τ)− c),

(1)

where x(t) is the sending rate of the source, p(t) is the
loss probability function, τ > 0 is the RTT, k > 0 is a
decay factor, c > 0 is the link capacity, and β > 0 is a
gain parameter. It is easy to see that system (1) involves
delay-dependent parameters, which make the analysis
more complex.

In the past few years, many authors have studied sys-
tem (1) on the bifurcation and control [24,26,28]. By
means of the delay τ [24] or gain parameterβ [28] as the
bifurcation parameter, the stability and Hopf bifurca-
tion were investigated for system (1). It was found that
when the delay τ or gain parameter β exceeds a critical
value, the congestion control system (1) may lose its
stability and undergo a Hopf bifurcation, that is to say,
the stationary sending rate cannot be guaranteed, which
is not desirable. Thus, the study of bifurcation con-
trol for congestion control systems is of significance.
A time-delayed feedback scheme was applied to con-
trol the Hopf bifurcation for system (1). It was shown
that under the control, one can postpone the undesir-
able onset of the critical value of the delay τ and thus
insure a stationary data sending rate for a larger delay.

Although the control of bifurcation has already
been discussed in various congestion control systems
[19,20,23,26,30], the control schemes used in these lit-
eratures are all the time-delayed feedback. The delayed
feedback law may have some potential disadvantages
such as requiring quite a lot of knowledge about the
system state some time ago and making the dynamics
take place in infinite-dimensional phase spaces. There-
fore, it is needed to design a new control law that can
achieve the goal of bifurcation control. In this paper,
we will propose a state feedback scheme to control the
Hopf bifurcation for system (1). It will be shown that
the state feedback controller can increase the critical
value of the Hopf bifurcation of the gain parameter β,
thereby guaranteeing a stationary sending rate for large
gain parameter values.

The rest of the paper is organized as follows. In the
next section, the main results for the Hopf bifurcation
of model (1) obtained in [28] are summarized. In Sect.
3, we will introduce the bifurcation control for model
(1) under the state feedback control. To verify the the-
oretical analysis, numerical simulations are carried out
for an example in Sect. 4. The paper is finished by con-
clusions presented in Sect. 5.

2 Stability and bifurcation of uncontrolled
system (1)

In this section, the results of the stability and Hopf
bifurcation for system (1), obtained in [28], are sum-
marized here.

System (1) has a non-zero equilibrium E∗(x∗, p∗),
where

x∗ = c, p∗ = 1

1 + kc2τ 2 . (2)

Remark 1 p∗ explicitly depends on the delay τ , which
makes the analysis about the equilibrium E∗(x∗, p∗)
not trivial.

Theorem 1 ([28]) For each fixed τ > 0, the non-zero
equilibrium E∗(x∗, p∗) of system (1) is asymptotically
stable when β ∈ (0, β0), and unstable when β > β0.

Here,

β0 = cτ 2

√
ω4

0 +
(

2kc

1 + kc2τ 2

)2

ω2
0, (3)

and

ω0 ∈
(

0,
π

2τ

)
(4)
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Fig. 1 The curve of β0 depending on τ divides the first quadrant
of (τ, β)-plane into two regions: linear stable region and unstable
region. This is Fig. 2 in Hu and Huang [28]

is the root of the equation

1
2kc

1+kc2τ 2

ω = cot(ωτ). (5)

Figure 1 is the bifurcation curve in the parameter
plane (τ, β).

Theorem 2 ([28]) For system (1), a Hopf bifurcation
occurs from its non-zero equilibrium, E∗, when the
gain parameter, β, passes through the critical value,
β0, where β0 is defined by (3)–(5).

Theorem 3 ([28]) The Hopf bifurcation in the expo-
nential RED algorithm model (1) is determined by the
parametersμ2, ν2, T2, whereμ2 determines the direc-
tion of the Hopf bifurcation: if μ2 > 0 (μ2 < 0), then
the Hopf bifurcation is supercritical (subcritical) and
the bifurcating periodic solutions exist forβ > β0 (β <

β0); ν2 determines the stability of the bifurcating peri-
odic solutions: the bifurcating periodic solutions are
stable (unstable) if ν2 < 0 (ν2 > 0); and T2 deter-
mines the period of the bifurcating periodic solutions:
the period increases (decreases) if T2 > 0 (T2 < 0).

The parameters μ2, ν2, T2 are given by

c1(0) = i

2ω0

(
g11g20 − 2|g11|2 − |g02|2

3

)
+ g21

2
,

μ2 = − Re{c1(0)}
Re{λ′(β0)} ,

ν2 = 2Re{c1(0)}, (6)

T2 = − I m{c1(0)} + μ2 I m{λ′(β0)}
ω0

.

The detailed derivation of the above formulas can
be found in Sect. 3 in [28].

3 Control by state feedback

Many researchers have designed the various time-
delayed feedback schemes to control the Hopf
bifurcation in the Internet congestion control models
[19,20,23,26,30]. However, the time-delayed feed-
back approach requires quite a lot of knowledge about
the system state some time ago, which is not always
straightforward to find in a real-life situation. On the
other hand, a deep theoretical analysis of such con-
trol approach is a formidable task since the time delay
causes the corresponding phase space to become infi-
nitely dimensional.

