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Abstract The full dynamics of a spacecraft around an
asteroid, in which the gravitational orbit–attitude cou-
pling is considered, has been shown to be of great value
and interest. Nonlinear stability of the relative equilib-
ria of the full dynamics of a rigid spacecraft around a
uniformly rotating asteroid is studied with the method
of geometric mechanics. The non-canonical Hamil-
tonian structure of the problem, i.e., Poisson tensor,
Casimir functions and equations of motion, are given
in the differential geometric method. A classical kind
of relative equilibria of the spacecraft is determined
from a global point of view, at which the mass center
of the spacecraft is on a stationary orbit, and the atti-
tude is constant with respect to the asteroid. The con-
ditions of nonlinear stability of the relative equilibria
are obtained with the energy-Casimir method through
the semi-positive definiteness of the projected Hessian
matrix of the variational Lagrangian. Finally, example
asteroids with a wide range of parameters are consid-
ered, and the nonlinear stability criterion is calculated.
However, it is found that the nonlinear stability condi-
tion cannot be satisfied by spacecraft with any mass dis-
tribution parameters. The nonlinear stability condition
by us is only the sufficient condition, but not the neces-
sary condition, for the nonlinear stability. It means that
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the energy-Casimir method cannot provide any infor-
mation about nonlinear stability of the relative equilib-
ria, and more powerful tools, which are the analogues
of the Arnold’s theorem in the canonical Hamiltonian
system with two degrees of freedom, are needed for a
further investigation.
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1 Introduction

Space missions to asteroids have been one of the most
exciting space activities of the human beings in the
recent two decades. Asteroid missions have triggered
a major progress in our whole understanding of small
bodies in our solar system, and several missions have
been developed with big successes, such as NASA’s
Near Earth Asteroid Rendezvous (NEAR) to the aster-
oid Eros and JAXA’s mission Hayabusa to the asteroid
Itokawa. The impact risk near-Earth objects (NEOs)
pose to our fragile ecosystem has made the space com-
munity turn its attention to NEO hazard mitigation. On
average, every 26–30 million years a 10-km-sized aster-
oid strikes Earth, and every several hundred years there
is a Tunguska-class (100-m diameter) asteroid impact
[44]. Asteroid missions for NEO hazard mitigation may
be necessary in the near future.
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2 Y. Wang, S. Xu

The investigation on the dynamical behavior of the
spacecraft near asteroids is very important for the mis-
sion design and the navigation and control of the space-
craft. As shown in our paper [58], in comparison with
the traditional spacecraft dynamics around Earth, the
spacecraft dynamics near asteroids has a remarkable
characteristic: the gravitational coupling between the
orbital and rotational motions can be severe due to the
large ratio of the dimension of spacecraft to the orbit
radius.

The traditional spacecraft dynamics, in which the
spacecraft is treated as a point mass in the orbital motion
and the attitude motion is treated as a restricted prob-
lem on a predetermined orbit, is precise enough for
the case around Earth, since the gravitational orbit–
attitude coupling is negligible on an Earth orbit. How-
ever, it no longer has a high precision in the case around
small asteroids, where the orbit–attitude coupling can
be significant. The significant effects of the gravita-
tional orbit–attitude coupling in the dynamics of the
spacecraft near asteroids have also been pointed out
and discussed by Koon et al. [24], Scheeres [37], Wang
and Xu [47–51], and Wang et al. [57].

In the full dynamics of spacecraft around aster-
oids, the gravitationally coupled orbital and rotational
motions of the spacecraft are modeled within a uni-
fied approach, as shown by Wang et al. [58]. The full
dynamics should be more precise than the previous
orbital dynamics around asteroids with the point mass
model, such as the works by Hirabayashi et al. [18],
Hu [19], Hu and Scheeres [20], San-Juan et al. [32],
Scheeres [33,39], Scheeres and Hu [40], Scheeres et
al. [41–43]. The full spacecraft dynamics will be also
more faithful to the real motion than the attitude dynam-
ics of the spacecraft near an asteroid, such as Riverin
and Misra [31], Misra and Panchenko [30], Kumar [25],
Wang and Xu [46,52–55].

