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Abstract This work explores the steady-state peri-
odic transverse responses with their stabilities of axi-
ally accelerating viscoelastic strings. Longitudinally
varying tension due to the axial acceleration is recog-
nized in the modeling, while the tension was approxi-
matively assumed to be longitudinally uniform in previ-
ous investigations. Exact internal resonances are high-
lighted in the analysis, while the resonances have been
neglected in all available works. A governing equa-
tion of transverse nonlinear vibration is derived from
the generalized Hamilton principle and the Kelvin vis-
coelastic model on the assumption that the string defor-
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mation is not infinitesimal, but still small. The axial
speed is supposed to be a small simple harmonic fluctu-
ation about the constant mean axial speed. The method
of multiple scales is applied to solve the governing
equation in the parametric resonances when the axial
speed fluctuation frequency approaches the first three
natural frequencies of the linear generating system
based on 1-3 term truncations. The amplitude, the exis-
tence conditions, and the stability are determined, and
the effects of the viscosity, the mean axial speed, the
axial speed fluctuation amplitude, and the axial support
rigidity on the amplitude and the existence are exam-
ined via the numerical examples. It is found that the
1-term, the 2-term, and the 3-term truncations yield the
qualitatively same and the quantitatively close results
in the case that there exist the exact internal resonances
among the first three frequencies.

Keywords Nonlinear parametric vibration - Axially
accelerating string - Exact internal resonance -
Longitudinally varying tension - Method of multiple
scales

1 Introduction

Axially moving strings can represent many engineer-
ing devices such as paper sheets and textile fibers,
while transverse vibrations of the strings may degener-
ate production quality and generate noise. Knowledge
of transverse vibrations of axially moving strings [1]
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is significant for the design and the operation of the
devices. An axially moving string may undergo trans-
verse parametric vibration excited by its axial accel-
eration. Miranker established the equation governing
transverse linear vibration of an axially accelerating
string [2]. Mote pioneered the stability analysis of
axially accelerating strings [3]. Within the framework
of linear vibration, dynamic stability was investigated
via the calculation based on the Galerkin discretiza-
tion [4,5], the method of multiple scales based on the
Galerkin discretization [6,7], the Floquet theory based
on the finite element method [8], and the direct method
of multiple scales [6,9,10]. If the string deforma-
tion is not infinitesimal, the geometric nonlinear terms
should be included. Within the framework of nonlinear
vibration, transient responses can be computed based
on the Galerkin discretization for axially accelerat-
ing strings with different constitutive laws [11-13].
Steady-state periodical responses can be predicted via
the method of multiple scales based on the Galerkin
discretization [14], the direct method of multiple scales
[15-17], and an asymptotic analysis approach [18]. In
all above-mentioned works [2—18] on transverse vibra-
tion of axially accelerating strings, the string tensions
were assumed to be spatially uniform (along the lon-
gitudinal direction), although there are many works
that consider time-dependent variations of tension as
parametric excitations [1]. As a consequence, the mag-
nitudes of the tensions are equal and the directions
are opposite at both ends of the string. The conse-
quence contradicts the fact that the strings move with a
nonzero acceleration, because Newton’s law demands
that the acceleration should be caused by a nonzero
resultant force. Therefore, the assumption that the ten-
sion is independent of the longitudinal coordinate can-
not be exactly held. It is only an approximation that
reduces the mathematical difficulty to solve the gov-
erning equations, because, without the approximation,
the coefficients of the governing equations depend not
only on the temporal variable, but also on the spatial
variable. Recent works on axially accelerating beams
demonstrated that the tension longitudinal variation
changes both the stability boundaries in linear paramet-
rical vibration [19,20] and the steady-state response in
nonlinear parametrical vibration [21]. However, there
has yet been no investigation on the effects of longitu-
dinally varying tensions on the transverse vibration of
axially accelerating strings.
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Approximate analytical methods are powerful tool
to determine stability boundaries of linear vibration and
steady-state responses of nonlinear vibration of axially
moving strings [1]. Many significant results have been
achieved by the application of the approximate analyt-
ical methods. In all available works via the approxi-
mate analytical methods [6-9,13-23], it was assumed
that two modes with corresponding natural frequencies
involved in summation resonance or amode in principal
parametric resonance contribute to dynamic behaviors.
The effects of other modes that were truncated have
not been considered. If there is no internal resonance,
with two or more rationally commensurable frequen-
cies of the linear generating system, the truncations
seem physically sound. However, in the case of axially
moving strings, all frequencies of the linear generat-
ing system are proportional to the first frequency [24],
and thus there are infinite exact internal resonances. So
far, the widespread practice of neglecting modes unin-
volved in parametric resonance has not been validated
by examining possible internal resonances. It should
be remarked that the infinite exact internal resonances
may occur in nonlinear vibration of other physical sys-
tems than axially moving strings. For example, all lin-
ear frequencies of an Euler- Bernoulli beam pinned at
both ends are proportional.

To address the lack of investigations in above men-
tioned two aspects, this work revisits steady-state
responses in the combination and the principal para-
metric resonances of axially accelerating viscoelastic
strings with the emphasis on longitudinally varying
tension in modeling and exact internal resonances in
analysis. However, infinite mode analysis is infeasible
atthe present stage. Instead, a heuristic approach, based
on finite mode analysis, to internal resonances will be
proposed.

The paper is organized as follows. Section 2 derives
the governing equations and the associated boundary
conditions of coupled planar vibration from the gen-
eralized Hamilton principle and the Kelvin viscoelas-
tic model, and reduces the equations to the govern-
ing equation of transverse motion in small, but finite
stretching problems. Section 3 provides an application
framework of the method of multiple scales and deter-
mines the possible parametric resonances. Sections 4—6
treat the first three parametric resonances with the
account for the exact internal resonances. Section 6
ends the paper with the concluding remarks.
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Fig. 1 The physical model
of an axially accelerating
viscoelastic string

2 Modeling with the recognition of longitudinally
varying tensions

A uniform viscoelastic string of density p and cross-
sectional area A moves axially between two eyelets sep-
arated by distance L. Assume that the deformation of
the string is confined to a plane. The string is subjected
to no external loads. A mixed Eulerian—-Lagrangian
description is adopted. At axial coordinate x and time
t, the planar vibration of the string is specified, respec-
tively, by the transverse displacement v(x, #) related
to a spatial frame and the longitudinal displacement
u(x, t) related to a translating frame moving with the
string. The axial transport speed, denoted by I" (%), is
time dependent. The physical model is shown in Fig. 1.

In the present investigation, the effects of the axial
string motion on the string deformation are highlighted,
while the effects of the string deformation on the axial
string motion are neglected. Application of Newton’s
second law to small string element dx leads to the lon-
gitudinal change rate of axial tension P

P..= pAl’ (1
Integrating equation (1) with respect to x yields
P =pAl' x+C (1), )

where C (¢) is the “constant of integration” with respect
tox. Thatis, C(t) may depend on time ¢ and is indepen-
dent of longitudinal coordinate x. At x = L, the right
hand side term is equal to the right-end axial tension
Py + npAI" 2 where Py is initial axial tension (ten-
sion in the string without the axial acceleration and the
transverse vibration) and 7 is the axial support rigidity
parameter varying between O (infinite rigidity) and 1
(no rigidity) [25]. Thus,

P =Py +npAl* + (x — L) pAT’, 3)

where the third term in Eq. (3) represents the longitu-
dinally varying tension due to the axially accelerating
motion.

The generalized Hamilton principle will be emp-
loyed to formulate the governing equations and the
associated boundary conditions. The kinetic energy of
the axially moving string is

T =

| =

L
[ oAl s + w0 rv?]
0

“)

where a comma preceding ¢ or x denotes partial dif-
ferentiation with respectto t or x, and I" + u,; +1"u,,
and v,; +1I"v,, are, respectively, the longitudinal and
the transverse velocity projections of a point of the axi-
ally moving string. Then, the virtual work done by the
axial tension during the deformation is

L
SW = —/(P + 0y A) Sepdx 5)
0

If the string is elastic, the virtual work is the variation of
the potential energy. Otherwise, it contains a noncon-
servative part. The material of the string is assumed
to be constituted by the Kelvin model. That is, normal
stress oy and normal strain ¢, are related by

oy = Eey + o (e, +1ex,y), (6)

where E and « are, respectively, the Young modulus
and the viscosity of the string. The strain obeys the
strain-displacement relation

ex = (I +u)?+v,2 -1 7)

The generalized Hamilton principle takes the form

%) %)
3/Tdt+/8Wdt:O ()
1 1

Substitution of Egs. (4) and (5) with Eqgs. (6) and (7)
into Eq. (8) and application of the standard variation
procedure in the resulting equation yield
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t L
//pA (u,n 12T Uy +1 + T,y +F2Msxx)
n o

9 | (P+ Aoy (1 +u,
| PHAIA D) | s ardi=0 (9

8x \V (1 +uax)2+v’%

th L
// ,OA (v3lt +2FU7xl +ﬁv’x +F2vax)
n 0

0 (P4 Aoy) v,y

0x VA +u0)? 40,2
n
/ (P+ Aoy) (1 +u,y)

bl VA tun?+v2

svdx dt =0 (10)

L
—pAL (I 4+ u, +Tu,y) | Su| dt =0, (1)
0
5}
/ (P + Aoy) v,y
A RYUCE IR IS
L
—pAI (v, +T"'v,y) ¢ 6v| dt =0. (12)
0
L
/ PA(I +u, +Tu,x) ulf dx =0, (13)
0
L
/ pA (v, +Tv,,) 8v]dx = 0. (14)
0

The governing equations of the planar motion for the
axially accelerating viscoelastic string are derived from
Egs. (9) and (10) as

pA (Mvtl +20 U, 5 +F + ﬁu’x +F2u»xx)

0 | (P+Aocy) (14 u,y)