To overcome the limitations mentioned above, we
suggest a state feedback scheme to accomplish the con-
trol of the Hopf bifurcation arising from system (1).
We propose a nonlinear state feedback controller for
the first equation of model (1) as follows:

u = −α1(x(t)− x∗)− α2(x(t)− x∗)2

−α3(x(t)− x∗)3, (7)

where α1, α2, and α3 are positive feedback gain para-
meters.

Remark 2 The controller (7) remains the equilibrium
E∗(x∗, p∗) of system (1) unchanged. Thus, the bifur-
cation control can be realized without destroying the
properties of the original system (1).

Remark 3 The linear term −α1(x(t) − x∗) is used
only to relocate the onset of the Hopf bifurcation
to a desired location, while the higher order terms
−α2(x(t)− x∗)2 − α3(x(t)− x∗)3 can be used to reg-
ulate the properties of the Hopf bifurcation.

Remark 4 The nonlinear state feedback control (7) has
the advantage of not requiring prior knowledge of any-
thing but the natural x∗ of system (1); so, it has been
successfully used in quite diverse experimental con-
texts.

Remark 5 The state feedback scheme has been suc-
cessfully used to control the Hopf bifurcation in var-
ious autonomous systems [3,6,10]. However, we first
apply this scheme to a time-delayed system.

With the nonlinear state feedback controller (7),
the controlled exponential RED algorithm model (1)
becomes
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ẋ(t) = x(t − τ)
[

1−p(t)
τ 2x(t)

− kx(t)p(t)
]

−α1(x(t)− x∗)− α2(x(t)− x∗)2
−α3(x(t)− x∗)3,

ṗ(t) = β
c p(t)(x(t − τ)− c).

(8)

3.1 Stability and existence of bifurcation
for controlled system (8)

Let u1(t) = x(t) − x∗, u2(t) = p(t) − p∗. Then, (8)
becomes

u̇1(t) = (u1(t − τ)+ c)
[

kc2τ 2−(1+kc2τ 2)u2(t)
τ 2(1+kc2τ 2)(u1(t)+c)

− k(u1(t)+ c)(u2(t)+ 1
1+kc2τ 2 )

]

−α1u1(t)− α2u2
1(t)− α3u3

1(t),

u̇2(t) = β
c

(
u2(t)+ 1

1+kc2τ 2

)
u1(t − τ).

(9)

Linearizing (9) about (0, 0) produces

u̇1(t) =
(
− 2kc

1+kc2τ 2 −α1

)
u1(t)− 1+kc2τ 2

τ 2 u2(t),

u̇2(t) = β

c(1+kc2τ 2)
u1(t − τ),

(10)

which has the characteristic equation:

λ2 +
(

2kc

1 + kc2τ 2 + α1

)
λ+ β

cτ 2 e−λτ = 0. (11)

In what follows, we regard β as the bifurcation para-
meter to investigate the distribution of the roots to (11).

Lemma 1 If α1 > 0, then there exists a minimum pos-
itive number βc

0 such that

(i) (11) has a pair of purely imaginary roots ±iωc
0

when β = βc
0 .

(ii) all the roots of (11) have negative real parts when
β ∈ (0, βc

0).
(iii) βc

0 > β0, where β0 is defined by (3)–(5).

Here,

βc
0 =cτ 2

√
(ωc

0)
4+

(
2kc

1+kc2τ 2 +α1

)2

(ωc
0)

2, (12)

and

ωc
0 ∈

(
0,
π

2τ

)
(13)

is the root of the equation

1
2kc

1+kc2τ 2 + α1
ω = cot(ωτ). (14)

Proof (i) If λ = iω (ω > 0) is a pure imaginary solu-
tion of (11), it is straightforward to obtain that

ω2 = β

cτ 2 cos(ωτ),
(

2kc
1+kc2τ 2 + α1

)
ω = β

cτ 2 sin(ωτ).
(15)

Taking the ratio of the two equations of (15) yields
(14). Solutions of (14) are the horizontal coordinates of
the intersecting points between the curve y = cot(ωτ)
and the line y = 1

( 2kc
1+kc2τ2 +α1)τ

ωτ . There are infinite

numbers of intersecting points for these two curves that
are graphically illustrated in Fig. 2.

Let ωc
0 satisfy (13) and be the root of (14) and define

βc
0 as in (12). Then, (βc

0, ω
c
0) is a solution of (15). Thus,

±iωc
0 is a pair of purely imaginary roots of (11) when

β = βc
0. It is easily seen form Fig. 2 that τωc

0 is the
minimum positive value among all horizontal coordi-
nates of the intersecting points. So, βc

0 is the first value
of β > 0 such that (11) has root appearing on the imag-
inary axis. The conclusion (i) follows.
(ii) When β = 0, the root of (11) is

λ1 = −
(

2kc

1 + kc2τ 2 + α1

)
< 0, λ2 = 0.

Let λ2(β) be a root of (11) satisfying λ2(0) = 0. We
can obtain that

λ′
2(0) = − 1(

2kc
1+kc2τ 2 + α1

)
cτ 2

< 0.