Through studies on the full dynamics, more detailed
properties of the dynamical behavior of spacecraft near
asteroids can be uncovered. These results will be very
useful for the design of future higher-precision tech-
nologies for the navigation and control of spacecraft
around asteroids, which should be more precise than
the current technologies developed based on the tradi-
tional spacecraft dynamics.

The full spacecraft dynamics around an asteroid can
be considered as a restricted model of the Full Two
Body Problem (F2BP), i.e., two rigid bodies orbit-

ing each other interacting through mutual gravitational
potential. That is to say, in our problem we only study
the motion of the spacecraft, and assume that the motion
of the asteroid is not affected by the spacecraft. The
sphere-restricted model of F2BP, in which one body is
assumed to be a homogeneous sphere, has been studied
broadly. The gravity field of the non-spherical body is
truncated on the second-order terms [2–4,21–23], or
the non-spherical body is assumed to be a general rigid
body [1,5,6,8,24,36], an ellipsoid [9,10,35], a sym-
metrical body [45] and a dumb-bell [16]. There are
also several works on the more general models of the
F2BP, in which both bodies are non-spherical, such as
Maciejewski [26], Scheeres [34,38], Koon et al. [24],
Boué and Laskar [11], McMahon and Scheeres [29]
and Woo et al. [59].

Notice that the relative equilibria are an important
qualitative property and act as the “organizing centers”
of the dynamics of the system. It is helpful to under-
stand the dynamical properties of the system near the
relative equilibria by studying the properties at the rela-
tive equilibria. Therefore, we choose relative equilibria
as the starting point of the study of the full dynamics
near asteroids. In our papers [51] and [58], the relative
equilibria and their linear stability of the full dynamics
of a rigid spacecraft around a uniformly rotating aster-
oid have been studied with the method of geometric
mechanics. We found that the full spacecraft dynamics
is intrinsically different from the traditional dynamics,
and the unstable traditional stationary orbit can be stabi-
lized through the gravitational orbit–attitude coupling,
however, at the cost of the reduction of the traditional
linear attitude stability region.

In our papers [51] and [58], non-canonical Hamil-
tonian structure of the problem, i.e., Poisson tensor,
Casimir functions and equations of motion, which gov-
ern the phase flow and phase space structures of the
system, have been derived in the differential geomet-
ric method. In those papers, a classical kind of rela-
tive equilibria of the problem has also been determined
from a global point of view by using the planar sym-
metries of the gravity field and the inertia tensor of the
spacecraft.

In this paper, we will further investigate the nonlin-
ear stability of the relative equilibria obtained in [51]
and [58] using the energy-Casimir method provided by
the geometric mechanics.
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On the nonlinear stability of relative equilibria 3

2 Statement of the problem

The problem we studied here is the same as that in Wang
et al. [58]. As described by Fig. 1, a rigid spacecraft B
is moving around an asteroid P . The body-fixed refer-
ence frames of the asteroid and the spacecraft are given
by SP ={u, v, w }and SB={i , j , k} with O and C as
their origins, respectively. The origin of the frame SP

is fixed at the mass center of the asteroid, and the coor-
dinate axes are chosen to be aligned along the principal
moments of inertia. The principal moments of inertia
of the asteroid are assumed to satisfy the following
inequations

IP,zz > IP,yy, IP,zz > IP,xx . (1)

Then the second degree and order-gravity field of
the asteroid can be represented by the harmonic coef-
ficients C20 and C22 with other harmonic coefficients
vanished [19]. The harmonic coefficients C20 and C22

are defined by

C20 = − 1

2Ma2
e

(
2IP,zz − IP,xx − IP,yy

)
< 0,

C22 = 1

4Ma2
e

(
IP,yy − IP,xx

)
,

(2)

where M and ae are the mass and the mean equator-
ial radius of the asteroid, respectively. The frame SB is
attached to the mass center of the spacecraft and coin-
cides with the principal axes reference frame. The mass
center of the asteroid is assumed to be stationary in the
inertial space, and the asteroid is in a uniform rotation
around its maximum-moment principal axis, i.e., the w

axis.

Fig. 1 The spacecraft moving around a uniformly rotating aster-
oid

3 Non-canonical Hamiltonian structure
and relative equilibria

The non-canonical Hamiltonian structure of the prob-
lem, i.e., Poisson tensor, Casimir functions and equa-
tions of motion, and a classical kind of relative equi-
libria of the problem have already been obtained in the
papers [51] and [58]. Here we only list the main results
obtained there, see those papers for the details.