0x L VA +u)* + v

pA (vvfl +2FU’XI‘ +ﬁv7x +F2stx)

a P AX ' X
Lo | Bt Aoy —0. (16)

0| S +un?+v.2
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=0, (15)

Using a Taylor series, one can approximate the denom-
inator of the last term in Eqgs. (15) and (16)

-1/2
[(1 +u)? + vi]

2 2
v, 3v,
B I s Sy N (/)

2 2
a7

where O (4) stands for terms of power 4 or higher.
The transverse motion is generally coupled with the
longitudinal motion, but they both are small-amplitude
motions in the practical circumstances [26]. In small,
but finite stretching problems, one can only retain the
lowest order nonlinear term and omit all higher order
nonlinear terms. Assume that the longitudinal displace-
ment is much smaller than the transverse displacement,
that is u = O (v?). Equation (17) leads to

=1—u,,

-1/2
[(1 +u)? + vi]

U’f 3 4
=1—u, ==t =01 40 (v) (18)

Substituting equation (18) into Eqgs. (15) and (16) and

neglecting terms O (v*), one obtains

pAl' = P, +EAi (11),2 —i—u,x) , (19)
ax \2

pA (v7ft +2FU’xt +ﬁvvx +F2U’xx)

a 1
—a_ H:P + EA (—U,i-l—u,x)-i-AOl (”axt +Fu,xx)

by 2
+Aa (v, 5 +1"v,xx) ny:| U’x] =0. (20)
Substitution of Eq. (3) and into Eq. (19) yields
a (1 ,
= (qu2 ) =0 @1

Integrating equation (21) twice with respect to x, one
gets

X

u=xCy(t)— %/u,ﬁ dx + C> (1), (22)
0

where C1(t) and C,(¢) are the “constants of integra-

tion” with respect to x. For the boundaries as shown

in Fig. 1, it can be assumed that # = 0 at x = 0 and

x = L, which satisfy Eq. (11). C1(¢) and C»(t) can be

determined, and Eq. (22) gives

X

L

X 2 1 2

M:i v,xdx—z U,xd)C (23)
0 0
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Substitution of Egs. (3) and (23) into Eq. (20) yields
pA (val +2FU’)€1 +F2U»xx)

L
. EA
- Po+npAF2+(x—L)pAF+E/v,}%dx
0

L
+ Ax %/v,xv,xtdx Vyxx =0 (24)
0
Nonlinear integro-partial-differential equation (24)
governs transverse motion of the axially accelerating
viscoelastic string.

Both the longitudinal variation of the tension and
the finite axial support rigidity are accounted for by
Eq. (24). If the support is completely rigid, then n = 0.
Equation (24) reduces to

pA (vvll +2Fvvxl +F2U»XX)

L
. EA [
— | Po+(x—L)pAl + —— [ v2dx
2L
0

L
1
a1 [vavadr] [om=0 5)
0
If the tension variation is neglected, then the tension

can be assumed as P = Py + npAI'?. Substitution of
the tension and Egs. (23) into (20) gives

,OA (vvll +2FU’XI +ﬁvvx +F2U5X)C)

L
EA
2 2
— | Po+npAl’ +E/v,xdx
0
| L
+ Aa z/v,x voxrdx | | vie=0 26)
0

In the special case of infinite rigid supports, Eq. (26)
reduces to
PA (Uatl +20v,x¢ +I;ny +F2U;xx)
L L
) 1

v,y dx+Aa A V,x U,xr dx U,xx
0 0
=0 27

P+ EA
EArY)

The following boundary conditions of the axially accel-
erating viscoelastic string satisfy Eq. (12)

v(0,1) =0,v(L,t) =0 (28)

Equations (24) and (28) can be cast into the dimen-
sionless forms by using the following coordinates or
parameters

v X t | Py PA
Ve —, x o —, to — [—, y=1_|—,
JeL L L\ pA Py

o P,

0 EA
— ki = —, (29)
ELY\ pA Py

o <> ——

where bookkeeping device ¢ is introduced as a small
dimensionless parameter accounting for the fact that
the transverse displacement is very small. Substituting
Equation (29) into (24) and (28), one gets the dimen-
sionless forms

Vo 270 + [Ky2 =1y — 1] Vorr
1 1
2 1 2
= kv, xx 3 v,ydx+o [ vyv,dx ], (30)
0 0
v(0,1) =0,v(1,1) =0, (31)

where k = 1 — n. Equation (30) is essentially identi-
cal to Eq. (33) in [21] for axially accelerating beams
except for two changes. All bending-related terms in
beam case disappear here and a damping term appears
because the damping coefficient is no longer assumed
to be small.

3 Analysis with the recognition of internal
resonances

In the present investigation, the axial speed is supposed
to be a small simple harmonic fluctuation about the
constant mean axial speed,

y (1) = yo + ey sin (ot) , (32)

where yy is the constant mean axial speed, and y; and
w are, respectively, the amplitude and the frequency
of the axial speed fluctuation, all in the dimensionless
forms. Substitution of Egs. (32) into (30) leads to

U,tt +2y0v7)(l‘ + (KVOZ - l) U,xx

= —¢& 1 2y1 sin (0t) (V,xr +KY0V,xx)

+ (1 — x) wy1 cos (wt) v,xx
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1 1

— ki Loza d
1Vsxx 2 U,y + U,x U,xt X
0 0

—0 (52) (33)
The method of multiple scales will be employed to ana-
lyze parametric vibration. The solutions to Eq. (33) can
be assumed as
v(x,158) = vo (x, To, T1) + €vi (x, To, T1)

+0 (). (34)
where To = ¢ and T1 = et are, respectively, the fast

and the slow time scales. Substitution of Eq. (34) and
the following relationship

o 9o 0 32_32+28 9
or 9Ty 9Ty 02 9T 9TodTh
+0 (%) (35)

into Eqgs. (33) and (31) and then equalization of coef-
ficients of ¥ and &' in the resulting equations lead to,
at the order &9,

vo.17 4200007, + (K76 = 1) v =0, (36)
v (0, To, Ti) = 0, v (1, To, Ty) =0; 37

and, at the order ¢!,

1. 2
£ 1 VLT F2Y0V1,xT, + (KVO - 1) Ul,xx

= — | 2 (vo, 71, +¥0v0,x7;) + 21 sin(wt)

S (UvaTO +KVOUO,xx) + (I = x) wy1 cos(wt)vo, xx
1 1
2 1 2
— k10, xx 53 [ vk dx +a [ vo,x vo.xydx | |,
0 0
(38)
v1 (0, Tp, T1) =0, vi (1, Tp, T1) = 0; (39)

Since the damping term due to the viscoelasticity
appears only in Eq. (38), the linear generating system
(36) is a gyroscopic continuous system with pure imag-
inary eigenvalues. The solution is [24]

oo
vo (x, 70, T1) = D An (T1) ¢ (x) €70 4 ¢, (40)

n=1

@ Springer

where
@n = sin (nmx) &My g, = &,
\/ yoz — K)/02 +1
nmw (1 — K)/OZ) @D
wp = n=12,---).

,/)/Oz—lcyoz—i-l

A, denotes a complex function to be determined later,
¢, and w, are, respectively, the nth mode function
and natural frequency, and cc stands for the complex
conjugate of the proceeding terms. It should be noted
that, under boundary conditions (37), there exists the
strict proportional relationship w, = nw; or mw, =
nw, among any nature frequencies. The fact has been
neglected in all previous investigations on transverse
vibration of axially moving strings with the same con-
ditions.

Here the internal resonances will be treated in a
heuristic way. Parametric resonances in the cases of
w near wy, 2w1, and 3w are investigated with the pres-
ence of the exact internal resonances. In each case, solu-
tion (40) is, respectively, retained 1-3 terms. If the dif-
ferent term truncations lead to qualitatively and quan-
titatively similar results, the results are convincingly
applicable even if the effects of infinite high-order inter-
nal resonances are neglected. Otherwise, if the differ-
ent term truncations yield totally diverse results, more
sophisticated approaches should be developed to derive
the applicable solutions.

The sum of first k terms of the infinite expansion in
equation (40) will be referred as the k-term truncated
solution or simply the k-term truncation. Then, the 3-
term truncated solution to Eq. (36) is expressed by

vo (x, To, T1) = @1 (x) Ay (T1) 70

+ @2 (x) Ay (Ty) €270

+3 (x) A3 (T1) €370 + cc (42)
Substitution of Egs. (42) into (38) yields

V1L, ToTy F2Y0V1,xT, + [(1 - vg - 1] Ul,xx

= A1 — i Arel 0 — 3 Azl

—iw1 Ty —iwr Ty —iw3 Ty

— i3Aze
i(w+wn)Ty

- ﬁzz‘ize
ferenTo — yy xaAse
—yix1Are
—i(w+w2)Ty _ 7l )231&33
i(—w+w2)Tp

—ﬁlz‘ile
—YyixiAie
—yi1x3Ase
—Y1X2Aze
i(—w+w1)To

i(w+w3)To —i(w+w1) Ty

—i(w+w3)To

—Y161A1e — y162Aze

_y153A3ei(7w+a)3)To - SIA_lei(wfa)l)To
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i(w—w2)Ty i(w—w3)Tp

—71 Szz‘ize - )/1¢§3A3e

- [(Ku +aki2) ATAL+ (a1 +apuin) A1 A2 Ay
+ (n131 + o pe132) A1A3A3]eiw‘TO

— (111 + atpp) AzAel(T2ertenTo
— (11 + acpn) A3 AzeiG2m0 T

- [(K21 +ak) A3 Ar+ (o1 +apain) A1 A2 A,
+ (pa31 + opa32) A2A3A3]eiw2T‘)