Thus, all roots of (11) have negative real parts when
β ∈ (0, βc

0). The conclusion (ii) follows.
(iii) It is clear from Fig. 2 that τω0 is the horizon-

tal coordinate of the intersecting point between the
curve y = cot(ωτ) and the line y = 1

2kc
1+kc2τ2 τ

ωτ ,

while τωc
0 is the horizontal coordinate of the intersect-

ing point between the curve y = cot(ωτ) and the line
y = 1

( 2kc
1+kc2τ2 +α1)τ

ωτ .

If α1 > 0 holds, we have 1
2kc

1+kc2τ2 τ
> 1

( 2kc
1+kc2τ2 +α1)τ

.

Therefore, τωc
0 > τω0, i.e., ωc

0 > ω0. From the defini-
tions of β0 and βc

0 in (3) and (12), respectively, we can
obtain that βc

0 is larger than β0. The conclusion (iii)
follows. Then the proof is completed. ��
Remark 6 If the controller u is removed from the con-
trolled system (8), i.e., α1 = α2 = α3 = 0, then (12)
can be identical with the expression ofβ0 in Theorem 1.
Therefore, β0 in Theorem 1 is a special case of βc

0 in
(12) in the absence of the control.
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Fig. 2 The illustration for
intersecting points between
the curve y = cot(ωτ) and
the line y = 1

2kc
1+kc2τ2 τ

ωτ or

the curve
y = 1

( 2kc
1+kc2τ2 +α1)τ

ωτ

In the following, we will show that the transversality
condition of the Hopf bifurcation is also satisfied.

Lemma 2 Let λ(β) = ρ(β) + iω(β) be the root of
(11) near β = βc

0 satisfying ρ(βc
0) = 0, ω(βc

0) = ωc
0.

Suppose that α1 > 0 holds. Then,

d

dβ
[Reλ]β=βc

0
> 0.

Proof Differentiating (11) on β and applying the
implicit function theorem, we have
[

2λ+
(

2kc

1+kc2τ 2 +α1

)
− β

cτ
e−λτ

]
dλ

dβ
+ 1

cτ 2 e−λτ =0,

and hence

dλ

dβ
= − 1

cτ 2 e−λτ

2λ+
(

2kc
1+kc2τ 2 + α1

)
− β

cτ e−λτ
.

Since λ(βc
0) = iωc

0, it is obvious that

dλ

dβ

∣∣∣∣
β=βc

0

= − 1
cτ 2 cos(ωc

0τ)+i 1
cτ 2 sin(ωc

0τ)[(
2kc

1+kc2τ 2 +α1

)
− βc

0
cτ cos(ωc

0τ)
]
+i

[
2ωc

0+ βc
0

cτ sin(ωc
0τ)

]

=

(
2kc

1+kc2τ2+α1

)
(ωc

0)
2

βc
0

+ βc
0

c2τ 3

[(
2kc

1+kc2τ 2 +α1

)
− βc

0
cτ cos(ωc

0τ)
]2+

[
2ωc

0+ βc
0

cτ sin(ωc
0τ)

]2

+ i

2(ωc
0)

3+
(

2kc
1+kc2τ2 +α1

)2
ωc

0

βc
0[(

2kc
1+kc2τ 2 +α1

)
− βc

0
cτ cos(ωc

0τ)
]2+

[
2ωc

0+ βc
0

cτ sin(ωc
0τ)

]2 .

Thus, we can obtain

d

dβ
[Reλ]β=βc

0

=

(
2kc

1+kc2τ2+α1

)
(ωc

0)
2

βc
0

+ βc
0

c2τ 3

[(
2kc

1+kc2τ 2 +α1

)
− βc

0
cτ cos(ωc

0τ)
]2+

[
2ωc

0+ βc
0

cτ sin(ωc
0τ)

]2 ,

(16)

and

d

dβ
[Imλ]β=βc

0

=
2(ωc

0)
3+
(

2kc
1+kc2τ2+α1

)2
ωc

0

βc
0[(

2kc
1+kc2τ 2 +α1

)
− βc

0
cτ cos(ωc

0τ)
]2+

[
2ωc

0+ βc
0

cτ sin(ωc
0τ)

]2 .

Since α1 > 0, it is clear that

d

dβ
[Reλ]β=βc

0
> 0.

This completes the proof. ��

From Lemma 2, we can obtain the following lemma.

Lemma 3 (14) has at least one root with positive real
part when β > βc

0 .

From Lemmas 1–3 and the Hopf bifurcation the-
orems for functional differential equations (FDEs) in
[32], we have the following results.
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Fig. 3 The curves of β0 and βc
0 depending on τ divide the first

quadrant of (τ, β)-plane into three regions, S1, S2, and S3. For
the uncontrolled system (1), S1 is a stable region, and S2 ∪ S3
is an unstable region. For the controlled system (8), S1 ∪ S2 is a
stable region, and S3 is an unstable region

Theorem 4 Let α1 > 0, we have

(i) when β ∈ (0, βc
0), the non-zero equilibrium E∗ of

the controlled system (8) is locally asymptotically
stable.

(ii) when β > βc
0 , the E∗ of the controlled system (8)

is unstable.
(iii) when β = βc

0 , the controlled system (8) exhibits
a Hopf bifurcation at E∗, where βc

0 > β0 is
defined by (12)–(14), and the equilibrium E∗ is
kept unchanged.

