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Abstract Switch-like behaviour in dynamical sys-
tems may be modelled by highly nonlinear func-
tions, such as Hill functions or sigmoid functions,
or alternatively by piecewise-smooth functions, such
as step functions. Consistent modelling requires that
piecewise-smooth and smooth dynamical systems have
similar dynamics, but the conditions for such similarity
are not well understood. Here we show that by smooth-
ing out a piecewise-smooth system one may obtain
dynamics that is inconsistent with the accepted wis-
dom — so-called Filippov dynamics — at a discontinu-
ity, even in the piecewise-smooth limit. By subjecting
the system to white noise, we show that these discrep-
ancies can be understood in terms of potential wells
that allow solutions to dwell at the discontinuity for
long times. Moreover we show that spurious dynamics
will revert to Filippov dynamics, with a small degree
of stochasticity, when the noise magnitude is suffi-
ciently large compared to the order of smoothing. We
apply the results to a model of a dry-friction oscillator,
where spurious dynamics (inconsistent with Filippov’s
convention or with Coulomb’s model of friction) can
account for different coefficients of static and kinetic
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friction, but under sufficient noise the system reverts to
dynamics consistent with Filippov’s convention (and
with Coulomb-like friction).
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1 Introduction

Systems of piecewise-smooth differential equations are
used to model diverse phenomena involving switch-like
and impact dynamics throughout engineering, biology,
and physics; see for example [12,30,32,45] and ref-
erences therein. They consist of ordinary differential
equations that are smooth except at certain switching
surfaces, where the presence of a discontinuity permits
a variety of intricate dynamical behaviour and bifur-
cations that are not possible in smooth systems. The
study of how dynamical systems theory can incorpo-
rate discontinuities has been the subject of much recent
research (see e.g. [12,11] and references therein). The
extent to which any piecewise-smooth system can be
considered as an approximation to a smooth system,
or vice versa, remains an open question. Here we show
that smoothing a discontinuity can result in unexpected
dynamics, which can be further understood by consid-
ering the response of the system to noise.

The problem of how to model switch-like behaviour
in dynamical systems is one of considerable complex-
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ity. As well as certain unobvious difficulties in relating
smooth and piecewise-smooth approximations, phys-
ical applications show that switches are particularly
prone to effects of hysteresis, time-delay, and noise. In
the seemingly elementary mechanics problem of dry-
friction between rigid bodies, there remain numerous
viewpoints as to the optimum way to improve upon
Coulomb’s simple discontinuous contact laws, see for
example [8,21,29,46]. Akay considered vibrations due
to friction and their effect on friction dynamics [2,6].
The effects of surface roughness and stochastic motions
on the friction force have been studied experimen-
tally [16,31,34]. The problem has also been studied
theoretically, with de Gennes proposing the study of
dry-friction on surfaces subjected to external white
noise vibrations [19], and this has been extended via
a path integral approach to account for basic stick-
slip motion [3,4]. The likely sources of noise in elec-
tronics, and ways to minimise its effects through reg-
ularisation, are of particular interest in the control
literature [13,41,44]. While many piecewise-smooth
approaches to switching dynamics follow Filippov’s
approach [12,17,30], attempts to relate their proper-
ties to smooth models [9,42] raise the question of how
general the approach is, and while alternative views
have certainly been expressed [1,22,24,26], a definitive
answer to how closely smooth and piecewise-smooth
systems approximate each other remains lacking. Here
we show how dynamics outside the Filippov conven-
tion for piecewise-smooth systems can arise, and how
it can be understood in the presence of perturbations
due to noise.

In short, the standard ‘Filippov’ approach involves
restricting the form of a set of differential equations
at a discontinuity, to being a linear interpolation of
its two forms immediately either side of the discon-
tinuity. As Filippov showed [17], the equations then
have solutions that are sufficiently unique to represent
a deterministic dynamical system (with the exception
of certain singularities [25]). The physical significance
of the Filippov convention has been proven repeatedly
in application to electronic control, stick-slip and other
mechanical behaviours, and various biological models
(see e.g. [12,41,44,45] and references therein). In [26]
it was shown that spurious dynamics, which lies out-
side the scope of the Filippov approach, can not only be
introduced analytically into a deterministic model, but
persists when a system is smoothed out or subjected to
random perturbations.

The aim here is to study the effect of random pertur-
bations more closely and more rigorously, by focussing
on the effect of white noise. We study what happens
to dynamics near a discontinuity when the governing
equations are smoothed out and when noise is added.
These two perturbations are motivated by various prac-
tical and theoretical considerations. In control applica-
tions, the regularisation of a discontinuous switch by
smoothing is utilised to avoid wear and instability [41].
In mechanics it is often unclear whether a smooth or
discontinuous model is more appropriate [26,29].

Mathematically, though one can smooth out a dis-
continuity and show topological equivalence to classes
of slow-fast systems [42], this does not take into
account spurious dynamics beyond the Filippov model.
On the problem of noise, it has recently been shown
that stochastic solutions can reduce to the determin-
istic Filippov solution in the zero noise limit [10,39],
again assuming a priori the absence of effects that defy
the Filippov convention.

The present paper shows that spurious dynamics pre-
dicted in [26] can be understood through stochastic
dynamics. In the presence of noise, smoothing out the
discontinuity can create local potential wells where the
solutions may dwell for extremely long times, even in
regions where (2.1) predicts an immediate escape. We
show that the robustness of such spurious dynamics
depends on the relative length-scales of the perturba-
tions due to noise and due to smoothing.

The systems of interest are defined in §2, and for
convenience our main analytical results are then sum-
marised in §3. In §4 we obtain a local approximation,
from which one-dimensional Fokker-Planck equations
are derived in §5. The implied escape times and prob-
ability density functions used to describe sliding and
crossing dynamics, respectively, are studied asymptot-
ically in §6, with some details of calculations included
in an Appendix. In §7 we apply these results to a
dry-friction oscillator, showing that spurious sliding
dynamics can be used to model disparity of the static
and kinetic friction coefficients, quantifying its robust-
ness to noise. Closing remarks, including suggestions
for further work, are made in §8.

2 Description of the problem

To investigate the dynamics of a piecewise-smooth sys-
tem whose switching surface is a manifold in R

n , we
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Fig. 1 Filippov dynamics in the system (2.1) near y = 0 in two
dimensions. Panel (i) shows an attracting sliding region, where
the vector field points toward the switching surface y = 0 from
both sides, and on y = 0 the flow follows the sliding vector
field, defined as the tangent vector to y = 0 given by a convex
combination of f + and f − (bold arrow). Panel (ii) shows a
crossing region, where the vector field points through y = 0 and
the flow crosses instantaneously

first note that with a suitable choice of coordinates
x ∈ R

n , the switching surface is a coordinate plane,
say y = 0 (where y is a component of the vector x).
The system may then be written as

ẋ =
{

f −(x) , y < 0
f +(x) , y > 0

, (2.1)

and we assume f − and f + are smooth functions. In the
remainder of this section we summarise the approach
for solving (2.1), and state our main results concerning
the effect of perturbations.