The attitude of the spacecraft is described with
respect to the body-fixed frame of the asteroid SP by
A,

A = [i, j, k] = [α, β, γ ]T ∈ SO(3), (3)

where the vectors i , j , and k are components of the
unit axial vectors of the body-fixed frame SB in the
body-fixed frame SP , respectively, α, β, and γ are
coordinates of the unit vectors u, v, and w in the body-
fixed frame SB , respectively, and SO(3) is the three-
dimensional special orthogonal group. The matrix A
is also the coordinate transformation matrix from the
body-fixed frame SB to the body-fixed frame SP .

The position vector of the mass center of the space-
craft C with respect to the mass center of the asteroid
O expressed in the body-fixed frame SP is given by the
vector r . The configuration space of the problem is the
Lie group

Q = SE(3), (4)

known as the special Euclidean group of three space
with elements (A, r), which is the semidirect product
of SO (3) and R

3.
The phase space of the system is the cotangent bun-

dle T ∗Q, the coordinates of which are chosen as the
body-fixed coordinates given by

z =
[
�T ,αT , βT , γ T , RT , PT

]T ∈ R
18, (5)

where � is the angular momentum of the spacecraft
with respect to the inertial space, R = AT r is the posi-
tion vector of the spacecraft, and P is the linear momen-
tum of the spacecraft with respect to the inertial space.
�, R, and P are all expressed in the body-fixed frame
SB .

The Poisson bracket {·, ·}R18(z) of the non-
canonical Hamiltonian system of the problem in the
coordinates z is given in terms of the Poisson tensor as
follows:
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4 Y. Wang, S. Xu

{ f, g}R18(z) = (∇z f )T B(z) (∇zg) (6)

for any f, g ∈ C∞(R18). The Poisson tensor B(z),
which has been derived in the differential geometric
method by Wang and Xu [47], is given by

B(z) =

⎡

⎢⎢⎢⎢⎢⎢
⎢
⎣

�̂ α̂ β̂ γ̂ R̂ P̂
α̂ 0 0 0 0 0
β̂ 0 0 0 0 0
γ̂ 0 0 0 0 0
R̂ 0 0 0 0 I3×3

P̂ 0 0 0 −I3×3 0

⎤

⎥⎥⎥⎥⎥⎥
⎥
⎦

, (7)

where I3×3 is the 3×3 identity matrix. The hat map ∧ :
R

3 → SO(3) is the usual Lie algebra isomorphism,

and for a vector a = [a1, a2, a3
]T ∈ R

3,

â =
⎡

⎣
0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤

⎦ . (8)

The 18 × 18 antisymmetric and degenerated Poisson
tensor B(z) has six geometric integrals as independent
Casimir functions

C1(z) = 1

2
αT α ≡ 1

2
, C2(z) = 1

2
βT β ≡ 1

2
,

C3(z) = 1

2
γ T γ ≡ 1

2
,

C4(z) = αT β ≡ 0, C5(z) = αT γ ≡ 0,

C6(z) = βT γ ≡ 0.

The twelve-dimensional invariant manifold or sym-
plectic leaf of the system can be defined in R

18 by
Casimir functions as follows:

� =
{ [

�T ,αT , βT , γ T , RT , PT
]T ∈ R

18

| C1(z) = C2(z) = C3(z) = 1

2
,

C4(z) = C5(z) = C6(z) = 0} .

(9)

The symplectic structure on this symplectic leaf is
defined by restriction of the Poisson bracket {·, ·}R18(z)
to �.

The six-dimensional nullspace of B(z) can be
obtained from Casimir functions as follows:

N [B(z)] = span

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎛

⎜⎜⎜
⎜⎜⎜
⎝

0
α

0
0
0
0

⎞

⎟⎟⎟
⎟⎟⎟
⎠

,

⎛

⎜⎜⎜
⎜⎜⎜
⎝

0
0
β

0
0
0

⎞

⎟⎟⎟
⎟⎟⎟
⎠

,

⎛

⎜⎜⎜
⎜⎜⎜
⎝

0
0
0
γ

0
0

⎞

⎟⎟⎟
⎟⎟⎟
⎠

,

⎛

⎜⎜⎜
⎜⎜⎜
⎝

0
β

α

0
0
0

⎞

⎟⎟⎟
⎟⎟⎟
⎠

,

×

⎛

⎜⎜⎜
⎜⎜
⎜
⎝

0
γ

0
α

0
0

⎞

⎟⎟⎟
⎟⎟⎟
⎠

,

⎛

⎜⎜⎜
⎜⎜⎜
⎝

0
0
γ

β

0
0

⎞

⎟⎟⎟
⎟⎟⎟
⎠

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

. (10)