Remark 7 Theorem 4 indicates that under the control
(7), one can delay or advance the onset ofβ0 in Theorem
1 toβc

0 without changing the original equilibrium E∗ by
choosing an appropriate feedback gain parameter value
of α1. Thus, if one only needs to change the onset of the
Hopf bifurcation, a linear state feedback control with
the parameter α1 is sufficient.

Remark 8 The stability domain of the original model
(1) can be extended from S1 to S1 ∪ S2 under the state
feedback control (7) (see Fig. 3). Therefore, one can
guarantee a stationary sending rate for large parameter
values, which benefits the decongestion.

3.2 Direction and stability of the Hopf bifurcation
for controlled system (8)

Next, we will study the properties of the Hopf bifurca-
tion of the controlled system (8) by the center manifold
and normal form theories [33].

Applying Taylor expansion to the right-hand side of
system (8) at the equilibrium, E∗, we have

u̇1(t) =a1u1(t)+a2u2(t)+a3u2
1(t)+a4u1(t)u2(t)

+ a5u1(t − τ)u1(t)
+ a6u1(t − τ)u2(t)+a7u3

1(t)+a8u2
1(t)u2(t)

+ a9u1(t − τ)u2
1(t)+ a10u1(t − τ)u1(t)u2(t)+ h.o.t.,

u̇2(t) = b1u1(t − τ)+ b2u1(t − τ)u2(t),

(17)

where

a1 = −
(

2kc
1+kc2τ 2 + α1

)
, a2 = − 1+kc2τ 2

τ 2 ,

a3 = k
1+kc2τ 2 − α2, a4 = 1−kc2τ 2

cτ 2 ,

a5 = − 2k
1+kc2τ 2 , a6 = − 1+kc2τ 2

cτ 2 ,

a7 = −
[

k
c(1+kc2τ 2)

+ α3

]
, a8 = − 1

c2τ 2 ,

a9 = k
c(1+kc2τ 2)

, a10 = 1−kc2τ 2

c2τ 2 ,

b1 = β

c(1+kc2τ 2)
, b2 = β

c .

For convenience, let β = βc
0 + μ and u(t) =

(u1(t), u2(t))T , where βc
0 is defined by (12)–(14) and

μ ∈ R; then system (17) can be written in a FDE in
C = C([−τ, 0], R2) as

u̇(t) = Lμ(ut )+ F(μ, ut ), (18)

where ut (θ) = u(t + θ) ∈ C , and Lμ : C → R2, F :
R × C → R2 are given, respectively, by

Lμ(φ) = B1φ(0)+ B2φ(−τ) (19)

and

F(μ, φ)

=

⎛
⎜⎜⎜⎜⎝

a3φ
2
1 (0)+a4φ1(0)φ2(0)+a5φ1(−τ)φ1(0)

+ a6φ1(−τ)φ2(0)+a7φ
3
1(0)+a8φ

2
1(0)φ2(0)

+ a9φ1(−τ)φ2
1 (0)+a10φ1(−τ)φ1(0)φ2(0)+h.o.t.

b2φ1(−τ)φ2(0)

⎞
⎟⎟⎟⎟⎠
,

(20)

where φ(θ) = (φ1(θ), φ2(θ))
T ∈ C , and

B1 =
(

a1 a2

0 0

)
, B2 =

(
0 0
b1 0

)
.

By the Riesz representation theorem, there exists a
function η(θ, μ) of bounded variation for θ ∈ [−τ, 0],
such that

Lμφ =
0∫

−τ
dη(θ, μ)φ(θ) for φ ∈ C,
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State feedback control at Hopf bifurcation 1475

which can be satisfied by choosing

η(θ, μ) = B1δ(θ)− B2δ(θ + τ),

where δ is the Dirac delta function.
For φ ∈ C1([−τ, 0], R2), define

A(μ)φ =
⎧⎨
⎩

dφ(θ)
dθ , θ ∈ [−τ, 0),

∫ 0
−τ dη(μ, s)φ(s), θ = 0,

and

R(μ)φ =
{

0, θ ∈ [−τ, 0),

F(μ, φ), θ = 0.

Then, system (18) is equivalent to

u̇t = A(μ)ut + R(μ)ut , (21)

where ut (θ) = u(t + θ) for θ ∈ [−τ, 0].
For ψ ∈ C([0, τ ], (R2)∗), define

A∗ψ(s) =
⎧⎨
⎩

− dψ(s)
ds , s ∈ (0, τ ],

∫ 0
−τ dηT (t, 0)ψ(−t), s = 0,

and a bilinear inner product

〈ψ(s), φ(θ)〉 = ψ(0)φ(0)

−
0∫

θ=−τ

θ∫

ξ=0

ψ
T
(ξ − θ)dη(θ)φ(ξ)dξ,

(22)

where η(θ) = η(θ, 0). Then, A(0) and A∗ are adjoint
operators.

In order to determine the Poincare normal form of
the operator A(0), we need to calculate the eigenvector
q of A(0) corresponding to the eigenvalue iωc

0 and the
eigenvector q∗ of A∗ corresponding to the eigenvalue
−iωc

0. We can easily verify that

q(θ) = (1, γ )T exp(iωc
0θ), γ = iωc

0 − a1

a2
,

is the eigenvector of A(0) corresponding to the eigen-
value iωc

0, and

q∗(s) = D(1, γ ∗)T exp(iωc
0s), γ ∗ = − a2

iωc
0
,

is the eigenvector of A∗ corresponding to −iωc
0.