As described by Filippov [17], there are two impor-
tant, fundamental scenarios for the dynamics near the
switching surface: sliding and crossing, illustrated in
Fig. 1. These two behaviours form a foundation for the
study of piecewise-smooth dynamical systems. Other
scenarios, such as a repelling form of sliding (see
[17,25,27,28]), or tangencies between the vector field
and the switching surface (see [12,17,30,38]), are not
considered here.

Of the two scenarios in 1, sliding is usually assumed
to be the most novel.

When both of the vector fields f ± point toward
the switching surface, they constrain solutions of (2.1)
to evolve along y = 0. The velocity of this evolu-
tion is conventionally given by a convex combination
of f + and f −. The diverse applications of sliding
include frictional stick-slip models [12,11], sliding-
mode control [43], and prey-switching in animal pre-
dation [14,30,35]. The crossing scenario occurs when
the components of f − and f + normal to y = 0 have
the same sign, as in Fig. 1(ii), then solutions of (2.1)
are assumed to cross y = 0 instantaneously.

We then consider two perturbations of (2.1) moti-
vated by general modelling considerations. First we

make (2.1) continuous by supposing that the jump
between f + and f − takes place within the region
|y| ≤ ε for some small ε > 0. Specifically we write

ẋ =

⎧⎪⎨
⎪⎩

f −(x), y ≤ −ε,

F
( y

ε
, x
)
, −ε < y < ε,

f +(x), y ≥ ε,

(2.2)

where F(
y
ε
, x) is a smooth function of y

ε
and x. (For

the asymptotic expansions that we employ below, it is
useful to explicitly keep track of the ratio y

ε
, separately

to the occurrence of y inside the vector x.) Continuity
of the right-hand side of (2.2) requires

lim
y→+ε

F
( y

ε
, x
)

= lim
y→+ε

f +(x) &

lim
y→−ε

F
( y

ε
, x
)

= lim
y→−ε

f −(x). (2.3)

We make no restriction on the continuity of the deriv-
ative of the righthand side of (2.2), as this will not influ-
ence the leading order features of the dynamics studied
below.

Figure 2 illustrates the smoothed system (2.2), and
corresponds to the smoothing of Fig. 1 with simple
choices of F . From the sliding scenario of Fig. 1(i),
the continuity condition (2.3) demands that the y-
component of F changes direction inside the region
|y| < ε, giving Fig. 2(i). From the crossing scenario
of Fig. 1(ii), the continuity condition implies that the
y-component of F has the same sign at y = −ε and
y = ε. This sign may be constant throughout |y| < ε,
as in Fig. 2(ii.a), or it may change within |y| < ε, as
in Fig. 2(ii.b). The two cases lead to qualitatively dif-
ferent dynamics, the former resembling the crossing of
the piecewise-smooth model in Fig. 1(i), while the lat-
ter exhibits a form of sliding that is inconsistent with
Filippov dynamics. In general, the y component of F
may change sign many times in |y| < ε, but the sim-
plest cases given in Fig. 2 are sufficient to initiate a
study of spurious dynamics and its robustness to noise.
These scenarios are also sufficient to investigate a novel
cause of stiction in the dry-friction model of §7.

The second perturbation we consider is the addition
of noise, in the form

dx(t) =

⎧⎪⎪⎨
⎪⎪⎩

f −(x(t)) , y(t) ≤ −ε

F
(

y(t)
ε

, x(t)
)

, −ε < y(t) < ε

f +(x(t)) , y(t) ≥ ε

⎫⎪⎪⎬
⎪⎪⎭

dt

+ κ D(x(t)) dW(t) , (2.4)
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Fig. 2 Sketches of the system (2.2) in two dimensions. Panel (i)
shows a smoothing Fig. 1(i), where a bold curve shows the locus
of sliding-like dynamics. Panels (ii.a) and (ii.b) show different
smoothings of Fig. 1(ii). In panel (ii.a) the smoothing function F

is linear, resulting in crossing-like dynamics consistent with Fil-
ippov dynamics. In panel (ii.b), the first component of F changes
sign twice within the region |y| < ε, creating spurious sliding-
like dynamics (of both attracting and repelling types)

where W(t) represents a standard vector Brownian
motion, 0 < κ � 1 is the noise amplitude, and D
is an n × n matrix that represents the strength of the
noise in different directions.

This models the effect of random external white
noise, assuming it is uniform in x and is not, for exam-
ple, skewed or amplified near y = 0.

Alternative formulations, such as coloured noise or
an x-dependent noise amplitude, would be interesting
extensions for future work.

As we shall see, if we consider (2.4) with κ suf-
ficiently large relative to ε, the effect of noise tends
to push solutions outside the discontinuity neighbour-
hood |y| < ε, and hence beyond the influence of F .
For both sliding and crossing we then recover Filip-
pov’s solution, albeit with a small degree of stochastic-
ity. These results are consistent in outcome, if differ-
ent in set-up, to [39]. However, if κ is relatively small
and we consider a nonlinear smoothing function F , the
dynamics of (2.4) may be vastly different to that pre-
dicted under Filippov’s convention. For instance for
Fig. 2(ii.b), solutions to (2.2) are trapped near y ≈ 0
for a long period of time, whereas Filippov’s conven-
tion suggests that solutions cross the region |y| < ε

in a small time of order ε. This extra time implies that
a crossing region may exhibit unexpected dynamics.
However, if κ is sufficiently large relative to ε then
noise can dominate these spurious smoothing effects,
and then Filippov dynamics is restored.

The purpose of this paper is to quantify and for-
malise these observations, which were suggested in
[26] relying partly on heuristic arguments. Our asymp-
totic methods are based on the assumption that κ and
ε are small. We calculate the probability that |y(t)| is
less than ε in order to determine the influence of the
smoothing function F on the evolution of the system.
We also calculate the mean escape time of solutions
from an O(r) neighbourhood of the switching surface,
where ε � r � 1. By restricting our analysis to a

small neighbourhood we are able to reduce the neces-
sary calculations to one dimension.

3 Summary of mathematical results

We are interested in what happens when a solution of
(2.1) arrives at some point on the switching surface
y = 0, when the perturbations of smoothing in (2.2)
and noise in (2.4) are taken into account. Assuming that
the solution has reached y = 0 in the perturbed model,
and setting this point as the origin of coordinates, we
study forward evolution of (2.4) for positive times t ≤
O(r), with

0 < ε, κ � r � 1 . (3.1)

This implies x(t) = O(r) because the drift of (2.4) is
bounded in an O(r) neighbourhood.

It is helpful to treat sliding and crossing scenarios
(Fig. 1) separately. Here we summarise our main results
in each case. The precise assumptions made for each
result are stated in later sections.