The Hamiltonian of the system in coordinates z can be
written as follows:

H(z) = 1

2
�T I−1� + |P |2

2m
− ωT �T γ

−ωT PT (γ̂ R) + V (z), (11)

where m is the mass of the spacecraft, and the inertia
tensor I is given by

I = diag
{

Ixx , Iyy, Izz
}
, (12)

with the principal moments of inertia of the spacecraft
Ixx , Iyy , and Izz . ωT is the angular velocity of the uni-
form rotation of the asteroid. Based on the results by
Wang and Xu [52], through some rearrangements, the
explicit formulation of the second-order approximation
of the gravitational potential V (z) in Eq. (11) can be
written as follows:

V (R, α, β, γ ) = −μm

R

− μ

2R3

[
tr (I) − 3R̄

T
I R̄ − mτ0 + 3mτ0

(
γ · R̄

)2

+ 6mτ2

((
α · R̄

)2 − (β · R̄
)2)]

, (13)

where μ = G M, G is the gravitational constant, τ0 =
a2

e C20, τ2 = a2
e C22, R = |R|, and R̄ = R/R is the

unit vector along the vector R.
The equations of motion can be written in the Hamil-

tonian form as follows:

ż = B(z)∇z H(z). (14)

The explicit equations of motion can be obtained from
Eqs. (11) and (14):
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On the nonlinear stability of relative equilibria 5

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

�̇

α̇

β̇

γ̇

Ṙ
Ṗ

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

= B(z)

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

I−1� − ωT γ

∂V/∂α

∂V/∂β

−ωT � − ωT R̂ P + ∂V/∂γ

−ωT P̂γ + ∂V/∂ R
−ωT γ̂ R + P/m

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

=

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

�̂ I−1� + ∑

b=α,β,γ ,R
b̂ (∂V/∂b)

α̂
(
I−1� − ωT γ

)

β̂
(
I−1� − ωT γ

)

γ̂
(
I−1�

)

R̂
(
I−1�

)+ P/m
P̂
(
I−1�

)− ∂V/∂ R

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

. (15)

According to Beck and Hall [7], and Hall [17], the
relative equilibria of the system correspond to the sta-
tionary points of the Hamiltonian constrained by the
Casimir functions. The stationary points can be deter-
mined by the first variation condition of the variational
Lagrangian ∇F(ze) = 0, where subscript e is used to
denote the value at relative equilibria. The variational
Lagrangian F(z) is given by

F(z) = H(z) −
6∑

i=1

μi Ci (z). (16)

By using the formulations of the Hamiltonian Eq. (11)
and the Casimir functions, the equilibrium conditions
are obtained as follows:

I−1�e − ωT γ e = 0, (17a)

− μ

2R3
e

[
12m τ2

(
αe · R̄e

)
R̄e
]− μ1αe

−μ4βe − μ5γ e = 0, (17b)
μ

2R3
e

[
12m τ2

(
βe · R̄e

)
R̄e
]− μ2βe − μ4αe

−μ6γ e = 0, (17c)

−ωT �e − ωT R̂e Pe − μ

2R3
e

[
6mτ0

(
γ e · R̄e

)
R̄e
]

−μ3γ e − μ5αe − μ6βe = 0, (17d)

−ωT P̂eγ e + ∂V

∂ R

∣∣∣∣
e

= 0, (17e)

−ωT γ̂ e Re + Pe

m
= 0, (17f)

where the partial derivate of the gravitational potential
in Eq. (17e) is obtained as

∂V

∂ R
= μm

R2 R̄ − 3μ

2R4

×

⎧
⎪⎪⎨

⎪⎪⎩

⎧
⎨

⎩

5R̄
T

I R̄ − tr (I) + τ0m
(

1 − 5
(
γ · R̄

)2)

−10τ2m
((

α · R̄
)2 − (β · R̄

)2)

⎫
⎬

⎭
R̄

−2I R̄+2τ0m
(
γ · R̄

)
γ +4τ2m

((
α · R̄

)
α−(β · R̄

)
β
)

⎫
⎪⎪⎬

⎪⎪⎭
,

(18)

which is actually the gravitational force of the space-
craft in the body-fixed frame SB .