By (22), we get

〈q∗(s), q(θ)〉 = D

⎧
⎨
⎩1 + γ γ ∗

−
0∫

−τ
(1, γ ∗)θeiθωc

0 dη(θ)(1, γ )T

⎫⎬
⎭

= D
(

1 + γ γ ∗ + b1γ ∗τe−iωc
0τ
)
.

Thus, we can choose

D =
(

1 + γ γ ∗ + b1γ
∗τeiωc

0τ
)−1

such that 〈q∗(s), q(θ)〉 = 1.
In the following, we apply the ideas in Hassard et al.

[33] to compute the coordinates describing the center
manifold C0 at μ = 0. Let ut be the solution of (21)
when μ = 0. We define

z(t)=〈q∗, ut 〉,W (t, θ)=ut (θ)− 2Re{z(t)q(θ)}.
(23)

On the center manifold C0, we have

W (t, θ) = W (z(t), z̄(t), θ),

where

W (z, z̄, θ) = W20(θ)
z2

2
+ W11(θ)zz̄

+W02(θ)
z̄2

2
+ W30(θ)

z3

6
+ · · · , (24)

z and z̄ are local coordinates for center manifold C0 in
the direction of q∗ and q∗. Note that W is real if ut is
real. We only consider real solution. For the solution
ut ∈ C0 of (21), since μ = 0, we have

ż(t) = 〈q∗, u̇t 〉
= 〈q∗, A(0)ut 〉 + 〈q∗, R(0)ut 〉
= 〈A∗q∗, ut 〉 + q∗(0)F(0, ut )

= iωc
0z(t)+ q∗(0) f0(z, z̄).

We rewrite this equation as

ż(t) = iωc
0z(t)+ g(z, z̄), (25)

with

g(z, z̄) = q∗(0) f0(z, z̄) = g20
z2

2
+ g11zz̄

+ g02
z̄2

2
+ g21

z2 z̄

2
+ · · · . (26)

By (23), we have ut (θ) = (u1t (θ), u2t (θ))
T =

W (t, θ)+zq(θ)+ z̄q̄(θ) and q(θ)=(1, γ )T exp(iωc
0θ),

and then

u1t (0)= z + z̄ + W (1)
20 (0)

z2

2
+ W (1)

11 (0)zz̄

+W (1)
02 (0)

z̄2

2
+ O(|(z, z̄)|3),

u2t (0)=γ z + γ z̄ + W (2)
20 (0)

z2

2
+ W (2)

11 (0)zz̄

+ W (2)
02 (0)

z̄2

2
+O(|(z, z̄)|3),
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u1t (−τ)= ze−iωc
0τ+ z̄eiωc

0τ+W (1)
20 (−τ)

z2

2

+ W (1)
11 (−τ)zz̄+W (1)

02 (−τ)
z̄2

2
+O(|(z, z̄)|3),

u2t (−τ)=γ ze−iωc
0τ + γ z̄eiωc

0τ+W (2)
20 (−τ)

z2

2

+W (2)
11 (−τ)zz̄+W (2)

02 (−τ)
z̄2

2
+O(|(z, z̄)|3).

It follows together with (20) that

g(z, z̄)= q∗(0) f0(z, z̄)

= D

{ [
a3 + a4γ + a5e−iωc

0τ

+ (
a6 + b2γ ∗ ) γ e−iωc

0τ
]

z2

+
[
2a3 + a4 (γ + γ )+ a5

(
eiωc

0τ + e−iωc
0τ
)

+ (
a6 + b2γ ∗ ) (γ eiωc

0τ + γ e−iωc
0τ
)]

zz̄

+
[
a3+a4γ+a5eiωc

0τ+(
a6+b2γ ∗ ) γ eiωc

0τ
]

z̄2

+
[
a3

(
2W (1)

11 (0)+ W (1)
20 (0)

)

+ a4

(
W (2)

11 (0)+ 1

2
W (2)

20 (0)+ 1

2
γW (1)

20 (0)

+ γW (1)
11 (0)

)

+ (
a6 + b2γ ∗ )

(
γW (1)

11 (−τ)+ 1

2
γW (1)

20 (−τ)

+ 1

2
W (2)

20 (0)e
iωc

0τ + W (2)
11 (0)e

−iωc
0τ

)
+ 3a7

+ a8 (γ + 2γ )+ a9

(
eiωc

0τ + 2e−iωc
0τ
)

+ a10

(
γ eiωc

0τ + γ e−iωc
0τ + γ e−iωc

0τ
)

+ a5

(
W (1)

11 (−τ)+
1

2
W (1)

20 (−τ)+
1

2
W (1)

20 (0)e
iωc

0τ

+ W (1)
11 (0)e

−iωc
0τ

)]
z2 z̄ + · · ·

}
.