The dynamics depends on the magnitude of the noise
amplitude κ relative to the size of the smoothing region
ε. If the origin belongs to a point on the switching sur-
face where the Filippov convention predicts sliding, we
calculate the probability P

[|y(t)| ≤ ε
∣∣ x(0) = 0

]
that

a solution remains in the region |y| ≤ ε after time t .
We find:

1. Suppose the origin belongs to an attracting sliding
region of (2.1) and κ � √

ε. Then for times in the
intermediate range O(κ2) < t ≤ O(r), we have

P
[|y(t)| ≤ ε

∣∣ x(0) = 0
] = O

( ε

κ2

)
. (3.2)

In this scenario, noise dominates over smooth-
ing. Solutions spend the majority of time evolving
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outside the neighbourhood of the switching surface,
in |y(t)| ≥ ε.
If limε,κ→0

κ√
ε

= ∞, then, as with stochastically
perturbed sliding motion [39], in the zero noise
limit we recover Filippov’s sliding solution. Note
that we require t > O(κ2) so that the system has
sufficient time to settle to a quasi-steady-state dis-
tribution about y = 0. We require t ≤ O(r) to
ensure x(t) = O(r).

2. Suppose the origin belongs to an attracting sliding
region and κ � √

ε. Then for t ≤ O(r) we have

P
[|y(t)| ≤ ε

∣∣ x(0) = 0
] = 1 − O

(
κ2

ε

)
. (3.3)

In this scenario, we find that evolution occurs pri-
marily in the ε neighbourhood of the (smoothed
out) switching surface, |y(t)| ≤ ε.
Therefore different choices of the smoothing func-
tion F in (2.2) lead to qualitatively different forward
evolution.

The derivation of the above results are based on
a steady-state approximation to the density of the y-
component of the solution about y = 0. This approx-
imation is ineffective or difficult to interpret when
the origin belongs to a crossing region, because the
piecewise-smooth vector field directs solutions away
from y = 0. For this reason, when Filippov’s method
predicts crossing we study the mean time for escape
from |y| < r , given by

T = E
[
min

{
t > 0

∣∣ |y(t)| = r, x(0) = 0
}]

. (3.4)

We find:

3. If κ√
ε

≥ O(1), and the vector field points in the
direction of increasing y, then

T = r

a+ + O(r2), (3.5)

where a+ > 0 is the y-component of f +(0). Note,
in the absence of both smoothing and noise, the
forward orbit of the origin reaches y = r in a time

r
a+ + O(r2). Thus noise is sufficiently strong rel-
ative to smoothing to drive solutions quickly out
of the range of influence |y| ≤ ε of the smoothing
function F .

4. Again suppose the origin belongs to a crossing
region with the vector field pointing in the direction

of increasing y, but now suppose κ � √
ε. Here

the nature of the smoothing function is important.
If F

( y
ε
, 0
)

> 0 for all y ∈ [−ε, ε], then we again
have (3.5). However, if F

( y
ε
, 0
)

< 0 for an interval
of y values, then

T > O(r). (3.6)

Here, the vector field points to the left for part
of |y| ≤ ε, and the noise is highly unlikely to
drive solutions through this section and into y > ε

in an O(r) time. Thus different smoothings of
the piecewise-smooth system will lead to differ-
ent dynamics, and may exhibit solutions that dwell
near the discontinuity for large times at a crossing
region, constituting spurious sliding dynamics.

It is not profitable to study T in a sliding scenario
because escape from |y| < r is extremely unlikely
to occur over an O(r) time frame, regardless of the
relative size of ε and κ and the nature of the smoothing
function.

4 Reduction to one dimension and scaling

Under assumptions that are stated below, the dynam-
ics of (2.4) in the y-direction is described by a one-
dimensional stochastic differential equation.

As explained in §3, we consider x(t) = O(r), and
therefore we can write (2.4) as

dx(t) =

⎧⎪⎪⎨
⎪⎪⎩

f −(0), y(t) ≤ −ε

F
(

y(t)
ε

, 0
)

, −ε < y(t) < ε

f +(0), y(t) ≥ ε

⎫⎪⎪⎬
⎪⎪⎭

dt

+ κ D(0) dW(t) + O(r). (4.1)

Since the right-hand side of (4.1) depends only on
y
ε

to leading order, we are able to perform an analy-
sis of the stochastic dynamics in y independently of
the remaining components of x. The y-component of
(4.1) is

dy(t) =

⎧⎪⎪⎨
⎪⎪⎩

a− , y(t) ≤ −ε

A
(

y(t)
ε

)
, −ε < y(t) < ε

a+ , y(t) ≥ ε

⎫⎪⎪⎬
⎪⎪⎭

dt

+ κ BT dW(t) + O(r), (4.2)

where a± is the y-component of f ±(0), A
( y

ε

)
is the y-

component of F
( y

ε
, 0
)
, and BT is the appropriate row

of D(0).
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The noise in (4.2) is a sum of n independent Brown-
ian motions, equivalent to a single Brownian motion of
amplitude

√|B| + O(r). Let us absorb
√|B| into the

value of κ , and define

φ
( y

ε

)
=

⎧⎪⎨
⎪⎩

a−, y ≤ −ε

A
( y

ε

)
, −ε < y < ε

a+, y ≥ ε

. (4.3)

Then, neglecting O(r) terms, (4.2) becomes

dy(t) = φ
( y

ε

)
dt + κ dW (t). (4.4)

The smoothing of the system over an O(ε) spacial
and temporal scale suggests the scaling

ỹ = y

ε
, t̃ = t

ε
, κ̃ = κ√

ε
, (4.5)

with which (4.4) becomes

d ỹ(t̃) = φ(ỹ(t̃)) dt̃ + κ̃ dW (t̃). (4.6)

Equation (4.6) is the reduced system that we analyse
in the next two sections. The signs of a− and a+ deter-
mine whether dynamics at the origin of the unperturbed
system (2.1) involves sliding (or attracting or repelling
type) or crossing. Ignoring tangencies, we have the
classification:

a+ < 0 a+ > 0

a− < 0 Crossing Sliding (repelling)

a− > 0 Sliding (attracting) Crossing

It is sufficient for our purposes to consider only the
lower row of this table.