— (E21 + adx) A1 Az Age! @12t To

- [(K31 +akzn) A3As+ (311 +apsn) AjAsA,
+ (u321 + ap322) A2A3A2]ei‘“ﬂ°

— (V31 + aU3) Ail"e?’iw]To
— (31 + as32) A%A_lel(—w1+2w2)To

+ NSNT + cc, (43)
where
mh =2 (ionpn +yo0) (=1, 2, 3), (44a)
xn = 0.5 (1 — x) 0@} + wne), — ik Vo@)
(h=1, 2, 3), (44b)
5n = 0.5 (1 — x) wg) — wpg)h + iKVop)
(h=1,2, 3, (d4c)

1 1

kni = —0.5k3 [ 2¢) / PpPhdx + @) [ @jfdx
0 0
(h=1,2,3), (44d)

1
Ky = _ik§wh¢g/<p;3dx (h=1,123), (4e)
0

1 1
wnr = =43 (i [ digia+ ol [ oo
0 0

+¢5 | ehegdr |, (441)

o _

1

s = — ik | (wp — ws)<.0§//<ﬂl/q¢;dx
0
1

+ (wn +ws)¢§//<pzﬁ<p§dx
0
(h=1, 2,35 £h), (44¢)

1 1
T = —0.5k <<pg’ / @i2dx + 2] / <p§¢>idx), (44h)

0 0
1 1

Ty = ik} |:w1<p§// @izdx+(w1—w3)¢i//<p§¢idX] (441)
0

0

1 1
s = —0.5k} <2<p2 /wzwgdxwg/ 'de>
0

Gfh=1, s=3; ifh=3, 1), (44j)
1 1
Sy = —ik? |:(a)2—a)s)(p§’/goé@édx+w2¢;’/g0§2dx:|
0 0
(ifh=1,s=3,ifh=3 s=1), (44k)
1 1 1
b1 = k2 (w / @5 dx+¢f / ¢162dx+@) / wiwédX> ’
0 0 0
(441)

I
£ = —ik] |:(a)3 — )¢ /‘/’3‘%‘”

0

I |
1 ! =/ -/ / /
+ (w1 —w2) @3 /g01<p2dx+(w1+w3)<p2/<p1g03dx:|,

0 0
(44m)
1
v = —O.Sklzgof/wizdx, (44n)
0
1
vy = —iwikig] / odx. (440)

0

and NSNT stands for nonsecular nonlinear terms. They
cannot give rise to secular terms for the first three trun-
cations, such as exp(3iwz 7o), exp(3iw3 Tp), expli(wi +
20,)Tp]. expliew) + 2w3)Tol. expliw; + 2w3) Ty,
expliCwi+w 2)Tol, expliRwi+w3)Ty], expli(Rwy+
@3)To], expli(—w1 + 2w3) o], expli(—w2 + 2w3)Tp],
expli(—2w1 + w2)Tol, explilwr + w2 + w3)Tpl,
expli(—w1 + w2 +w3) Tp], and expli(w] + w2 —w3) Tpl-

According to Eq. (43), if the axial speed variation
frequency w approaches integer times of the first nat-
ural frequency of the linear generating system (36),
parametric resonance may Occur.

4 Parametric resonance in the case of  near w;

This case is the secondary parametric resonance in the
first mode. The secondary parametric resonance in a

@ Springer
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mode means the excitation frequency is close to the
natural frequency corresponding to the mode. A detun-
ing parameter o is introduced to quantify the deviation
of w from wy, and w is described by

w=w] +&e0 (45)

The solvability conditions of Eq. (43) demand the
orthogonal relationships [27]

<—771A1 — y1824A2e7 T — (key1 4 ak12) A2A4

— (M121 + ap122) A1 A2 Ay
— (131 + ap132) A1A3 A3 — (t1) + at12) A3AT

— (511 +aci) A3, 1) =0, (462)

<—772A2 —yix1A1eT — y1 834370

— (k21 + ak) A3Ay — (na11 + ap12) A1A2A,

— (K231 + app32) Ap A3 A3
— (21 + ) A1A3A2, ) = 0, (46b)
<—773A3 — Yix2Ae T

— (k31 + ak3p) A§A3 — (U311 + ap3i2) A1A3zA)
— (321 + ap3n) A2A3A2 — (V31 + avsn) A?

— (531 +a63) AJA1, 3] = 0. (460)

Application of the distributive law of the inner prod-
uct for complex functions to Egs. (46a—c) leads to

Al 4 118242797 4 (keyy + akn) AZA,

+ (121 + ope122) A1 A2 Ay

+ (131 + ap132) AlA3 Az + (111 + atp2) A3AT

+ (11 +@gin) A3A3 =0, (47a)
Ay 4+ y1x141°T 4 18343710

+ (21 + atk2) A3 Az + (1211 + aptar2) Aj Az Ay

+ (1231 + apn3) AzA3A3

+ (521 + agn) AjA3Ay =0, (47b)
A3 + Y1x0A26° T 4 (k31 + axzp) A3A3

+ (1311 + ap32) AjAsA,

+ (w321 + apsn) A2A3Ar + (U31 + aun) A

+(s31 + ag3) A3A; =0. (47c¢)

@ Springer

where
1 l.

< /ﬁhtﬁth// nhepdx
0 0
h=1, 2, 3;

L1 = 82, k11, K12, L1215 141225 1315 {1325 T11 T125 S5 S12
Ly = X1, 83, k21, K22, L2115 K212, 4231, 232, 621, §22;
€3 = X2, K31, K32, 3115 {3125 43215 [4322, V31, U32, G315 §32

(48)

The detailed expressions of these coefficients can be
found in Appendixes 1 and 2. The expressions show
that for h = 1,2, 3, kp1, nts This Ent, Up1 and — ¢p
are pure imaginary numbers with negative imaginary
parts, kn2, h2, Tha, En2, Upz and -¢j2 are positive real
numbers, while 8, and x;, are complex numbers.

4.1 The 1-term truncation

The 1-term truncated solution to Eq. (36) is expressed
by

vo (x, To, T1) = @1 (x) Ay (T1) €170 +ce (49)
The solvability condition reduces to

Ar 4 (k11 +ak2) ATA; =0 (50)
Express the solution to Eq. (50) in the polar form

Ar = ap (TP, (51)

where o1 and S, both real functions of 77, are, respec-
tively, the amplitudes and the phase angles of the
responses in the I-term truncation. Substitution of
equation (51) into Eq. (50) and separation of real and
imaginary parts in the resulting equation give

@ = —aklga%, (52a)
a1 B =}, (52b)
where the superscript I denotes the imaginary part of the
corresponding parameter. Equations (52a) and (52b)
possess a fixed point at the origin (trivial zero solution).

Thus, the only steady-state response is the straight equi-
librium configuration.

4.2 The 2-term truncation

The 2-term truncated solution to Eq. (36) is expressed
by

vo (x, To, Th) = @1 (x) Ay (T7) 170
+ @2 (x) Ag (T7) €270 4 ¢ (53)
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The solvability conditions are simplified to

A1+ 1182427 4 (k11 + akyn) ATA,

+ (1121 + ap122) A1 A2 Ay = 0, (54a)
Ar 4+ y1x141° T 4 (ka1 + akn) A3Ay
+ (u211 + ap212) A1A2AL = 0. (54b)

Express the solution to Egs. (54a) and (54b) in the polar
form

Ar=a (TP Ay =y (1) 2TV, (55)

where o and B, both real functions of 77, are, respec-
tively, the amplitudes and the phase angles of the
responses in the second mode. Substitution of Eq. (55)
into Eqgs. (54a) and (54b) and separation of real and
imaginary parts in the resulting equation yield

) = —ao) (Klzot% + Mlzza%)
—Y102 85 cos O + 8£ sin 91) s (56a)

a1 = —ay (k] o7 +M11210‘§)
+yia (55 sin6; — 8} cos 91), (56b)

ay = —aay (lezalz + Kzzfx%)
i (x{‘ cos 8y — x!sin 9]), (56¢)

wpy = —m (:U«Iznaf + K%l“%)
—Y101 (XF sin 01 + x} cos@l) , (56d)

where the superscripts R and I denote real part and
imaginary part of the corresponding parameter, respec-

If there is a nonzero solution, the amplitudes o and o)
and the new phase angle 6 should be constant for the
steady-state response,

0= —aa (Klza% + mzza§)

e (5§ cos @y + 8b sin 91) , (58a)
0=—am (leza% + Kzza%)

—Y101 (XF cosb) — x{ sin@l) , (58b)

0=0+oaf (Mlzn _K}l) + o3 ("%1 —Mlm)
V1 [( 2_R 2 R) .
+— || + a5685 ) sinf
a1 1X1 202 1

+ (b xl - ods}) cose | (58¢)

When « = 0, for nonzero «; and oy, Eqs. (58a) and
(58Db) yield

R I
=5 (59
) )
It is noticed that §, and x; are dependent of yy and 7,
but independent of «. Therefore, Eq. (59) still hold for
a # 0. Thus, there is a constant H; (possibly dependent

of Yy and 7) such that
XK
5 8
Actually, Egs. (134)—(137) yield H; = —1/2. Substi-
tution of Eq. (60) into (58) leads to

= H, (60)

aj 2k

a \/H1/L122 — po12 + VAH kK2 + (Hipz — p212)?

\/122§thig (14 cos3a;)® — 18 (9a} — n2)4 cos? ay sin* a; — 12847 (1 + cos 3ay)

6 (9a% — 712)2 sin? a4

) (61)

tively, and 6 = o T1 + B1 — B>. Equations (56a)—(56d)
possess a fixed point at the origin. From Eqs. (56b) and
(56d), one can obtain

. 2 (1 I 2 (1 I
0y =0 +aj (Mzn - "11) +o; (KZI - Mm)

Y1 2_R 2¢RY :
+—— [(a + ao5d )sm@
a1 1X1 202 1

+ (a%x% - ot%éi) cos 91] (57)

where Egs. (107), (109), (117), and (119) are used.
Under the square root, the denominator is positive as a
square, and the numerator is negative because

\/12820§ (14cos3a;)?>—18 (9a? —712)4 cos? a sint a

< \/1282a§ (14 cos3ar)? = 1284} (1 4 cos 3ay) .