Equation (17a) implies that

�e = ωT Iγ e, (19)

i.e., the spacecraft has the same angular velocity as the
asteroid and the attitude of the spacecraft is stationary
with respect to the asteroid.

Equation (17f) implies that

Pe = mωT γ̂ e Re, (20)

i.e., the mass center of the spacecraft is moving syn-
chronously with the rotation of the asteroid. That is
to say, at the relative equilibria the mass center of the
spacecraft is on a stationary orbit. Insertion of Eq. (20)
into Eq. (17e) yields the balance equation of the grav-
itational force

mω2
T

[
Re − (Re · γ e)γ e

] = ∂V

∂ R

∣∣∣∣
e
. (21)

The information of the attitude of the spacecraft α, β,
and γ are included in Eq. (21) due to the orbit–attitude
coupling, then the stationary orbit is the generalization
of the traditional stationary orbit with the point mass
model.

We can obtain several geometrical properties of
the relative equilibria based on the equilibrium con-
ditions Eq. (17). Taking the dot product of βe with Eq.
(17b) yields μ4 = −(6mτ2μ/R3

e )(αe · R̄e)(βe · R̄e),
while the dot product of αe with Eq. (17c) yields
μ4 = (6mτ2μ/R3

e )(αe · R̄e)(βe · R̄e). Then we will
have μ4 =0 and (αe · R̄e)(βe · R̄e) = 0, which means
the mass center of the spacecraft is located within the
principal plane of asteroid αe −γ e or βe −γ e. Accord-
ing to Eq. (21), we see that at the relative equilibria the
gravitational force is within the same principal plane
αe − γ e or βe − γ e, and is perpendicular to the rota-
tional axis of the asteroid γ e. That is to say, the gravita-
tional force balances the centrifugal force of the orbital
motion.

Different types of relative equilibria can exist in the
equilibrium conditions Eq. (17). We have determined a
kind of relative equilibria using the planar symmetries
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6 Y. Wang, S. Xu

Fig. 2 A classical relative equilibrium of the spacecraft

of the gravity field and the inertia tensor in Wang et al.
[58].

At this classical kind of relative equilibria, the mass
center of the spacecraft is located at the principal axes
of the asteroid, and αe, βe and γ e are principal axes of
the inertia tensor of the spacecraft. As shown by Fig.
2, we assume that the mass center of the spacecraft is
located on the principal axis u

R̄e = αe = [1, 0, 0]T , βe = [0, 1, 0]T ,

γ e = [0, 0, 1]T . (22)

According to Eqs. (19) and (20), at this relative equi-
librium we have

�e = [0, 0, ωT Izz
]T

, (23)

Pe = [0, mωT Re, 0]T . (24)

The balance equation of the gravitational force Eq.
(21) can be satisfied, with the radius of the orbit Re

determined by

ω2
T Re = μ

R2
e
− 3μ

2R4
e

{
2

Ixx

m
− Iyy

m
− Izz

m
+ τ0 − 6τ2

}
,

(25)

which can be obtained through Eqs. (18) and (21).
According to Eq. (25), the orbital motion of the space-
craft is affected by its moments of inertia. This effect
can be considered equivalently as a change of the
oblateness and ellipticity of the asteroid from the view-
point of the point mass orbital model. This is the con-
sequence of the mutual coupling between the orbital
and rotational motions. Notice that in the case of
Ixx = Iyy = Izz , i.e., the mass distribution of the space-
craft is a homogeneous sphere under the second-order
approximation, the effects of the moments of inertia in
the orbital motion are vanished. This is consistent with

the physical origin of the gravitational orbit–attitude
coupling. If the gravitational orbit–attitude coupling is
ignored, Eq. (25) is reduced to the classical result by
Hu [19] on the stationary orbit of a point mass in a
second-degree and order gravity field.