5 Steady-state approximations and the mean
escape time

5.1 Steady-state approximations

The Fokker-Planck equation for (4.6) (see e.g. [18,36])
is

∂p(ỹ, t̃)

∂ t̃
= ∂

∂ ỹ

(
−φ(ỹ)p(ỹ, t̃)+ κ̃2

2

∂p(ỹ, t̃)

∂ ỹ

)
, (5.1)

where p(ỹ, t̃) denotes the transitional probability den-
sity function of (4.6). For a steady-state density,
p(ỹ, t̃) = pss(ỹ), the left-hand side of (5.1) is zero.
Assuming pss vanishes as ỹ → ±∞, if pss exists it
must be given by

pss(ỹ) = K e
−2V (ỹ)

κ̃2 , (5.2)

where

V (ỹ) = −
ỹ∫

−1

φ(v) dv , (5.3)

represents a potential function, and K is a normalisation
constant. By (4.3) we can write

V (ỹ) =

⎧⎪⎪⎨
⎪⎪⎩

−a−(ỹ + 1), ỹ ≤ −1

− ∫ ỹ
−1 φ(v) dv, −1 ≤ ỹ ≤ 1

V (1) − a+(ỹ − 1), ỹ ≥ 1

. (5.4)

Consequently (5.2) is normalisable only if a− > 0
and a+ < 0, corresponding to sliding as in Fig. 3(i).
The reduced system (4.6) has a steady-state density
exactly when the origin corresponds to a attracting slid-
ing region of (2.1).

In all other cases (i.e. crossing or repelling sliding),
(4.6) does not have a steady-state density because for
|ỹ| > 1 the drift directs solutions away from ỹ = 0 on
at least one side. However, V may have a local poten-
tial well, as in Fig. 3(iii), or perhaps many potential
wells. For Fig. 3(iii), if the noise amplitude is suf-
ficiently small, then with high probability solutions
become trapped in the well for a relatively long period
of time. For an initial condition in the well, after a brief
transient phase, the probability density function p takes
a near-steady-state form for which probability leaks out
of the well on a long time-scale. In this scenario it is
more useful to consider the mean escape time from the
region |ỹ| ≤ 1.

Time-dependent solutions to (5.1), that may be
obtainable for small noise through the use of asymp-
totic methods, are left to consideration in further work,
as in [40] (Figs. 3, 4).

5.2 Mean escape time

We let T̃ denote the mean escape time for (4.6), defined
as
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Fig. 3 Sketches of the
potential V (ỹ)

corresponding to the vector
fields in Fig. 2, showing: (i)
a global potential well, (ii)
no potential well, (iii) a
local potential well

    ~V(y)

~y

~|y|<1

    ~V(y)

~y

    ~V(y)

~y

(i) (ii) (iii)

T̃ = E
[
min

{
t̃ > 0

∣∣ |ỹ(t̃)| = r̃ , ỹ(0) = 0
}]

, (5.5)

where

r̃ = r

ε
. (5.6)

To find the mean escape time to ỹ = r̃ , we con-
sider the Fokker-Planck equation (5.1), together with
the initial and boundary conditions

p(ỹ, 0) = δ(ỹ) , p(±r̃ , t̃) = 0. (5.7)

The first condition in (5.7) simply corresponds to fix-
ing ỹ(t̃) = 0. The second condition in (5.7) represents
absorption at ỹ = r̃ . It is a standard exercise to demon-
strate that the boundary value problem (5.1) with (5.7),
implies that the mean escape time is given by

T̃ =
∞∫

0

r̃∫
−r̃

p(ỹ, t̃) d ỹ dt̃, (5.8)

see for instance [18,36]. Since (4.6) is one-dimensional
and time-independent, we can obtain an explicit expres-
sion for T̃ . By integrating (5.1) over all positive time
and solving the resulting ordinary differential equation,
we obtain

T̃ = 2

κ̃2

r̃∫
−r̃

v∫
−r̃

(H(v) − C) e
2(V (v)−V (u))

κ̃2 du dv, (5.9)

where H(v) is the Heaviside function, and C is given
by

C =
∫ r̃

0 e
2V (w)

κ̃2 dw∫ r̃
−r̃ e

2V (w)

κ̃2 dw

. (5.10)

Formulae similar to (5.9) are derived in [36,18,20,37].
For convenience we provide a derivation of (5.9) in
Appendix 9.1.

6 Asymptotics for the occupation probability
and the mean escape time

6.1 Sliding

Here we suppose a− > 0 and a+ < 0 and investigate
the steady-state probability density function pss given
by (5.2). If ỹ(t̃) is distributed according to (5.2), then

P
[|ỹ(t̃)| ≤ 1

] =
∫ 1
−1 e

−2V (u)

κ̃2 du
∫∞
−∞ e

−2V (u)

κ̃2 du
. (6.1)

From (5.4) we determine

−1∫
−∞

e
−2V (u)

κ̃2 du = κ̃2

2a− ,

∞∫
1

e
−2V (u)

κ̃2 du = κ̃2

−2a+ e
−2V (1)

κ̃2 . (6.2)

Dividing (6.1) through by its numerator gives

P
[|ỹ(t̃)| ≤ 1

] = 1

1 +
κ̃2

2a− + κ̃2

−2a+ e
−2V (1)

κ̃2

∫ 1
−1 e

−2V (u)

κ̃2 du

. (6.3)

In the case κ̃ � 1, we can then simply use e− 2V (u)

κ̃2 =
1 + O

(
1
κ̃2

)
, to find

P
[|ỹ(t̃)| ≤ 1

] = 4(
1

a− + 1
−a+

)
κ̃2

+ O

(
1

κ̃4

)
.

(6.4)
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The case κ̃ � 1 requires a more detailed argument to
obtain a bound on P. If V (1) ≤ 0 (the case V (1) > 0
may be treated analogously), since V is differentiable
with V ′(1) = −a+ > 0, there exists a value 0 < L <

2 such that V (u) ≤ V (1) for all 1 − L ≤ u ≤ 1.

Consequently
∫ 1
−1 e

−2V (u)

κ̃2 du ≥ Le
−2V (1)

κ̃2 . Then from
(6.3),

P
[|ỹ(t̃)| ≤ 1

] ≥ 1

1 + κ̃2

2L

(
1

a− e
2V (1)

κ̃2 + 1
−a+

) . (6.5)

Therefore for κ̃ � 1 we have

P
[|ỹ(t̃)| ≤ 1

] = 1 + O(κ̃2). (6.6)

We now interpret (6.4) and (6.6) for the original sys-
tem (2.4). An O(r) error in the coefficients of (4.6)
relates to an O(r) error in the potential V . Conse-
quently an O(r) error does not contribute additively
to P, rather it appears in the coefficients of the terms in
(6.4) and (6.6).

Hence this error appears as higher order contribu-
tions in both cases, and we have (3.2) and (3.3) of §3.
A formal demonstration of this argument is beyond the
scope of this paper.

For the case κ̃ � 1, in view of (6.4), the system
(4.6) behaves like Brownian motion of amplitude κ̃

with piecewise-constant drift, for which the correla-
tion time is O(κ̃2) [39]. Therefore (4.6) settles to the
steady-state density on an O(κ̃2) time-scale, and for
this reason we assume t > O(κ2) for the result (3.2).
No lower bound on t is given for (3.3), correspond-
ing to κ̃ � 1, because in this case for very short times,
although (4.6) will have not settled to steady-state, solu-
tions will reside inside the smoothing region |ỹ| < 1
with high probability.