Therefore, the right hand of equation (105) is not a real
number. Thus, the nontrivial solution does not exist.
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4.3 The 3-term truncation

Express the solution to Egs. (47a)—(47c) in the polar
form

Ar = a) (Ty) PV,
Az = a3 (Ty) TV,

Ay = ay (Ty) T,
(62)

where o3 and S3, both real functions of 77, are, respec-
tively, the amplitudes and the phase angles of the
responses in the third mode. Substitution of Egs. (62)
into (47) and separation of real and imaginary parts in
the resulting equation give

a) = —ao) (Klzot% + wina3 + /L13206§)
R I
-y (82 cos 61 + 4, sin 91)
—a%ag (5‘{1 sin 03 + @ ¢ cos 93)
—Ol]20[3 (7:111 sin 64 + aT1p cos 94) , (63a)
a1pr = —o (Kha% + uip03 + Mlmag)
+y1a0 (85 sin0; — 8% cos 91)
—a3as (gh cos 63 — agya sin 03)

—a%ozg (71]1 cos 64 — aty2 Sin 94) , (63b)
s 2 2 2
o) = —oan (Mznal + k205 + M232a3)

—Y10] (XIR cosf) — XII sin@l)

—y103 (8%2 cos By + 8% sin 92)

+ojopa3 (551 sin 03 — a&y) cos 93) , (63c)
wpy = —a (Mlzuaf + 15,05 + M1231“?2,)

—Y1a] (X]R sin 01 + X}cosel)
R . I
+yi03 (83 sin 6, — 83 cos 62)
—a a3 (Eil cos 83 + &y sin 093) ,  (63d)
s 2 2 2
o3 = —oa3 (Malzal + U3ne; + K320é3>
R I
—Y100 (Xz cosfh — x, sin 92)
—aloz% (g%z1 sin 03 + ag§2 cos 93)

+a? (U§1 sin 64 — av3n oS 94) , (63e)

@ Springer

; 1 2 1 2, 1.2
azfs = —a3 (Msnal + U310 +"310‘3)
R .. 1
— Y102 (Xz sin 6, + x, cos 92)

—ajas (5'51 cos 03 — ach, sin 93)

— 0(13 (U§1 cos B4 + avzp sin 64) , (63f)

where 0 = o114+ 81— 2,00 =0T+ Br—B3,03 =
B1—2B2+ B3 = 61 —6,,and 64 = 381 — B3. Equations
(63a—f) possess a fixed point at the origin. From Eqgs.
(63b), (63d), and (63f), one can obtain

b1 =0 +af (N«gn - Kh) + 3 (Kél - :U«Im)
2( 1 I
+a;3 (H231 - M131)
4! [( 2.1 2 1)
+ — || — w585 ) cos b
o s 1X1 202 1
+ (oclleR + a§8§) sin 91]
o
+ nes (8% cosbth — 85 sin 6?2)
o) N
o3
+ — [(a%é%l — a%g}l) cos 03
(23]
2 2 .
+ o (011522 + azglz) sin 93]
— o3 (rlll cos 04 — atyp sin 94) , (64a)
=0 +af (Mlsll - Mlzll)
2( .1 I 2(.1 I
ta; (H321 - ’<21) +a3 (K31 - H231)
o
e (Xfcosel +xi sinel)
(2%)
Y1 2.1 21
+—[(a —a(S)cos@
s 2X2 393 2
+ (agxf + a§8§) sin 92]
ol
+ — [(ot%g%l — a%fg’zl]) cos O3
o3
2 2 .
-« (062§32 + 063522) sin 93]
o3
Tl (ugl c0s 04 + a3y sin 94) : (64b)
o3
Oy = af (/“Lgll - 3"}1) + 3 (MI321 - 31‘«1121)

2 (1 I
+a;3 ("31 - 3#131)

3
+ ne (8% cos @) — 8% sin 91)
o]
+ ne (Xé cos 6y + xp sin 92)
o3
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o 2.1 2.1 <—773A% — AT — (k31 + akzy) A3A3
) 302 - — (U311 +ap3in) AtAzA;
— (al 5327 %% glz) o 3] — (U301 + ap302) A2A3Ar — (U31 + @up) A}
d! 21 2.1 -
T [ (edud, = 303e],) cose — (31 +as32) 341, 03) = 0. (66¢)
+ (o{%un + 3(1%712) sin 494] . (64c¢) Application of the distributive law of the inner product

If there is a nonzero solution, the amplitudes «; and
as and the new phase angles 0y, 6>, and 64 should
be constant for the steady-state response. Numerical
calculations for different sets of parameters do not
locate the nonzero solution. Thus, numerical results
strongly indicate the nonexistence of nontrivial steady-
state response.

In the secondary parametric resonance of the first
mode, 1-term, 2-term, and 3-term truncations all reveal
the existence of the zero steady-state response and the
nonexistence of nontrivial steady-state response.

5 Parametric resonance in the case of  near 2w

This case can be regarded as the principal parametric
resonance in the first mode and the secondary para-
metric resonance in the second mode, since there is
internal resonance @, = 2w;. The principal paramet-
ric resonance in a mode means the excitation frequency
is close to the 2 times of the natural frequency corre-
sponding to the mode. A detuning parameter o is intro-
duced to quantify the deviation of w from 2w, and w
is described by

w=2w| + &0 (65)

The solvability conditions demand the orthogonal rela-
tionships [27]

<—711A1 — y183A3e7 T — 1§ ATl
— (k11 +ak12) ATAY — (121 + ap122) A Az A
— (w131 +api32) A1A3As — (T + atip) A3A
— (611 + ag12) A3 A3, 901> =0, (66a)
<—712A2 — (k21 + ak2) A%AZ

— (M211 +ap212) A1A2A
— (231 + apo32) AzA3A3
— (521 + @€x) A1A3As, ¢2) =0, (66b)

for complex functions to Eqgs. (66a—c) leads to

Ay + 118343777 4 151 AT
+ (k11 + ak12) ATAL + (w121 + age12) AjArAs
+ (131 + ap132) A1A3 Az + (111 + atp2) A3AT
+(s11 + ag12) A3A3 =0, (67a)
Az + (21 + ak22) A3As + (na11 + apar2) A1 Az A,
+ (1231 + o) A2A3A3
+ (521 + abn) A1A3 A =0, (67b)
Ay +yix1 A€ 4 (k31 + axa) A3 A3
+ (1311 + op312) A A3A,
+ (U321 + ap3n) A2A3Ar
+ (u31 + aun) A7 + (531 + @) A3A; =0,

(67¢)
where
1‘ 1
< /thﬁth//nh@dx
0 0
h=1,273;

L1 = 83,81, K11, K125 1215 (41225 L1315 K132, TLS TI25 115 S123
Ly = K21, k22, 211, L2125 K231, 4232, €21, 6225
€3 = X1, K31, K32, L3115 43125 143215 143225 U315 U32, G315 §32

(68)

The detailed expressions of these coefficients can be
found in Appendixes 1 and 3. The expressions show
that, for h = 1,2, 3, k51, Un1» Thi» Ent, vn1 and —gpy
are pure imaginary numbers with negative imaginary
parts, kp2, (h2, Tha, En2, Up and — gy are positive real
numbers, while §;, and y; are complex numbers.

5.1 The 1-term truncation

The solvability condition reduces to
AL+ 118141 + (k11 + k) AJAL =0 (69)

Express the solution to Eq. (69) in the polar form (51).
Substitution of Eq. (51) into Eq. (69) and separation of
real and imaginary parts in the resulting equation yield
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(5[1 = —OquOl]3 — Y11 (5_5 COS 92 - 5% sin 92) s
(70a)
s _ 1 .3 51 SR
a1f1 = —k 07 — i (81 costh + & sm92) ,
(70b)

where 6, = oT) — 2f;. Equations (70a) and (70b)
possess a fixed point at the origin. From equation (70b),
one obtains

by = o + 203kl — 2 (5{ cos 0 + 8 sin 92) (71)

If there is a nonzero steady-state response, the ampli-
tude o and the new phase angle 6> should be constant,

0= —ouqzoz% - (SF cos 6 — S{ sin 92) , (72a)

0 =0 + 2}l —2p (3{ cos 6y + 87 sin 92) .
(72b)

Eliminating 6, from Egs. (72a) and (72b), one obtains
the amplitude of the steady-state response

(@1)1,2

ol £ [ + @] 2 [ o

2 [(K{l)z + (Otklz)z]

(73a)

Inserting equations (106), (107), (144), and (145) into
Eq. (73) can express explicitly the amplitude (1)1 2 in
k1, k, o, 0, ¥1, 41, o1, and o . Equation (73) leads to
the existence conditions of the steady-state responses
as

2
(kf))” + (@x12)?
ak
V1

87[205(011112 sin? ay (w1 + aryo)

o <21 &

2
2 . .
x\/[Zalz (a?+72)" +74 sin? al} +4n8a2w? sin® a;

x\/4 sin4a1 (w1 —2a1/(y0)2+[(w1 —2aikyp) sin 2a; —2a1w1]2,
(74a)

and
o > ﬁ:2y1 !gl}

in2V1\/4sin4a| (w1 —2a1K70)* +[ (w1 —2a1k ) sin 2a; —2a1w1]2

4a} (w1 +aiyo)
(74b)

where Egs. (106), (107), (144), and (145) are used.
The Jacobian matrix of the right hand functions of Eqs.
(70a) and (71) calculated at the steady-state response
is

@ Springer

x 10

o

0
-0.2 -01 0 0.1 0.2

Fig.2 The steady-state responses in parametric resonance (o ~
2w1) based on the 1-term truncation

J— (—2011612 (Oll)%,z —(a1)12[0.50 +«f, (al)%,z])
4l (@1)1n —2ak12 (al)%’z

(75)

The characteristic equation of the Jacobian matrix is

2
22 + dakn (oe1)%’2)n +2 [Kflo +2 |:(K111)

+ (ouqz)z} @i, ] (@7, =0 (76)

According to the Routh—-Hurwitz criterion, the first
nontrivial solution (positive sign chosen in Eq. (73)) is
always stable, and the second nontrivial solution (neg-
ative sign chosen in Eq. (73)) is always unstable.