Comparing the coefficients with (26), we have

g20 = 2D
[
a3 + a4γ + a5e−iωc

0τ

+ (
a6 + b2γ ∗) γ e−iωc

0τ
]
;

g11 = D
[
2a3 + a4 (γ + γ )+ a5

(
eiωc

0τ + e−iωc
0τ
)

+ (
a6+b2γ ∗) (γ eiωc

0τ+γ e−iωc
0τ
)]

;
g02 = 2D

[
a3+a4γ+a5eiωc

0τ+(
a6+b2γ ∗) γ eiωc

0τ
]
;

g21 = 2D
[
a3

(
2W (1)

11 (0)+ W (1)
20 (0)

)
+ a4

(
W (2)

11 (0)

+1

2
W (2)

20 (0)+ 1

2
γW (1)

20 (0)+ γW (1)
11 (0)

)

+ (
a6 + b2γ ∗)

(
γW (1)

11 (−τ)+ 1

2
γW (1)

20 (−τ)

+ 1

2
W (2)

20 (0)e
iωc

0τ + W (2)
11 (0)e

−iωc
0τ

)
+ 3a7

+ a8 (γ + 2γ )+ a9

(
eiωc

0τ + 2e−iωc
0τ
)

+ a10

(
γ eiωc

0τ + γ e−iωc
0τ + γ e−iωc

0τ
)

+ a5

(
W (1)

11 (−τ)+ 1

2
W (1)

20 (−τ)

+ 1

2
W (1)

20 (0)e
iωc

0τ + W (1)
11 (0)e

−iωc
0τ

)]
. (27)

In order to determine g21, in the sequel, we need to
compute W20(θ) and W11(θ). From (21) and (23), we
have

Ẇ = u̇t − żq − ˙̄zq̄

=
{

A(0)W −2Re{q∗(0) f0(z, z̄)q(θ)}, θ ∈[−τ, 0),

A(0)W −2Re{q∗(0) f0(z, z̄)q(0)}+ f0(z, z̄), θ=0,
= A(0)W +H(z, z̄, θ),

(28)

where

H(z, z̄, θ)= H20(θ)
z2

2
+H11(θ)zz̄+H02(θ)

z̄2

2
+· · · .

(29)

On the other hand, note that on the center manifold C0

near to the origin,

Ẇ = Wzż + Wz̄ ˙̄z.
This, together with (28) and (29), reads to

(A(0)− 2iωc
0)W20(θ) = −H20(θ),

A(0)W11(θ) = −H11(θ),

(A(0)+ 2iωc
0)W02(θ) = −H02(θ), . . . .

(30)

By (28), we know that for θ ∈ [−τ, 0),

H(z, z̄, θ) =−q∗(0) f0(z, z̄)q(θ)−q∗(0) f0(z, z̄)q(θ)
=−g(z, z̄)q(θ)− g(z, z̄)q(θ)

=−
(

g20
z2

2 +g11zz̄+g02
z̄2

2 +· · · .
)

q(θ)

−
(

g20
z̄2

2 +g11zz̄+g02
z2

2 +· · · .
)

q(θ).

(31)

Comparing the coefficients with (29) gives that

H20(θ)=−g20q(θ)− g02q(θ),

H11(θ)=−g11q(θ)− g11q(θ).
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It follows from (30) that

Ẇ20(θ) =2iωc
0+g20q(θ)+g02q(θ),

Ẇ11(θ) = g11q(θ)+g11q(θ).
(32)

Noticing that q(θ) = (1, γ )T exp(iωc
0θ), we have

W20(θ) = ig20

ωc
0

q(0)eiωc
0θ+ ig02

3ωc
0

q(0)e−iωc
0θ+E1e2iωc

0θ ,

W11(θ) =− ig11
ωc

0
q(0)eiωc

0θ+ ig11
ωc

0
q(0)e−iωc

0θ+E2,

(33)

where E1 and E2 are constant vectors.
In what follows, we shall seek appropriate E1 and

E2. From

H(z, z̄, 0) = −2Re
{
q∗(0) f0(z, z̄)q(0)

} + f0(z, z̄),

we obtain

H20(0) = −g20q(0)− g02q(0)+ A1 (34)

and

H11(0) = −g11q(0)− g11q(0)+ A2, (35)

where

A1 = 2

(
a3 + a4γ + a5e−iωc

0τ + a6γ e−iωc
0τ

b2γ e−iωc
0τ

)
,

A2 = 2

⎛
⎜⎜⎜⎝

2a3 + a4 (γ + γ )+ a5

(
eiωc

0τ + e−iωc
0τ
)

+ a6

(
γ eiωc

0τ+γ e−iωc
0τ
)

b2

(
γ eiωc

0τ+γ e−iωc
0τ
)

⎞
⎟⎟⎟⎠ .

From (30) and the definition of A(0), we have

B1W20(0)+ B2W20(−τ) = 2iωc
0W20(0)− H20(0),

B1W11(0)+ B2W11(−τ) = −H11(0).

(36)

Substituting (33)–(35) into (36) and noticing that
⎛
⎝iωc

0 I −
0∫

−τ
eiθωc

0 dη(θ)

⎞
⎠ q(0) = 0

and⎛
⎝−iωc

0 I −
0∫

−τ
e−iθωc

0 dη(θ)

⎞
⎠ q(0) = 0,

we can obtain

E1 =
(

2iωc
0 I − B1 − B2e−2iωc

0τ
)−1

A1,

E2 = − (B1 + B2)
−1 A2.