6.2 Crossing

Here we suppose a−, a+ > 0, and analyse the
asymptotics of T̃ as given by (5.9). When a−, a+ >

0, straight-forward bounding arguments applied to
(5.10) (see Appendix 9.2 for details) reveal that C is
exponentially small (a simple upper bound is C ≤
2a−

(
1

a+ + 2
κ̃2

)
e

−r̃a−
κ̃2 ). This is because terms involv-

ing C relate to escape through ỹ = −1, which is

highly unlikely. Indeed, terms involving C constitute
high order contributions in the manipulations that fol-
low, and do not appear in our final results.

Hence for simplicity here we take C = 0, with which
(5.9) is given by

T̃ = 2

κ̃2

r̃∫
0

e
2V (v)

κ̃2

v∫
−r̃

e
−2V (u)

κ̃2 du dv. (6.7)

To evaluate (6.7) asymptotically, we split the two-
dimensional domain of integration into four pieces:

T̃ = 2

κ̃2

⎧⎪⎨
⎪⎩

1∫
0

−1∫
−r̃

+
1∫

0

v∫
−1

+
r̃∫

1

1∫
−r̃

+
r̃∫

1

v∫
1

⎫⎪⎬
⎪⎭

× e
2(V (v)−V (u))

κ̃2 du dv. (6.8)

If κ̃ ≥ O(1), i.e. κ̃ is not small, via explicit integration
and applying simple bounds we find that the first three
double integrals of (6.8) are at most O(κ̃2), and because
r̃ � κ̃2 from (3.1), these are dominated by the fourth
double integral:

2

κ̃2

r̃∫
1

e
2V (v)

κ̃2

v∫
1

e
−2V (u)

κ̃2 du dv

= 2

κ̃2

r̃∫
1

e
−2a+v

κ̃2

v∫
1

e
2a+u
κ̃2 du dv

= r̃

a+ + O(1, κ̃2), (6.9)

Hence, if κ̃ ≥ O(1),

T̃ = r̃

a+

(
1 + O

(
κ2

r

))
. (6.10)

Alternatively, if κ̃ is small then A(ỹ), which appears
in (4.3), is important. Recall that A(ỹ) is continuous for
ỹ ∈ [−1, 1] and that A(±1) = a± > 0. If A(ỹ) is pos-
itive throughout the interval [−1, 1], then T̃ → r̃

a+
as ε → 0 and κ → 0, as one would expect. Let us
suppose that A(ỹ) < 0 for some part of the interval
[−1, 1]. Furthermore, suppose A(ỹ) has exactly two
roots, −1 < ỹ1 < ỹ2 < 1, and ∂ A(ỹ1)

∂ ỹ < 0 and
∂ A(ỹ2)

∂ ỹ > 0. The potential V (ỹ) then has a well (as
in Fig. 3(iii)), with a local minimum at ỹ1 and a local
maximum at ỹ2. For simplicity suppose ỹ2 > 0, so that
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solutions must pass through the well in order to reach
ỹ = r̃ . This is sensible because for crossing we expect
solutions to originate from negative y, at least locally.

We can evaluate (6.7) asymptotically by treating κ̃

and 1
r̃ as independent small parameters.

The result depends on the relative size of κ̃ and 1
r̃

as the limit is taken. For instance, if we take κ̃ → 0,
the maximum contribution to the integral comes from
the point at which V (v) − V (u) attains its maximum
(the point (u, v) = (ỹ1, ỹ2)). Alternatively, if we take
1
r̃ → 0, the size of the domain of integration tends to
infinity and the maximum contribution relates to (u, v)

far from (0, 0).
Let us consider (6.8) and evaluate the four double

integrals separately, assuming as above that A(ỹ) has
two zeros

A(ỹ1,2) = 0 : −1 < ỹ1 < ỹ2 < 1,

∂ A(ỹ1)

∂ ỹ
< 0 <

∂ A(ỹ2)

∂ ỹ
.

The point (u, v) = (ỹ1, ỹ2) lies in the domain of inte-
gration of the second integral. A straight-forward appli-
cation of Laplace’s method (see Appendix 9.3) yields

2

κ̃2

1∫
0

e
2V (v)

κ̃2

v∫
−1

e
−2V (u)

κ̃2 du dv

= 2π√−A′(ỹ1)A′(ỹ2)
e

2
κ̃2 (V (ỹ2)−V (ỹ1))

(
1 + O(κ̃)

)
.

(6.11)

Repeating (6.9), we find that the fourth double inte-
gral is given by

2

κ̃2

r̃∫
1

e
2V (v)

κ̃2

v∫
1

e
−2V (u)

κ̃2 du dv = r̃

a+ + O(1), (6.12)

where here the O(κ̃2) term in (6.9) is of higher order
than the error term given in (6.12). The remaining two
double integrals of (6.8) only provide higher order con-
tributions that may be absorbed into the error term of
(6.11). This can be verified via a combination of explicit
integration and Laplace’s method.

In summary, when κ̃ � 1, the term (6.11) appears
because there is a potential well. This term corresponds
to a large increase in the mean escape time due to solu-
tions becoming trapped in the well. In contrast, the term
(6.12) corresponds to the time taken by purely follow-
ing the vector field f +, and arises independently to

the nature of the smoothing function. We can therefore
write

T̃ = 2πS√−A′(ỹ1)A′(ỹ2)
e

2
κ̃2 (V (ỹ2)−V (ỹ1))

(
1 + O(κ̃)

)

+ r̃

a+
(
1 + O

( 1
r̃

))
, (6.13)

where S is a Stokes multiplier (see e.g. [23,5,7]) whose
value is

S =
{

1 if V has a potential well,
0 if V has no potential well.

(6.14)

For V to have a potential well, the values of ỹ1 and ỹ2

must be real and lie inside the neighbourhood of the
switching surface given by −1 < ỹ1 < 1 and 0 <

ỹ2 < 1.
The last step is to interpret (6.10) and (6.13) for

the original system (2.4). For the case κ̃ � 1, as in
the previous section, we note that the O(r) error in
the coefficients of (4.6) relate to an O(r) error in the
potential V . In (6.9) this leads to an O(r) error in the
coefficient of the leading order term. That is,

T = ε (1 + O(r)) T̃ , (6.15)

where the ε is present because t = εt̃ , and we therefore
have (3.5). For the case κ̃ � 1, equation (6.13) indi-
cates that T̃ is exponentially large. Since the reduced
system (4.6) only applies for t ≤ O(r), however, we
can conclude only that T > O(r), giving the state-
ment (3.6). As in the previous subsection, more detailed
results are beyond the scope of this paper.