To demonstrate the analytical results, consider a
string with p = 7680kg/m>, E = 0.3 x 10''Pa, a =
3.0358 x 10’Pa-s, A = 0.04 x 0.02m?, L = Im,
and Py = 60kN. The string axially moves in constant
mean speed yp = 19.7642m/s plus simple harmonic
variation with the amplitude y; = 0.9882m/s. The cor-
responding dimensionless values are « = 0.1, ygp =
0.2,y1 = 0.01, and k; = 20. Choose n = 0.5.
The set of the parameters will be used in the cal-
culation unless other values are assigned. The first
three natural frequencies of the linear generating sys-
tem are w; = 3.048427442, wy = 6.096854884, and
w3 = 9.145282326.

Figure 2 depicts the relationship between the ampli-
tude and the detuning parameter for the steady-state
responses based on the 1-term truncation. The solid
line denotes stable response and the dot line denotes
unstable response. If the detuning parameter becomes
larger and approaches to zero enough from the nega-
tive, the zero solution loses its stability and bifurcates
into a nonzero stable response. If the detuning para-
meter becomes larger and leaves the zero far enough
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Fig. 3 The effects of x10° x 107
parameters on the responses (@) 6 (b) 6
(w ~ 2w ) based on the =<
1-term truncation: a the 4 4
viscosity coefficients (solid
o = 0.1; dashed @ = 0.2), S ]
b the mean axial speeds 2 2
(solid yo = 0.2; dashed
1o = 0.1), c the axial speed 0 0 [
fluctuation amplitudes
(solid y; = 0.01; dashed -0.2  -01 0 0.2 -0.2 -01 0 0.1 0.2
y1 = 0.005), d the axial o °
support rigidity parameter 3 3
(dot n = 0.0; solid 1 = 0.5) (c) gx10 (d) 5x19

4 4

S S
2 2
0 0
-0.2  -01 0 0.2 -0.2 -01 0 0.1 0.2
o o

to the positive, the zero solution becomes stable again Az + (k21 + ak22) A%Az
and bifurcates an unstable nonzero response. The inter- + (1211 + apa12) AjAr Ay = 0. (77b)

val between two bifurcations will be referred as the
instability range. The amplitudes of both the stable and
unstable responses increase with the increasing detun-
ing parameter.

The effects of relevant parameters on the steady-
state response can be numerically revealed. The effects
of the viscosity coefficients are shown in Fig. 3a. The
smaller viscosity coefficient leads to the larger stable
amplitude and the larger instability range. The effects of
the mean axial speeds are demonstrated in Fig. 3b. The
smaller mean axial speed leads to the larger amplitude
and the larger instability range. The effects of the axial
speed fluctuation amplitudes are exhibited in Fig. 3c.
The larger axial speed fluctuation amplitude leads to the
larger amplitude in the responses but the larger instabil-
ity range. The effects of the support rigidity parameters
are displayed in Fig. 3d. The smaller support rigidity
parameter leads to the slightly smaller amplitude in the
responses and the slightly larger instability range.

5.2 The 2-term truncation

The solvability conditions are simplified to
AL+ 1181417 4 (k1) + axin) AZA,
+ (121 +api2) A1A2A; =0, (T7a)

Express the solution to Egs. (77a) and (77b) in the polar
form (55). Substitution of Eq. (55) into Egs. (77a),
(77b) and separation of real and imaginary parts in the
resulting equation give

a) = —ao] (K12a12 + ,ulzzag)
—y101 (Slf cos ) — 5{ sin 92) , (78a)
ailpi = —ay (Kha% + Mllzla%)
e (S{ cos 6 + 5% sin 92) , (78b)
@ = —aap (,uglzotf + Kzza%) ) (78¢)
0(2,32 = —a (,U,Iz]]oclz + I{%]Ol%) , (78d)

where 6, = o T1 —281. Equations (78a)—(78d) possess
a fixed point at the origin. If there is a nonzero steady-
state response in the second mode, the amplitude «»
and the phase angle f, should be constant. Equations
(78c,d) yield

pa120} + knad =0, (79a)
phyat +ida3 = 0. (79b)
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However, Egs. (116)—(119) imply
ko, Ky

: (80)
M212 U5y

So Egs. (79a, b) lead to a contradiction if c20. There-
fore, the amplitudes o> must be equal to zero. The sec-
ond mode has actually no effect on the first mode in the
2-term truncation. Thus, the 2-term truncation yields
the same result as that of the 1-term truncation.

5.3 The 3-term truncation

Express the solution to Egs. (67a—c) in the polar form
(62). Substitution of Eq. (62) into them and separation
of real and imaginary parts in the resulting equation
give

Q] = —ao (Klzol% + wina3 + M13201§>
R I
—Y103 (83 cos 6 + &3 sin 91)
—y1a1 ( cosbth — S{ sin 02)
a2a3 (5‘11 sin 03 + @ ¢ cos 93)
—Ol]OC3 (7:11 sin 04 + a Ty COS 94) (81a)
alfi = —a (K 1o+ 1105 + Mlmag)
— Y103 cos 01 — 8§ sin 01)

—y101 ( cosf + 55 sin 92)

a2a3 §11 cos 3 — acp sin 03)

—a%ozg (71]1 cos 64 — a2 Sin 94) , (81b)
c_ 2 2 2
o) = —aa (,uzlzocl + k0 + M2320t3)
toranas (sgl sin 63 — akzy COS 93) . (@8l
; 1 2,12, 1 2
afy = —a (Mzn“l Ty + M231“3)

— a1y (&) cos 03 + ok sinds ) . (81d)
a3 = —ao3 (MBIZQ% + w3003 + K320é§>
—Y1a1 (XF cosf) — XII sin 91)
—aloz% (g%z1 sin 03 + ag§2 cos 93)

+a? (U§1 sin 64 — av3n oS 94) , (81e)
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wfy = —a3 (Mgn“% + 105 + "%10‘%)
— Y10 (XF sin 0; + X}cos 91)
— otla% (gﬁ cos 03 — otgéz sin 93)
—ad (u§] c0s 04 + a3 sin 94) , (81f)

where 01 = oT1 4+ B1 — B3,02 = oT1 — 2B1,03 =
B1—2pB2+ B3,and 04 = 381 — B3 = 61 — 6. Equations
(81a—f) possess a fixed point at the origin. From Eqgs.
(81b), (81d), and (81f), one gets

; 2( 1 I
O =0+ (M311 Kll) +a3 (M321 Nm)

2(1 I
+aj3 (K31 - Mm)

1
2l
o103

+ (a%xf + a%é?) sin 91]

-V (5} cos 6y + SF sin 92)

a3 83) cos 6

2
o
2 2 1 21
+—[(a G3] — 036 )00503
aas 1631 3511
2 2 ino

— 0|0 632 — 03412 ) SInd3

o]
+—[(0‘%U§1

a3

+ o (ofusz + a3z sinéy ] (82a)

- a%rlll) COS 64

0r=0+2 (O‘%Kh + o3y +0‘§:U«1131)
2yia3
+ Y1

(8% cos ) — 8K sin 91)
o]

+ 2y (5} cos b, + SF sin 492)

205%013

(5%1 cos B3 — acyp sin 93)
+2a103 (rlll cos 04 — atyp sin 04) , (82b)
03 = —af (Kh — 245y + Mlsn)
+a3 (2"51 — 1oy — MI321)
2

—03 (Kal 2phy; + M131>

—L[( 1) )0059
o i x| + 0383 1

+ ((x%xF — a%ég) sin 91]

- (5{ cos 0 + & sin 92)
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Fig. 4 The steady-state x 10° x 10
responses in parametric (a) 6 (b) 10
resonance (w ~ 2w;) based
on the 3-term truncation: a 4
the first mode and b the -
third mode S} s 5
2
0 0
-0.2 -0.1 0 0.2 -0.2 -0.1 0 0.1 0.2
o o
1 . 2 2
———{[a3 (odsh +aicl)) &5 = —aos (pan2af + ka2

o103

—20[% a%éél] cos 63

-« [a% (oz12§32 + Ol§§12) + 2041204%522] sin 03}

A [(a%v%l + a%rh) COS 64
o3
+ o (0[%1)32 — Ol%‘tlz) sin 94] . (82¢)

If one assumes that there is a nonzero steady-state
response, then the amplitudes o1, oz, and o3 and the
new phase angles 61, 6,, and 63 should be constant.
Numerical calculations for different sets of parameters
strongly indicate that o is equal to zero. To reduce the
amount of computation, oo will be omitted in the fol-
lowing investigation. Even if «, = 0 is only ad hoc for
numerical simplification, at least the calculation results
will not be affected. Then, the solvability conditions
reduce

Al + )/1(331‘\3e_i‘7Tl + ylglfilei”Tl
+ (k11 + ak2) ATAL + (L3t + i) A1AsAs
+ (711 + at2) A3AT =0, (83a)
Az +yi01A1e°7 + (k31 + akz) A3A3
+ (U311 + ap312) A1AzA; + (U3 + auzp) A? =0.
(83b)

Separation of real and imaginary parts in the resulting
equation gives

a1 = —ao (KIZOI% + M1320!§)
— Y103 (8? cosO; + 5§ sin 91)
— 1o (5? cosbh — 8_{ sin 92)

— 01%03 (rh sin 64 + aT17 cos 04) , (84a)

—yia1 (XFCOSQ] — X}sinel)

+ ozf (ug1 sin 64 — @ U3 COS 04) , (84b)
b =0+af (MI311 - "%1)

+a3 (Kél - Mlm)

+ %(113 [(a%x} — a%S%) cos 6

+ (ozf)(F + a%é?) sin 91]

- (5} cos Oy + SF sin 92)

+ Z—; [(oz%v%l - oz%tlll) cOS 64

+ o (ofus + a3z sinéy (84c)
br=0+2 (a%’(}l +0‘§H1131)

2y«
i yia3
o]

+ 2y (S{ cos 6y + SF sin 92)

(8§ cos 6] — 85 sin 91)

+ 2003 (r{l cos fs — a7y sin 94) . (84d)

The amplitudes of the steady-state oscillating response
in the 3-term truncation can be solved from Eqs. (84a)—
(84d). The stability of the nontrivial solutions can be
determined by eigenvalues of the Jacobian matrix of
Egs. (84a)—(84d) calculated at the nontrivial solutions.