The Eqs. (17b–17d) can also been satisfied by

μ1 = −6μmτ2

R3
e

, μ2 = 0, μ3 = −ω2
T Izz − mω2

T R2
e ,

μ4 = μ5 = μ6 = 0. (26)

Then, the classical kind of relative equilibria are
described by Eqs. (22–26).

4 Nonlinear stability of the relative equilibria

In this section, we will investigate the nonlinear stabil-
ity of the relative equilibria obtained above using the
modified energy-Casimir method provided by the geo-
metric mechanics adopted by Beck and Hall [7] and
Hall [17].

4.1 Nonlinear stability

The energy-Casimir method, which is the generaliza-
tion of the Lagrange–Dirichlet criterion in the canoni-
cal Hamiltonian system, is a powerful tool provided by
the geometric mechanics for determining the nonlinear
stability of the relative equilibria in a non-canonical
Hamiltonian system [28]. It is worth mentioning that a
modified energy-Casimir method was adopted by Beck
and Hall [7], and Hall [17] in the studies of the attitude
stability of a rigid spacecraft on a circular orbit in a
central gravitational field. This method was also dis-
cussed in the Appendix C of Wang et al. [56], where
it was called Lagrange multiplier approach. This mod-
ified method, in which the stability problem is con-
sidered as a constrained variational problem, is more
convenient for practical applications than the original
energy-Casimir method, since there is no requirement
to choose a particular Casimir function [56].

According to the Lagrange–Dirichlet criterion in the
canonical Hamiltonian system, the nonlinear stability
of the equilibrium point is determined by the distrib-
utions of the eigenvalues of the Hessian matrix of the
Hamiltonian [28]. If all the eigenvalues of the Hessian
matrix of the Hamiltonian are positive or negative, that
is the Hessian matrix of the Hamiltonian is positive- or
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On the nonlinear stability of relative equilibria 7

negative-definite, then the equilibrium point is nonlin-
ear stable. This follows from the conservation of energy
and the fact that the level sets of the Hamiltonian near
the equilibrium point are approximately ellipsoids.

However, the Hamiltonian system we considered
here is non-canonical, and the phase flow of the sys-
tem is constrained on the twelve-dimensional invariant
manifold or symplectic leaf � by the Casimir func-
tions. Therefore, rather than considering general pertur-
bations in the whole phase space as in the Lagrange-
Dirichlet criterion in the canonical Hamiltonian sys-
tem, we need to restrict the consideration to perturba-
tions on T �|ze

, the tangent space to the invariant mani-
fold � at the relative equilibria ze, i.e., the range space
the Poisson tensor B(z) at the relative equilibria ze,
denoted by R(B(ze)). This is the basic principle of the
energy-Casimir method that the Hessian matrix needs
to be considered restrictedly on the invariant mani-
fold � of the system. This restriction is constituted
through the projected Hessian matrix of the variational
Lagrangian F(z) in Beck and Hall [7], and Hall [17].

According to the modified energy-Casimir method
adopted by Beck and Hall [7], and Hall [17], the condi-
tions of nonlinear stability of the relative equilibria ze

can be obtained through the distributions of the eigen-
values of the projected Hessian matrix of the varia-
tional Lagrangian F(z). The projected Hessian matrix
of the variational Lagrangian F(z) has the same num-
ber of zero eigenvalues as the linearly independent

Casimir functions of the system, which are associ-
ated with the nullspace N [B(ze)], i.e., the comple-
ment space of the tangent space to the invariant mani-
fold at the relative equilibria ze. The remaining eigen-
values of the projected Hessian matrix are associ-
ated with the tangent space to the invariant mani-
fold T �|ze

, and if they are all positive, then the rel-
ative equilibria ze is a constrained minimum on the
invariant manifold � and therefore it is nonlinear
stable.