7 Example: a dry-friction oscillator

7.1 Modelling assumptions

To demonstrate the effect of the results above, let us
consider a toy model of a dry-friction oscillator

z̈ + ż + z + F(ż + 1) = 0, (7.1)

as shown in Fig. 4, where z denotes the time-dependent
horizontal displacement of a block of unit mass, relative
to a belt moving at unit speed to the left. The block is
subject to a damping coefficient and a spring constant
which are both unity, and to a velocity-dependent dry-
friction force F due to the contact of the block with
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z(t)

Fig. 4 The friction oscillator. A block is subject to linear spring
and damping forces, and sits on a belt moving at constant unit
speed to the left. The spring extension is z(t)

the belt. The oscillator is a prototypical model useful
for studying frction dynamics in diverse mechanical
systems [15,33].

We let y = ż + 1 denote the velocity of the block
relative to the belt, with which (7.1) may be written as
the first order system

ż = y − 1,

ẏ = 1 − z − y − F(y).
(7.2)

The simplest Coulomb model of the friction force is

F(y) = α sgn(y), (7.3)

for some constant α > 0.
For (7.2) with (7.3), y = 0 is a switching sur-

face which, in the standard Filippov convention, is an
attracting sliding region for 1 − α < z < 1 + α, and
a crossing region for z < 1 − α and z > 1 + α, see
Fig. 5. Sliding corresponds to a mechanical sticking
phase, in which the relative speed remains at y = 0
for an interval of time, and crossing corresponds to
instantaneous switch between slip-to-the-left and slip-
to-the-right.

The friction model (7.3) neglects any dependence
of the contact force F on the speed, i.e. the absolute
value of y. Our only concern here is the value for
y ≈ 0, specifically the difference between the kinetic
friction force F = ±α when sgn(y) = ±1, and
the static friction force when y = 0, at which the
value of (7.3) is ambiguous. To resolve this, let us
consider a well-defined perturbation of (7.3) where

F(y) = α

⎧⎪⎨
⎪⎩

−1 , y ≤ −ε
y
ε

+ μ(
y
ε

− (
y
ε
)3), −ε < y < ε

1 , y ≥ ε

, (7.4)

with α > 0 and μ ≥ 0. This provides a continuous
change in the friction force across y = 0 by spread-

y

0 z
+α

z=1+αz=1−α

Fig. 5 A sketch of the phase portrait of (7.2), as described in
the text, showing dynamics of the friction oscillator according
to Filippov’s method. There are two crossing regions (dashed),
around a sliding region (solid line) where the sliding vector field
points to the left as shown. Dynamics in the regions y > 0, y < 0,
and y = 0, correspond mechanically to leftward slip, rightward
slip, and sticking

y

(y)

0

+α
+β

−β

−α
+ε−ε

µ>0.5

µ=0

Fig. 6 A sketch of the friction force F(y). For μ = 0 F is linear
in |y| < ε. For μ > 1/2 there exist two turning points in |y| < ε

at ys = ±ε
√

(1 + μ)/3μ

ing the jump out across a region |y| ≤ ε for small
ε.

For μ > 1
2 , F has turning points at ys = ±ε

√
1+μ
3μ

,

(i.e. F ′(ys) = 0). We also let

β ≡ max|y|≤ε
[F(y)] = α

{
2(1+μ)3/2

3
√

3μ
for μ > 1/2,

1 for μ < 1/2,

(7.5)

and note that 2(1+μ)3/2

3
√

3μ
> 1 for μ > 1

2 . A sketch of F
is shown in Fig. 6. For μ > 1

2 the perturbation (7.4)
introduces a breakaway force ±β that exceeds the force
±α required to keep the object in motion.

Let us now consider the effect of random errors in
the model, represented by white noise, κ dW

dt , added
to the force on the block, and assume that the noise
amplitude κ is small. The oscillator is then described
by the following system of stochastic differential
equations:
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dz(t) = (y(t) − 1) dt,

dy(t) = (
1 − z(t) − y(t) − F(y)

)
dt + κ dW (t).

(7.6)

With x = (y, z), the system (7.6) is of the form (2.4).

7.2 Calculations for transitions from stick to slip

To consider the escape of the system from a neigh-
bourhood of y = 0, let us consider an initial state
(y, z) = (0, z0).

For (7.6), the leading order approximation to dynam-
ics orthogonal to the switching surface, derived in gen-
eral in §4, and valid over short times, is given by

dy(t) = φ
( y

ε

)
dt + κ dW (t), (7.7)

where

φ(u)=
⎧⎨
⎩

1 − z0+α, u ≤ −1
1−z0−α(u+μ(u−u3)), −1 < u < 1
1 − z0 − α, u ≥ 1

.

(7.8)

Integrating to find the potential (5.3) gives

V (u) = −

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1 − z0 + α)(u + 1), u ≤ −1

(1 − z0)(u + 1)

−α(1+μ)(u2−1)
2 + αμ(u4−1)

4 , |u| < 1

2(1 − z0)

+(1 − z0 − α)(u − 1), u ≥ 1

.

(7.9)

Below we use the results of §5.2 and §6.2 to deter-
mine the mean time for escape from a neighbourhood
of y = 0. We do not calculate the probability density
function in the sliding region, but remark that, for this
model, it coincides with Filippov’s convention in the
zero noise limit.

We instead consider the region z0 < 1 − α, where
Filippov’s convention predicts crossing. The potential
V has turning points where φ vanishes, namely at u =
ui , defined by

φ(ui ) = 1−z0−α(ui +μ(ui −u3
i )) = 0 and |ui | < 1,

(7.10)

which can have up to three real solutions u1, u2, u3.
Two turning points coalesce at

u = u(±) := ±
√

1 + μ

3μ
,

z0 = z(±)
0 := 1 ∓ 2α(1 + μ)3/2

3
√

3μ
,

(7.11)

which lie inside |u| < 1 for μ > 1/2, and which corre-
spond to the maxima and minima of F in (7.4), noting
z(±)

0 = 1 ∓ β. The point z = z(+)
0 forms a breakaway

point at which the block is released from sticking into
rightward slip, i.e. from u = 0 into u > 0.

For z(+)
0 ≤ z < 1 − α, and parameter values of

physical interest, there are two roots of (7.10), u1 and
u2, that we label such that −1 < u1 ≤ u2 < 1, and for
which φ′(u1) ≤ 0 ≤ φ′(u2).

The function V (v) − V (u), about which the sec-
ond term of (6.13) is approximated, has a maximum at
{u, v} = {u1, u2}. Specifically, in (6.13) we have

a+ = 1 − z0 + α,

A′(ỹi ) = −α(1 + μ − 3μỹ2
i ) , i = 1, 2,

(7.12)

where ỹi = ui , and

φ(ui ) = 0, φ′(u1) ≤ 0 ≤ φ′(u2). (7.13)

7.3 Numerical computations

By simply substituting (7.12)–(7.13) into (5.9) and
(6.13) we obtain, respectively, the exact and asymptotic
values of the mean escape time T ≈ εT̃ . In Fig. 7 and
Fig. 8 we plot these for different values of the noise
amplitude κ and smoothing parameter μ, fixing the
size of the smoothing region as ε = 0.01, the friction
strength as α = 1, and considering escape to a distance
r = 0.1. With these values, the dynamics found on
y = 0 corresponds to:

– sliding (Fig. 2(i)) for 0 < z < 2,
– crossing (Fig. 2(ii.a)) for z < z(+)

0 ,

– spurious sliding (Fig. 2(ii.b)) for z(+)
0 < z < 0 .