Figure 4 depicts the relationship between the ampli-
tude and the detuning parameter for the responses based
on the 3-term truncation for the parameters used in 5.2,
namely ¢ = 0.1, 9 = 0.2, 1 = 0.01, k; = 20, and
n = 0.5.InFig. 4, the solid line denotes stable solutions
and the dot line denotes unstable solutions. The behav-
iors of the first mode are similar to the outcomes based
on the 1-term truncation shown in Fig. 2. However, the
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Fig. 5 The effects of x 10° x 107
parameters on the responses (a) 6 (b)10
(w =~ 2w ) based on the
3-term truncation: a the 4
viscosity coefficients (solid =7
« =0.1, dashed « = 0.2): 5 77 7 S S J
the first mode, b the 2 v\
viscosity coefficients (solid N
o = 0.1, dashed a = 0.2): 0 0
the third mode, ¢ the mean
axial speeds (solid -0.2 -01 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2
v = 0.2; dashed yy = 0.1): o o
the first mode, d the mean
axial speeds (solid x 10° x 10"
o = 0.2; dashed yy = 0.1): (c) 6 (d) 10
the third mode, e the axial
speed fluctuation amplitudes 4 _
(solid y1 = 0.01; dashed 5
y1 = 0.005): the first mode, S S
f the axial speed fluctuation 2
amplitudes (solid
y1 = 0.01; dashed 0 I 0
71 = 0.005): the third 02 -01 0 01 02 02 01 0 01 02
mode, g the axial support
L o o
rigidity parameter (dot
n = 0.0; solid: n = 0.5): the 3 4
first mode, h the axial 6 x 10 (f) 10 x10
support rigidity parameter (e)
(dot n = 0.0; solid
n = 0.5): the third mode 4
S S 0
2
0 0
-0.2 -01 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2
O o
x10° x 107
()6 (h)10
4
« 5
S S
0 0
-0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2
o o

3-term truncation gives additionally the response of the
third mode, but the response of the third mode is much
smaller than that of the first mode. The effects of the vis-
cosity, the mean axial speed, the axial speed fluctuation
amplitude, and the axial support rigidity are illustrated
in Fig. 5. The changing trends of the responses in the
first mode are the same as those obtained via the 1-term
truncation.
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5.4 Comparisons of the results in the 1-term
and the 3-term truncations

The previous two subsections demonstrate that the
amplitudes of steady-state periodic responses in the
first mode predicted based on the I-term truncation
change in the qualitatively same way as those on the
3-term truncation do, in despite the existence of the
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Fig. 6 The comparison of x 10° x 10°
the 1-term and the 3-term @) (b)
truncations for different 10 10
parameters: a o = 0.1, yp =
0.2, y1 = 0.01, and
n=05ba=02y= N X 5
0.2, 1 = 0.01, and
n=05ca=0.1,y=
0.1, y; = 0.01, and 0 0
n=05daoa=0.1,y=
0.2, y1 = 0.005, and -0.2 -0.1 -0.2 -01 0 0.1 0.2
n=05ea=0.1y= o
0.2, y1 = 0.01, and n = 0.0 . g
" anen (¢) x10° @ x10°
10 10
X 5 X 5
0 0
-0.2 -0.1 -0.2 -0.1 0 0.1 0.2
o
(e) x10°
10
X5
0
-0.2 -01 0 0.1 0.2

steady-state response in the third mode yielded via 3-
term truncation. In the following, the results based on
the 1-term truncation and the 3-term truncation will be
quantitatively contrasted.

To examine the quantitative differences with the
account of the steady-state in the third mode, the vibra-
tion of the string center is calculated based on the 1-
term truncation and the 3-term truncation, respectively.
In the 1-term truncation, the amplitudes of the string
center steady-state responses are Vo = 2a1|@1(0.5)],
where o is defined by Eq. (73) and modal function
¢1(x) is defined by Eq. (41). In the 3-term truncation,
substitution of Egs. (62) into (42) yields

Yo = &1 [(pleiwwwﬁo) 4 ¢le—i(ﬂl+wlTO):|

+os [(p3ei(/33+w3To) + ¢3e*i(f53+w3To):| (85)

As cos(wt) = (¥ + e~ ") /2 and sin(wt) = (e*' —
e~ ") /2i, Eq. (85) can be expressed by

vo = Vjcoséd; + V3 cosds, (86)
where
R
o @)
Vi =2a1 g1, 81 = (a)1+—) Tp+arccos —— —6s,
2 o1
o
V3 =23 |e3l, 63=3 (wl + 5) To
R
0
+ arccos % % 0. 87)
lpsl 2

Then, the amplitude of the stable steady-state response
Vo of the 3-term truncation is the maximum of vy
in equation (86). Figure 6 depicts the steady-state
responses of the string center changing with the detun-
ing parameter based on the 1-term truncation (dots)
and the 3-term truncation (solid lines), respectively.
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The comparisons demonstrate that they have a good
agreement for the different 5 sets of the parameters.

6 Parametric resonance in the case of ® near 3w

A detuning parameter o is introduced to quantify the
deviation of w from 3w1, and w is described by

w =3w + €0 (88)
The solvability conditions demand the orthogonal rela-
tionships [27]
<—711A1 — Y1822 T — (ky1 + axip) A2A,

— (m121 + 1) AjAr Ay

— (w131 + op13) A1AsAs — (111 + atip) A3A7

~ (s11 +as12) A3As, 01} =0, (892)
< —mAr — 1181417 — (ka1 + aknn) A3As

— (ua11 + apa12) AjAsA,

— (u231 + o) A2 A3 As
— (61 + o) A1 A3 Az, 2) =0, (89b)

<—TI3A3 — (k31 + ake3n) A3A5

— (U311 +ap312) Al AzA;
— (w321 + ap3n) A2A3As — (U31 + aus) A3

— (531 +asz) A3A1 @3) = 0. (89)

Application of the distributive law of the inner product
for complex functions to Eqgs. (89a—c) leads to
Al + 1182426711 1 (i1 + akin) ATA,
+ (w121 + api2) AjA2Az
+ (131 + op13) A1A3As + (11 + atin) A3A7
+ (511 +agi2) A3A; =0, (90a)
Ay 4+ 1181417 4 (ka1 + ak) ASAy
+ (U211 + op212) A1 A2A
+ (u231 +apa3) A2 A3 Az + (51 +akn) A1 A3 A,
=0, (90b)
Az + (k31 + ak32) A3A3 + (U311 + apsin) Al A3A)
+ (w321 + ap3n) ArA3A; + (U31 + aun) A3
+(s31 + ag3) A3A; =0, (90c)
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where
1 1
L <—>/€h<ﬁhdx// nnendx
0 0
h=1,2,3;

L1 = 82, K11, K12, 41215 11225 K131, 4132, T115 T12, S115 S123
€y = 81, k21, K22, 211, 2125 H231, 4232, €215 6223
€3 = K31, K32, 1311, 43125 13215 4322, U315 U32, G315 632

oD

The detailed expressions of these coefficients can be
found in Appendixes 1 and 4.

6.1 The 1-term truncation

The solvability condition is simplified to
A1+ (et +ai2) AJAT =0 (92)

It can be found that Egs. (92) and (50) are the identical.
There is only a trivial solution in the 1-term truncation.
The 1-term truncation locates the parametric resonance
in the case of w near w3, which is actually same as the
case of w near w;. On the other hand, the parametric
resonance in the case of w near 3w; = w| + wy can
be regarded as the summation parametric resonance of
the first two modes. Thus, as least the 2-term truncation
should be used.