Therefore, each gi j in (27) has been expressed in terms
of the parameters and the delay given in system (8).
Furthermore, we can compute the following quantities:

c1(0) = i

2ωc
0

(
g11g20 − 2|g11|2 − |g02|2

3

)
+ g21

2
,

μc
2 = − Re{c1(0)}

Re{λ′(βc
0)}
,

νc
2 = 2Re{c1(0)}, (37)

T c
2 = − Im{c1(0)} + μ2Im{λ′(βc

0)}
ωc

0
.

Now, the main results of this section are summarized
as follows.

Theorem 5 The Hopf bifurcation exhibited by the con-
trolled exponential RED algorithm model (8) is deter-
mined by the parameters μc

2, ν
c
2, T c

2 , where μc
2 deter-

mines the direction of the Hopf bifurcation: if μc
2 >

0 (μc
2 < 0), then the Hopf bifurcation is supercrit-

ical (subcritical) and the bifurcating periodic solu-
tions exist for β > βc

0 (β < βc
0); ν

c
2 determines

the stability of the bifurcating periodic solutions: the
bifurcating periodic solutions are stable (unstable) if
νc

2 < 0 (νc
2 > 0); and T c

2 determines the period of
the bifurcating periodic solutions: the period increases
(decreases) if T c

2 > 0 (T c
2 < 0).

Remark 9 Theorem 5 shows that one may choose
appropriate values of the parameters α1, α2, and α3 to
change the values ofμ2, ν2, T2 in Theorems 3 in order
to control the properties of the Hopf bifurcation of sys-
tem (1).

4 Numerical simulations

To verify the effectiveness of the proposed control
scheme, numerical results are employed in this section.

For a consistent comparison, the same model (1),
used in [28], is discussed, with c = 1, k = 0.8, and
τ = 5. From (2), the uncontrolled system (1) has a
unique non-zero equilibrium E∗ = (1, 0.0476). It fol-
lows from Theorems 1–3 that

β0 = 0.4032, ω0 = 0.1161,

μ2 = 0.0093, ν2 = −0.0014, T2 = 1.9004.

It is shown from Theorems 1 and 2 that when β <

β0, the equilibrium E∗ is stable (see Fig. 4), while
as β is increased to pass through β0, E∗ loses its

123



1478 M. Xiao et al.

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time t

x(t)

p(t)

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

x(t)

p(
t)

Fig. 4 Waveform plot and phase portrait of the uncontrolled model (1) with c = 1, k = 0.8, and τ = 5. The equilibrium E∗ is
asymptotically stable, where β = 0.38 < β0 = 0.4032
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Fig. 5 Waveform plot and phase portrait of the uncontrolled model (1) with c = 1, k = 0.8, and τ = 5. A periodic oscillation bifurcates
from the equilibrium E∗, where β = 0.408 > β0 = 0.4032

stability and a Hopf bifurcation occurs (see Figs. 5
and 6). Note that the periodic orbits are stable since
ν2 < 0, the bifurcating periodic solutions exist at
least for the value β slightly larger than the criti-
cal value β0 since μ2 > 0, and the period of the
periodic solutions increases as β increases due to
T2 > 0.

Next, we control the Hopf bifurcation based on the
state feedback scheme.

Case 1 linear state feedback control.
It can be seen from Theorem 4 that for the linear

state feedback control with an appropriate value of α1,

we can delay the onset of the Hopf bifurcation. For
example, by choosing

α1 = 0.02, α2 = 0, α3 = 0,

we can apply Theorems 4 and 5 in Sect. 3 to obtain

βc
0 = 0.5157, ωc

0 = 0.1285,

μc
2 = 0.9964, νc

2 = −0.5918, T c
2 = 0.9322.

Note that the controlled model (8) has the same equilib-
rium point as that of the original model (1), but the criti-
cal value β0 increases from 0.4032 to 0.5157, implying
that the onset of the Hopf bifurcation is delayed.
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Fig. 6 Waveform plot and phase portrait of the uncontrolled model (1) with c = 1, k = 0.8, and τ = 5. A periodic oscillation bifurcates
from the equilibrium E∗, where β = 0.435 > β0 = 0.4032

Under the linear state feedback control with α1 =
0.02, α2 = α3 = 0, we chooseβ = 0.435 < βc

0, which
is the same value as that used in Fig. 6. It can be con-
cluded from Theorem 4 that instead of having a Hopf
bifurcation, the equilibrium E∗ of the controlled model
(8) is stable, as shown in Fig. 7. However, the equilib-
rium E∗ becomes unstable when β = 0.54 > βc

0,
as shown in Fig. 8. Moreover, when β = 0.6 > βc

0,
the equilibrium point E∗ is also unstable, as shown in
Fig. 9.

It is shown that when β passes the critical value
βc

0 = 0.5157, a Hopf bifurcation occurs (see Figs. 8
and 9). The periodic orbits are stable since νc

2 < 0.
Since μc

2 > 0, the bifurcating periodic solutions exist
at least for the value β slightly larger than the critical
value βc

0. Since T c
2 > 0, the period of the periodic

solutions increases as β increases.

If we choose a larger value of α1, the exponential
RED algorithm model may not have a Hopf bifurcation
even for larger values of β. For example, when choos-
ing α1 = 0.3, α2 = α3 = 0, the equilibrium E∗ of
the controlled model (8) is stable if β < βc

0 = 2.2846,
as shown in Fig. 10. This indicates that the linear state
feedback control can delay the onset of the Hopf bifur-
cation.