Figure 7 shows the effect of different noise ampli-
tudes. In (i), for which μ = 3, the mean escape time
is strongly dependent on the noise amplitude κ . For
smaller noise amplitudes, and values of z0 approaching
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z0

=0.001

=0.015

=0.05

2

20

0

40

60

−0.65−0.75−0.85

4

6

~
lo

g 
T

z
0
(+) −0.78

z
0
(+) −0.78

z0

−1 −0.8 −0.6 −0.4 −0.2 0 −1 −0.8 −0.6 −0.4 −0.2 0

4

3

5

6

~
lo

g 
T =0.001

=0.015
=0.05

0.001
0.015
0.05

=

(i) (ii)

Fig. 7 Plots of log T̃ , where T ≈ εT̃ is the mean escape time
to a distance r = 0.1, for the friction oscillator with smoothing
parameter ε = 0.01 and friction strength α = 1. The smooth-
ing function is the cubic polynomial in (7.8) with: (i) μ = 3,
(ii) μ = 1

2 . The solid curves show numerical evaluations of
the exact integral (5.9), the dotted curves show the asymptotic

value (6.13). Plots are made for different noise amplitudes κ as
labelled. In (iii) some of the curves, particularly the asymptotic
values, are indistinguishable. Inset in (i): a magnification of the
Stokes discontinuity at the fold point z0 = z(+)

0 ; in (ii) there is
no Stokes discontinuity

z = 0 (the boundary of sliding region), T ≈ εT̃ scales
with e1/κ2

. This outcome is in stark contrast to that pre-
dicted when the Filippov convention is applied to the
discontinuous system (7.2)–(7.3), for which escape to
a distance r from y = 0 occurs in a time T = O(r)

for all z < 0. For larger noise amplitudes the mean
escape time is small, simply T̃ ≈ r/z throughout the
crossing region, consistent with Filippov dynamics. In
(ii), with μ = 1/2, the escape time is only weakly
dependent on the noise amplitude (in fact the asymp-
totic value is κ-independent), and is small (compared
to values in (i)) and therefore consistent with Filippov
dynamics.

The key features of Fig. 7 are understood as fol-
lows. When μ = 3 in Fig. 7(i), the friction force F
has two prominent turning points (see Fig. 6). These
create a potential well in the function V (v) − V (u) at
the point (u, v) = (ỹ1, ỹ2), which exists for z0 in the
range z(+)

0 ≈ −0.78 < z0 < 0. For those z0 values
where the potential well exists, the first term in (6.13)
dominates, so that T̃ is strongly κ-dependent. For val-
ues of z0 to the left of z(+)

0 , the potential well disap-
pears and its contribution to (6.13) is eliminated by the
Stokes multiplier, leaving only the smaller second term.
The switching of the Stokes multiplier creates a dis-
continuity, shown magnified in the figure. (Stokes’ dis-
continuities are a well understood artifact of the lead-
ing order approximation, which can be smoothed by
local approximation about z0 = z(+)

0 , or more power-
fully by uniform approximation [7] for arbitrary z0).

z0

z
0
(+) −0.78

z
0
(+) −0.56

z
0
(+) −0.28

z
0
(+) 0

µ=2.4

µ=3

µ=1.6

µ=0.5
20

0
−1 −0.8 −0.6 −0.4 −0.2 0

40

60

~
lo

g 
T

Fig. 8 Plots of the exact integral (solid curves) and asymptotic
value (dotted curves) for log T̃ , as in Fig. 7. Each curve is for
a fixed noise amplitude κ = 0.01, with ε = 0.01 and α = 1.
Four different values of μ are shown as labelled. The Stokes
discontinuities at z0 = z(+)

0 are indicated for each case

In Fig. 7(ii) for which μ = 1/2, the friction force has
no turning points, so the function V (v) − V (u) has no
potential well, therefore the Stokes multiplier is zero
everywhere, and the escape time is dominated by the
κ-independent second term in (6.13).

Figure 8 shows four simulations with a small noise
amplitude κ = 0.1, for three different values of the
parameter μ, in which the potential well in V (v)−V (u)

exists for z(+)
0 < z0 < 0, leading to exponentially large

escape times to the right of a Stokes discontinuity at
z0 = z(+)

0 , and small escape times to the left.
In both Figs. 7 and 8, the exact and asymptotic

calculations are shown to be in close agreement for
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ε = 0.01. More generally, of course, the accuracy of
the asymptotic approximation depends on the orders of
ε and r , as indicated in (6.13).

More importantly, by (6.13) we conclude that expo-
nentially large escape times occur only when the noise
amplitude κ and smoothing stiffness ε satisfy

κ �
√−ε/ log(ε) ≈ 0.05 . (7.14)

This improves on an estimate of κ � ε made in [26],
which heuristically considered general sources of error
of size κ , instead of the specific white noise considered
here.

8 Discussion

We have shown rigoroualy that smoothing a discon-
tinuous system can lead to dynamics that is starkly at
odds with what Filippov’s method would predict from
the discontinuous system. For instance, solutions to a
smoothed system may remain trapped near a switch-
ing surface when Filippov’s convention indicates that
solutions to the original system head away from the
surface. However, if the smoothed system is also sub-
ject to noise, the resulting stochastic dynamics may be
practically independent of the nature of the smooth-
ing function. If the noise amplitude is sufficiently large
it dominates the deterministic smoothing. Indeed, in
many applications additional modelling assumptions
may have the effect of smoothing a switching surface
out over a range of phase space that is small relative
to uncertainties and randomness. We can think of the
noise as acting as a second level of smoothing. In this
case noise inhibits non-Filippov solutions and the use
of Filippov’s convention is justified. This is extremely
beneficial because, from a modelling perspective, one
typically has little knowledge about the nature of the
smoothing function.

In order to quantify this behaviour we introduced
equation (2.1) to describe a general Filippov system
near a smooth switching surface. The stochastic dif-
ferential equation (2.4) is the result of smoothing (2.1)
within a distance ε of the switching surface and adding
white Gaussian noise of amplitude κ . We used asymp-
totic methods to study forward evolution from a point
on the switching surface over a short time-frame.

If the noise amplitude κ is large relative to the range
of the smoothing ε, specifically κ � √

ε, then the solu-

tions to (2.4) behave like Filippov solutions to (2.1).
When the initial point lies on an attracting sliding
region, the fraction of time spent within a distance ε

of the switching surface is small (3.2), and therefore
the effect of the smoothing function F on the dynam-
ics may be neglected. When the initial point lies on a
crossing region, to leading order, the mean time taken
for solutions to escape a small neighbourhood of the
switching surface is independent of F (3.5). Overall,
in this scenario the noise suppresses dynamics gener-
ated by F .