6.2 The 2-term truncation

The solvability conditions are simplified to

Al + )’1521&26iarl + (k11 + ak12) A%Al

+ (1121 + ap122) A1 Ar Ay =0, (93a)
Ay + 7181 A1 4 (ka1 + akp) A5 A,
+ (211 + ap212) AjA2A; = 0. (93b)

Express the solution to Eqgs. (93a) and (93b) in the polar
form, substitution of Eq. (55) into them and separation
of real and imaginary parts in the resulting equation
give

@1 = —aay (maf - Mlzzag)
—Y102 (55 cos ) — Sé sin 01) , (94a)

alpi = —a (Kha% + MImO‘%)
—Y10 (55 cosO; + 55 sin 91) , (94b)



Nonlinear transverse vibration of axially accelerating strings 1461
—H2fi0 + (1 +2H?) \/[4H2f12 + (14202 2] v} 5[ = H2 ffo?
(ap = 3 ; 99)
4HF fE+ (1+2H?) f7
6y = —aan (Mznaf + ;Qza%) where H denotes the constant in the right hand of equa-
3 ~ tion (98) and
e (5}2 cosfy — &' sin 91) , (94c) o o
. oy fi=H <K21+M121)+’<11+M21lv
fr = —a (Mzual + "210‘2)
fo=a (k2 + H2 i) /H. (100)
- 51 cos 61 + SR sin 6 ) , 94d
ne ( 160861+ 0y sin 01 O4d) The existence conditions of periodic responses are

where 61 = o T1 — B1 — B2. From Egs. (94b) and (94d),
one obtains
01 =0 +af (K{l + Mlzn) + a3 (Kél + M%Zl)
o [( 2§R 2SR) sin 6

+a1a2 ayop +az0y 1

+ (a%S{ + a%c%) cos 01] 95)
Equations (94a)—(94d) possess a zero solution. If it is
assumed that there is a nonzero solution, the amplitudes
o1 and oy and the phase angle 61 should be constant for

the steady-state solution. Thus, Egs. (94a), (94c), and
(95) yield

—aa (ma% + ,ulgzoz%) =yl (552 cos§) — &5 sin 01),
(96a)

—o) (lezd% + nga%) = yjo] (SF cosf) — S{ sin 01) ,
(96b)

)|

23R &%_R : 231 i%_l
+)/] Ol151 + 252 Sll’l@]—i— (X]81+ 282 COSQ]
o] &

a2 a2 I I
—o 4+ — | (ky; + +
o o |:( 11 Mzn)

2
%

—0. (96¢)
Equations (148)—(151) lead to

RO o
X a2

Substitution of Egs. (97) into (96a) and (96b) yields

derived from Eq. (99) as

\/4H2f12+ (1+2H2)" f2
o<
- 2Hf>
1 +2H? 5]
—2H Y1 1(02].

The Jacobian matrix of the right hand functions of Eqs.
(94a) and (95) calculated at the nontrivial solutions is

i |82, (101a)

o>+ (101b)

2H2 (o)1 2| o+ fi(en],
—2Hf> (@i, — le }

2fiaiy (s +2H) falani,

J=

(102)
The characteristic equation of the Jacobian matrix is

2H? —1) f (Otl)fz)h

)\‘2
+ 2H
+4H%ﬂanﬁlhw+fManiﬂ
1+2H?
_ (1 + H2) Fant, =0 (103)

The Routh—Hurwitz criterion guarantees that the first
nontrivial solution is always unstable and the second
nontrivial solution is always stable.

Figure 7 depicts the relationship between the ampli-
tude and the detuning parameter for the responses based
on the 2-term truncation for the parameters used in 5.2,

namely ¢ = 0.1,y = 0.2,y1 = 0.0,k = 20,

@ \/1282a18 (1+cosar)®+2(a? — 9712)4 cos?ay sin* a; — 12847 (1 + cosay)

aj 2 (a? - 9712)2 sin? 2a;

; (98)

where Eqgs. (107), (109), (117), and (119) are inserted.
Substitution of Egs. (98) into (96a) and (96c¢) yields

and n = 0.5. In Fig. 7, the solid lines denote the
stable response and the dot lines denote the unstable
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Fig. 7 The steady-state

. . 3 "
responses in parametric (@4 x 10 (®) 2o x 10
resonance (w ~ 3w;): a the
first mode and b the second 3 15
mode
S 2 g 10
1 5
0 0
-0.2 0.4 -0.2 0.4
response. The responses in the first two modes «; and . ( 2, 24 2)
o, have stable branches and unstable branches from the o = —oo | 2120 + k2200 + 123203

points at 0 = —0.0464 and o = 0.0464, respectively.
The amplitudes of both the stable and unstable nonzero
responses increase with the increasing detuning para-
meters. The amplitude of the response in the first mode
is larger than that in the second mode.

The effects of the viscosity, the mean axial speed,
the axial speed fluctuation amplitude, and the axial sup-
port rigidity are illustrated in Fig. 8. In the summation
parametric resonance, the response amplitude and the
instability range increase with the axial speed fluctua-
tion amplitude, but they are not sensitive to the mean
axial speed, the axial speed fluctuation amplitude, and
the axial support rigidity.

6.3 The 3-term truncation

Express the solution to Egs. (90a—c) in the polar form.
Substitution of Eq. (62) into them and separation of real
and imaginary parts in the resulting equation give

a1 = —aaq (Klzot]z + 1ol + /L13206%)
—y1a2 (55 cos 0 — &) sin 91)
— a%oq (5{1 sin 0 + a ¢y cos 6‘2)

— Ol120(3 (rlll sin 03 + atq» cos 93) s (104a)

3 I 2 1 2 1 2
a1p = —on (Kllal + 112192 +M1310‘3)
31 SR
— Y102 (82 cos 0y + & sin 91)
— 01%0[3 (5‘{1 cosbh — aci sin 92)

— a%a3 (Tlll cos 03 — atya sin 93) ,  (104b)
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—y1g (5? cos ) — 81 sin 91)
+ ajopas (551 sin 0y — a&yy cos 92) ,  (104¢)
wpy = —w (Mlznalz + Ky 05 + Mlzal‘x%)

—Y10 (3{ cos Oy + Slf sin 91)

— e (g;l c0s 0 + aky sin 92) . (104d)

. 2 2 2
o3 = —oo3 (M3120t1 + U3200; + K32063)

— a3 (5‘51 sin 6, + a3, cos 02)

+af (v} sin s — vy cos3) (104¢)
a3fs = —o3 (ugna% + 05 + K%l“%)
- Oflot% (gﬁ cosfp — ozg312 sin 92)

—af (Uél cos 03 + av3; sin 93) ; (104f)

where 0; = oTy — B1 — B2, 00 = B1 — 282 + B3,
and 03 = 381 — B3. Equations (104a—f) possess a zero
solution. It can be derived from Egs. (104b), (104d),
and (104f)

ajonfd) = ajon [U +af (K{l + Mlzn)
+a3 (Kél + Mlm) + o3 (Mlm + Mém)]
+n [(ozfgi + a%gé) cos 6
+ (otlzﬂ{ + a%gg) sin 91]

+ a3 [(oz%%‘%l + a%g}l) cos 6
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Fig. 8 The effects of x 10° x 107
parameters on the (a) 4 (b) 20
steady-state responses in
parametric resonance 3 15
(w ~ 3wi): a the viscosity -7 oy
coefficients (solid & = 0.1, 5 2 / o 10 /
dashed o = 0.2): the first 1 5
mode, b the viscosity
coefficients (solid « = 0.1, 0 0
dashed o = 0.2): the -0.2 02 04  -02 02 04
second mode, ¢ the mean -
axial speeds (solid
o = 0.2; dashed yy = 0.1): 3 4
the first mode, d the mean (c) 4 x 10 (d) 20 x 10
axial speeds (solid
yo = 0.2; dashed yy = 0.1): 3 15
the second mode, e the axial
speed fluctuation amplitudes S 2 ~ 10
(solid y; = 0.01; dashed
y1 = 0.005): the first mode, 1 5
f the axial speed fluctuation
amplitudes (solid 0 0
71 = 0.01; dashed -0.2 0.4 -0.2 0.2 0.4
y1 = 0.005): the second o
mode, g the axial support 3 4
rigidity parameter (dot (e) 4 x 10 (f) 20 x 10
n = 0.0; solid n = 0.5): the
first mode, h the axial 3 15
support rigidity parameter o
(dot n = 0.0; solid 2 . 10 " g
n = 0.5): the second mode S s
1 5 /
/
0 0
-0.2 0.4 -0.2 0.2 0.4
o
3 4
x 10 x 10
(g 4 (h) 20
3 15
- 2 ~ 10
S
1 5
0 0
-0.2 0.4 -0.2 0.4

to (“ffzz - a§§12) sin 92] — (K§1 — 2ty + Mlm)]
—y103 [(204%5} - a%%) cos 6

+ (20(128_%{ - 04%55) sin 91]

+ a%a2a3 (rlll cos 03 — a2 sin 93) ,
(105a)

ajenaszbs
2( 21 21 2 24T
—ay- {[“2 (“1§31 +0‘3§11)—2“10‘3521] cos 6

= -3 [“% (K{l —2uyy; + MI311) 2 s ) )
—o [a2 (al G32 + 3 512) + 2a1a3§22] sin 92}

2( 1 I I
—0) (Mm — 2Ky + Hszl)
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—alay [(a%v%l + a%rlll) cos 63

+a (a%m - a%tlz) sin 93] : (105b)

ajasls = ajo; [Olf (MI311 - 3"{1)

2(. 1 I 2(.1 I
+a; (M321 - 3#121) +a3 (K31 _3M131)]
—3yja003 (55 cos 0 + 8% sin 91)

—Hx% [(a%ggl — 3a%gh) cos 6,
. 2 a2 .

a |ays3 — 3a3612 ) sinfs
+a12 [(a%u%l — 305%1111) cos 03

+a (ozfvn + 30{%112) sin 03] . (105¢)

If we assume that there is a nonzero steady-state
response, the amplitudes o, a2, and o3 and the new
phase angles 61, 6>, and 63 should be constant for the
response. Numerical tests strongly indicate that o3 is
equal to zero. Therefore, the third mode has actually
no effect on the first two modes in the 3-term trunca-
tion. The 3-term truncation yields the same results as
the 2-term truncation.