Figure 11 shows a local bifurcation diagram in terms
of the parameter β for model (1) without and with the
linear state feedback control. Solid and dashed curves
denote the stable and unstable solutions, respectively.

Figure 12 displays the dependence of βc
0 upon the

feedback gain α1 according to the controlled system
(8) for c = 1, k = 0.8, and α2 = α2 = 0. The dash-
dotted curve corresponds to a delay of τ = 5, the dot-
ted curve to τ = 4.5, the solid curve to τ = 4, and
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Fig. 7 Waveform plot and phase portrait of the controlled model (8) with c = 1, k = 0.8, τ = 5, and α1 = 0.02, α2 = α3 = 0. The
equilibrium E∗ is asymptotically stable, where 0.4032 = β0 < β = 0.435 < βc
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Fig. 8 Waveform plot and phase portrait of the controlled model (8) with c = 1, k = 0.8, τ = 5, and α1 = 0.02, α2 = α3 = 0. A
periodic oscillation bifurcates from the equilibrium E∗, where β = 0.54 > βc

0 = 0.5157

the dashed curve to τ = 3.5. The values of the βc
0

are calculated by solving (12)–(14) numerically. For
increasing the feedback gain α1, the critical value βc

0
increases for a fixed time delay τ . Increasing α1 post-
pones the onset of the Hopf bifurcation and reduces the
instability. Hence, the control is successful. It also can
be seen from Fig. 12 that when α1 > 0.1, increasing
time delay of τ raises the value of βc

0 to a fixed feed-
back gain α1; when α1 < 0.1, decreasing time delay
of τ raises the value of βc

0 to a fixed feedback gain
α1.

Case 2 nonlinear state feedback control.
Different from the linear state feedback control dis-

cussed in Case 1, the nonlinear state feedback con-
trol has two more feedback gain parameters α2 and α3,
which expands the regulated parameters besides the
parameter α1.

Although it may be enough to use only α1 for model
(1) in delaying the onset of the Hopf bifurcation, it is
more effective to use all the three parameters in chang-
ing the properties of the Hopf bifurcation for the expo-
nential RED algorithm model. Note that, under these
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Fig. 9 Waveform plot and phase portrait of the controlled model (8) with c = 1, k = 0.8, τ = 5, and α1 = 0.02, α2 = α3 = 0. A
periodic oscillation bifurcates from the equilibrium E∗, where β = 0.6 > βc

0 = 0.5157
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Fig. 10 Waveform plot and phase portrait of the controlled model (8) with c = 1, k = 0.8, τ = 5, and α1 = 0.3, α2 = α3 = 0. The
equilibrium E∗ is asymptotically stable, where β = 2.2 < βc

0 = 2.2846
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Fig. 11 Local bifurcation
diagram of model (1)
without and with the linear
state feedback control

Fig. 12 The fluctuation of
βc

0 depending on α1 for
c = 1, k = 0.8, and
α2 = α3 = 0 as given by the
controlled system (8)
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three parameters, only parameters a3 and a7 are differ-
ent from the linear state feedback control discussed in
Case 1. The derivation of the formulas for this general
nonlinear case can follow the same procedure described
in Sect. 3. Choosing different values of α1, α2, and α3,
one can efficiently change the stability, direction, and
period of the Hopf bifurcation. For example, when

α1 = 0.02, α2 = 0.01, α3 = 0.02,

we have

μc
2 = 0.1437, νc

2 = −1.0587, T c
2 = 0.0156.

The critical value βc
0 = 0.5157, and the equilibrium is

the same as that in the Case 1 with α1 = 0.02, α2 =
α3 = 0. Taking β = 0.54 yields the results shown in
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Fig. 13 Waveform plot and phase portrait of controlled model (8) with β = 0.54 and α1 = 0.02, α2 = 0.01, α3 = 0.02

Fig. 13, where β takes the same value as that of the case
shown in Fig. 8. It is noted that the behavior shown in
Fig. 13 is quite different from that of Fig. 8 even if a
same value of β is used in the two cases. The amplitude
of the limit cycle shown in Fig. 8 is larger than that
depicted in Fig. 13. This can be explained by means
of the approximate Hopf bifurcation solutions [34] that
the absolute value of ν2 given for Fig. 8 (ν2 = −0.5918)
is smaller than that for Fig. 13 (ν2 = −1.0587), but the
linear coefficient Re′λ(βc

0) is same for the two cases.
This suggests that one may choose appropriate values
of α2 and α3, in addition to α1, to obtain the desired
behavior of a Hopf bifurcation.

5 Conclusion

In this paper, a new control scheme is proposed based
on the dynamic state feedback to control the Hopf bifur-
cation arising from a time-delayed exponential RED
algorithm model. The conditions for the stability and
bifurcation are obtained for the controlled exponential
RED algorithm model by analyzing the characteristic
equation. In addition, using the normal form theory and
center manifold reduction, the direction of the Hopf
bifurcation is determined. Numerical simulations are
presented to verify the analytical results. It is shown
that the linear state feedback control may be used to
change the onset of the Hopf bifurcation, while the non-
linear state feedback control can be applied to regulate
the properties of the Hopf bifurcation.

The future research is to apply this dynamic state
feedback scheme to high-dimensional Internet conges-
tion control systems.
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