Alternatively, if κ � √
ε then the nature of the

smoothing function F may have a significant effect on
the dynamics. When the initial point lies on an attract-
ing sliding region, the fraction of time spent within a
distance ε of the switching surface is near 1 (3.3). Con-
sequently, forward evolution is primarily determined
by F . In the case of crossing, if the smoothing creates
a potential well near the switching surface, then dynam-
ics may become stuck in the well with high probability
(3.6). Overall, in this scenario the behaviour of F is
important to the dynamics.

We expect that the effect of smoothing and noise
on forward evolution from a repelling sliding region
(see [25,28]) will be analogous to that for crossing,
except that solutions may escape a neighbourhood of
the switching surface on both sides. Furthermore, the
smoothing function F may generate a potential well
regardless of whether we are considering a region of
crossing, attracting sliding, or repelling sliding.

In §7 we applied these results to the dry-friction
oscillator. For a Coulomb-like piecewise-smooth model
with a step-function in the friction force, Filippov’s
convention for sliding and crossing dynamics can be
applied. We showed that forming a continuous friction
model with a cubic characteristic leads to very different
dynamics. Via the stochastic analysis the cubic function
was shown to give rise to a potential well, where the
system could linger at the discontinuity and thus exhibit
spurious sticking in regions where Coulomb’s (and
Filippov’s) model would predict immediate passage
through the switching surface. Such spurious dynamics
fits qualitatively with the experimental observation that
static and kinetic friction coefficients are often unequal
[21,29,46].

The particular stochastic formulation (2.4) was, in
part, chosen for simplicity. If the white noise is substi-
tuted for coloured noise (which may be more phys-
ically realistic) then the reduction of the system to
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one dimension that was achieved in §4 is not possi-
ble. However, basic Monte-Carlo simulations reveal
that coloured noise induces the same qualitative behav-
iour when the correlation time is short. The effects of
coloured noise with long correlation times on dynam-
ics near the switching surface remain to be investigated,
as do other forms of noise. For example, intermittent
randomness could be modelled by a compound Pois-
son process, such as a dichotomous noise that changes
value at exponentially distributed times. One may also
consider what happens if noise is enhanced near the
switching surface, perhaps because it stems from the
discontinuity itself, as with measurements taken by a
relay control system. It remains to determine whether
such “state noise” will typically dominate the influence
of the smoothing function.

9 Appendix: Supplementary calculations

9.1 Derivation of (5.9)

The probability that a solution to (4.6), starting from
ỹ = 0, eventually escapes [−r̃ , r̃ ], is 1.

Consequently integration of (5.1) with respect to t̃
over [0,∞) yields

−δ(ỹ) = d

d ỹ

(
−φR + κ̃2

2

d R

d ỹ

)
, (9.1)

where we have let R(ỹ) = ∫∞
0 p(ỹ, t̃) dt̃ . To solve

(9.1) subject to the boundary conditions R(±r̃) = 0,
we first integrate (9.1) to obtain

−φR + κ̃2

2

d R

d ỹ
= C − H(ỹ), (9.2)

where H is the Heaviside function and C is a constant.
Through the use of an integrating factor, further inte-
gration produces

R(ỹ) = 2

κ̃2 e
−2V (ỹ)

κ̃2

r̃∫
ỹ

(H(v) − C) e
2V (v)

κ̃2 dv, (9.3)

where we have chosen the limits of integration to auto-
matically satisfy R(r̃) = 0. The requirement R(−r̃) =
0 implies that C is given by (5.10). By (5.8) we have

T̃ = ∫ r̃
−r̃ R(u) du, and the expression (5.9) follows

from reversing the order of integration.

9.2 Bounding C for (6.7)

Here we derive an upper bound for C (5.10). Given any

 > 0, we have

0∫
−r̃

e
2V (w)

κ̃2 dw ≥
−1∫

−r̃

e
2V (w)

κ̃2 dw = κ̃2

2a−

(
e

2a−(r̃−1)

κ̃2 − 1

)

≥ κ̃2(1 − 
)

2a− e
2a− r̃(1−
)

κ̃2 , (9.4)

for sufficiently small ε, κ and r . We let Vmax =
maxw∈[0,1]V (w). Then

r̃∫
0

e
2V (w)

κ̃2 dw ≤ e
2Vmax

κ̃2

⎛
⎝1 +

r̃∫
1

e
−2a+(w−1)

κ̃2 dw

⎞
⎠

≤
(

1 + κ̃2

2a+

)
e

2Vmax
κ̃2 . (9.5)

From (5.10), we have

C = 1

1+
∫ 0−r̃ e

2V (w)

κ̃2 dw

∫ r̃
0 e

2V (w)

κ̃2 dw

≤ 1

1+
κ̃2(1−
)

2a− e
2a− r̃(1−
)

κ̃2

(
1+ κ̃2

2a+
)

e
2Vmax

κ̃2

≤ (1+
)a−
1−


(
1

a+ + 2
κ̃2

)
e

−2a− r̃
(

1−
− Vmax
r̃

)
κ̃2

≤ (1 + 4
) a−
(

1
a+ + 2

κ̃2

)
e

−2a− r̃(1−2
)

κ̃2 , (9.6)

where, in the last inequality we have assumed r̃ is suffi-
ciently large that Vmax

r̃ ≤ 
. Substituting 
 = 1
4 gives

the result in the text.

9.3 The double integral (6.11)

The double integral is independent of 1
r̃ , so we simply

evaluate it asymptotically in κ̃ . Since the maximum of
the exponent is attained at (u, v) = (ỹ1, ỹ2), we employ
the integral substitution:

û = u − ỹ1

κ̃
v̂ = v − ỹ2

κ̃
. (9.7)
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This yields

2

κ̃2

1∫
0

e
2V (v)

κ̃2

v∫
−1

e
−2V (u)

κ̃2 du dv = 2

1−ỹ2
κ̃∫

−ỹ2
κ̃

v̂+ ỹ2−ỹ1
κ̃∫

−1−ỹ1
κ̃

× e
−2
κ̃2

(
V (ỹ1)+ 1

2 V ′′(ỹ1)κ̃2 û2−V (ỹ2)− 1
2 V ′′(ỹ2)κ̃2 v̂2+O(κ̃3)

)
dû d v̂.

(9.8)

Laplace’s method justifies taking the limits of integra-
tion to ±∞, with which explicit integration produces

2

κ̃2

1∫
0

e
2V (v)

κ̃2

v∫
−1

e
−2V (u)

κ̃2 du dv

= 2e
2
κ̃2 (V (ỹ2)−V (ỹ1))

( √
π√

V ′′(ỹ1)

√
π√−V ′′(ỹ2)

+ O(κ̃)

)
.

(9.9)

Note V ′′(ỹ) = −A′(ỹ).
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