7 Conclusions

The present work treats nonlinear parametric vibration
of axially accelerating viscoelastic strings. The longi-
tudinally varying tensions are recognized in the mod-
eling, and the exact internal resonances are accounted
in the analysis. An integro-partial-differential govern-
ing equation with time/space-dependent coefficients is
derived to governing the transverse vibration of the
string. The method of multiple scales is applied to
the integro-partial-differential governing to seek the
approximate analytical solution. Based on 1-3 term
truncation, the parametric resonances in the cases of @

512a 74w cos? 0.5a [120 (7% —a}) + (af — 9712)2 (cos 2a; — 2 cos al)]

there is only zero response in the w & ®; paramet-
ric resonance. The amplitude, the existence conditions,
and the stability are determined, and the effects of the
viscosity, the mean axial speed, the axial speed fluctu-
ation amplitude, and the axial support rigidity on the
amplitude and the existence are examined. It is found
that the 2-term and the 3-term truncation yield the qual-
itatively same and the quantitatively close results in
the w & 2w parametric resonance and the exact same
results in the @ & 3w parametric resonance. It is sug-
gested that the effects of infinite exact internal reso-
nances may be neglectable.
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Appendix A

2af (af + n2)2 + 7% sin? )
8a? (w1 + a1yo)

w1 sin? a; 2

ki (106)

K11 = —

(107)

Kip = ———kj
4a? (w1 + a1y0)
Hni21 = — [9 (9a? - 73afn2 - 73a%7‘r4 + 9716)2
+1280a}7* (73af — 184372 4 97%)
+ 128a%7r4 [9 (9a% — 7T2)2 cosaj
+ (“12 — 972'2)2 cos 3a1]]
/[9 (9a;‘ — 82a12712 + 97'[4)2 (w1 +ay yo)]klzi
(108)

k? (109)

Mn122 =

3 (9af — 82a372 +974)* (w1 + ary)

near wi, 2w, and 3w are investigated with the pres-
ence of the exact internal resonances. In all truncations,
there are steady-state nonzero periodic responses in the
o = 2w and w &~ 3w; parametric resonances, while
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nizl = —9 {8 (4a$ — 13ajn? — 13ain* + 4716)2
+ 4503 7% (13a? —8a’n? + 4714)

—9a%n4 [4 (4“12 — 712)2 cos2ay
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+ (a12 — 47{2)2 cos 4a1]}

/ [32 (4at — 17?7 + 47*)? (01 + alyo)]kfi
(110)

132
2
81a%7r4w1 sin2a1 |:15 (n4—af)+(a%—4n2) cos 2a1]
2
k

- . :
2 (4a‘l‘— 17a%n2+4n4) (@1 +a170)

(111)
27 4 .2
T = — oA K2 (112)
8 (472 — af) (w1 + a1 )
9 4 )
= 4w sin® a; @2 (113)

4 (472 — a?) (o1 + a1y0)

si1 = 97*[3 (27314} - 694afr> + 757%)

- (a? - 341112712 + 225714) cos4da

2560t 1 cos? 0.5ar | (123} — S4ain? +1237%) + (aF — 97%)” (cos 2a1 — 2cosap) |

/[ (~4af +137at7® - 934ar* 4 2257°)
x (o1 +aryo)] k3 (115)
8af (af + 712)2 + 7% sin? 2a;

2.
Ky = — K3 (116)
4a? (o1 + a1y0) :

w1 sin? 2a; 5

Ky = Tl g (117)
a? (w1 +aiyo) !

211 = [121/2
2
_ [ 9 (9af — T3atn? — T3adn + 9716)

+1280a27* (73a;‘ — 18a%72 + 9714)

2
+128a37* |:9 (9a% - n2) cosaj

2
+ (a12 - 9712) cos 3a1“
2
/ [18 (9a;‘ — 82a27% + 9714) (w1 + a1y0):|k12i

(118)

k2 (119)

Mn212 =

3 (9a% — 82a%72 + 97%) (w1 + a170)

+2048a% (4(1% - nz) cos al]
/16 (~4af+137atx>~934atr* +2257°)
x (01 + ary0)] kfi (114)

S12 = —9*w; cos>0.51 [ (a} - 34a}r? +2257%)
X (2cos2ay — 3cosa; — cos3ay)

+2 (2257* + 94atn® ~ 5114) |

past = —9i {25 (254§~ 601a{m> ~601ain* +257°)’

+29952afr* (601a} — 50ain? + 257%)
+1152a17* [25 (250 — 7%)’ cosay
+(a? - 257%) cos 5a1 ]|

/|50 (25a} - 62672 + 257%)”

x (o1 +aryo)] ki

(120)
S184atr ey [4 (15574 + 5037 — 781af) — 5 (2503 — 7%)” cosay + (a} — 2572) cosSar | _ o)
H232 = ki
5 (25a% — 62607 + 257%)” (01 + a1 )
by = 1874 [(af — 34a}n? + 2257%) cosda; — 204847 (4a? — 7?) cosay — 3 (2731a} — 694an® + 757%)] 2

32 (—4al + 137afn? — 934alw* + 22579) (w1 + a1y0)

(122)
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. 2
522 == 97[4601 S1n2 2(1] 2 (123) / [25 (2561‘11 — 62661%77:2 + 257'[4)
2 (4a3 — 2) (w1 + ar1y) ! ,
x (w1 + aryo) ] kii (128)
3456w ton [6 (5210} — 5037 +1057%) +5 (2507 — 72)” cosar + (a} — 257°) cos 51|
4 2.2 4)2
5 (25al — 626aiw*+257 ) (w1 + a1yo)
) 374 sin? aj 12 (130)
. v3] = — 1
3 [18a% (a% + nz) + 7% sin? 3a1] i (124 3 8 (4712 _ a%) (@1 + a1y) 1
K31 = — 1
o 8a12 (w1 + a1yo) i (124 37t4w1 sin? ap 2
U = > i (131)
s 4 (472 — a}) (w1 + ary)
9w ™ sin” 3ay
Kk = —5——— ki (125)
dai (w1 + a1 )
674 [3 (2731a} — 694ain® + 757%) 4 20484 (4a} — n?) cosay — (af — 34ain? 4 2257%) cosda, | 2
= 1
&3 32 (—4dS + 137an2 — 934a>w + 2257%) (1 + ar0) !
(132)
pann = =3 {8 (4af - 3atn® — 13a}n* + 4716)2 512 ==37"w1 cos? 0501 [ — (af —3datn?+2257%)

X (3cosa; —2cos2aj + cos3ay)

+45a%n4 (13ai¥ - 8a12712 + 47'(4)
+18 (57a} - 18a}72 + 257%) |

—9a’n* |4 (4a2 _ n2)2 cos 2
i i /[ (~4af +137atx? - 934a}x* 4 2257°)
2
+ (a% - 4712) cos 4a1i|] x (w1 + al)/o)] k% (133)
4 2_2 4 2
/[32 (4at = 17} + 4*)

x (@1 + ar1yo)] ki (126)

27a}ntw; sin® a; [17a‘1‘ — 16ai7? + 17n* + (a7 — 47t2)2 cos 2a1] )

MU312 = kq (127)
2 (d4af — 17a3n? + 47%)” (@1 + aryo)
M321 = 21231/3 Appendix B
2
= -3 izs (25a16 — 60latn? — 601a?n* + 25;16)
5§ =452
42995242 7% (601ai‘ —50a37? + 257‘[4) @101 (=97 +sina [o1 (aF+97%) ~2arp (aF -97°)]
) (a|279712)2 (w1 +a1 o)
+1152a%7* [25 (25af - 7'[2) cosay (134)
s _4712 (1+cosay) [0 (a2 +972) —2a kv (a7 —972)]

+ (a12 - 25712)2 cos SaI]] o (a7 —972)* (@1 +a1y0)
(135)
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XF = —27? (148)
G (a?—972) +sinay [w) (a}+972) —2a1610 (a}—972)] 5= 872 cos? (3a1/2) [w1 (9a3 + %) — 2a1ky0 (9a} — 72)] (149)
(a%—97r2)2 (w1 + aryo) 3(9‘112_”2)2 (@1 +a1y0)
(136) R =2x2
X{ » 3ajw; (9a12—712)+sin3a1 [a)l (9a12+7r2)—2a1ky0 (9a12—n2)]
:_2ﬂ2(1+cosa1)[w1 (012+9712)—201Ky0 (a12—9712)] (137) 3(9(1%_”2)2 (w1 4a1y0)
(a?=972) (@1 +aip) (150)
s} = 1872 = 4% cos? (3ar /2) [wy (9a} + 72) — 2a1ky9 (947 — 72)] (151)

ajwy (a12—257t2)+sina1 [wl (a12+25712)—2a1/(y0 (a12—257r2)]
X

(a? 725712)2 (w1 +ai1 o)

(138)
A
B 1872 (1+cos ay) [w (a? +2572) —2arkyy (a? —2572)]
- (5112—25712)2 (w1+aiyo)

(139)
X; = —1272
LG (a}—2572)+sinay [w) (a}+257%) —2a1ky0 (af —257%)]
(a12—257r2)2 (w1 + a1 )

(140)
X
_ _24712 cos? 0.5a; [w1 (a12+25712)—2a1/(y0 (a12—25ﬂ2)] (141)
(1112—25712)2 (w1 +aryo)
Appendix C
88 =9n?

2ai1wq (a%—4ﬂ2)—sin2a1 [wl (a12+4ﬂ2)—2a1/<y0 (a%—4712)]
X

8 (a? —4712)2 (w1 +aryo)

(142)
5! 972 sin? a; [ (a? +47?) — 2a1ky (a? — 4712)] (143)
3=
4(a? - 47'[2)2 (w1 + aiy)
SF a2 2a1w1 — s;n 2ay (w1 — 2a1kyp) (144)
8ay (w1 + aiyo)
- 72sin? a) (o) — 2a1k70)
5{ _ . 1 1 1€Y0 (145)
dai (@1 +aiy)
XF =377

2a 0 (a} —47?) —sin2a; [w) (a}+472) —2a1ky0 (a} —47?)]
X

8 (all2 —4712)2 (w1+aiyo)

(146)
X{ _ _3712 sin? ap [w1 (al2 +47‘[22) —2a1ky (alz —4712)] (147)
4 (alz — 4712) (w1 + aiyo)

Appendix D

S§ = 472
3ayw; (9a12—7r2)+sin 3ay [a)1 (9a12+n2)—2a1/(y0 (96112—]'[2)]
X
3 (9a} —72)* (@1 +a10)

3(9a} - ﬂz)z (w1 + a10)
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