According to Beck and Hall [7], the projected
Hessian matrix is given by P(ze)∇2 F(ze)P(ze), where
the projection operator is given by

P (ze) = I18×18 − K (ze)
(

K (ze)
T K (ze)

)−1
K (ze)

T

(27)

K (ze)=
[ ∇zC1 (z)|e · · · ∇zCi (z)|e · · · ∇zC6 (z)|e

]

=

⎡

⎢
⎢⎢⎢⎢⎢
⎣

0 0 0 0 0 0
αe 0 0 βe γ e 0
0 βe 0 αe 0 γ e
0 0 γ e 0 αe βe
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥
⎥⎥⎥⎥⎥
⎦

(28)

By using the formulation of the second-order approx-
imation of the gravitational potential Eq. (13), the
Hessian of the variational Lagrangian ∇2 F(z) is cal-
culated as

∇2 F (z)

=

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

I−1 0 0 −ωT I3×3

0 − 6μmτ2
R5 RRT − μ1I3×3 −μ4I3×3 −μ5I3×3

0 −μ4I3×3
6μmτ2

R5 RRT − μ2I3×3 −μ6I3×3

−ωT I3×3 −μ5I3×3 −μ6I3×3 − 3μmτ0
R5 RRT − μ3I3×3

0 ∂2V
∂α∂ R

∂2V
∂β∂ R

∂2V
∂γ ∂ R − ωT P̂

0 0 0 ωT R̂

0 0
(

∂2V
∂α∂ R

)T
0

(
∂2V

∂β∂ R

)T
0

(
∂2V

∂γ ∂ R

)T + ωT P̂ −ωT R̂
∂2V
∂ R2 ωT γ̂

−ωT γ̂ 1
m I3×3

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

(29)
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The second-order partial derivates of the gravita-
tional potential in Eq. (29) are obtained as follows:

∂2V

∂α∂ R
= ∂

∂α

(
∂V

∂ R

)
= −6μmτ2

R4

×
[(

α · R̄
)

I3×3 + α R̄
T − 5

(
α · R̄

)
R̄ R̄

T
]
, (30)

∂2V

∂β∂ R
= ∂

∂β

(
∂V

∂ R

)
= 6μmτ2

R4

×
[(

β · R̄
)

I3×3 + β R̄
T − 5

(
β · R̄

)
R̄ R̄

T
]
, (31)

∂2V

∂γ ∂ R
= ∂

∂γ

(
∂V

∂ R

)
= −3μmτ0

R4

×
[(

γ · R̄
)

I3×3 + γ R̄
T − 5

(
γ · R̄

)
R̄ R̄

T
]
, (32)

∂2V

∂ R2 = μm

R3

(
I3×3 − 3R̄ R̄

T
)

+3μ

R5

{
[tr (I) − τ0m] R̄ R̄

T

+I − τ0mγ γ T − 2τ2m
(
ααT − ββT )

}

+ 3μ

2R5

⎧
⎨

⎩

5R̄
T

I R̄ − tr (I) + τ0m
(

1 − 5
(
γ · R̄

)2)

−10τ2m
((

α · R̄
)2 − (β · R̄

)2)

⎫
⎬

⎭

×
{

7R̄ R̄
T − I3×3

}

+15μ

R5

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−I R̄ R̄
T − R̄ R̄

T
I +τ0m

(
γ · R̄

) (
γ R̄

T + R̄γ
T
)

+2τ2m

⎡

⎣

(
α · R̄

) (
α R̄

T + R̄α
T
)

− (β · R̄
) (

β R̄
T + R̄β

T
)

⎤

⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

(33)

As described by Eqs. (22)-(26), at the relative equi-
libria ze, we have R̄e = αe = [1, 0, 0]T , βe =
[0, 1, 0]T , γ e = [0, 0, 1]T , �e = [0, 0, ωT Izz

]T
,

Pe = [0, mωT Re, 0]T , ω2
T Re = μ

R2
e
− 3μ

2R4
e

{
2 Ixx

m − Iyy
m

− Izz
m + τ0 − 6τ2

}
, μ1 = − 6μmτ2

R3
e

, μ3 = −ω2
T Izz −

mω2
T R2

e , and μ2 = μ4 = μ5 = μ6 = 0. Then
the Hessian ∇2 F(ze) at the relative equilibria ze

is:

∇2 F (ze)

=

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

I−1 0 0 −ωT I3×3

0 6μmτ2
R3

e

(
I3×3 − αeα

T
e

)
0 0

0 0 6μmτ2
R3

e
αeα

T
e 0

−ωT I3×3 0 0 ω2
T

(
Izz + m R2

e

)
I3×3 − 3μmτ0

R3
e

αeα
T
e

0 ∂2V
∂α∂ R

∣∣∣
e

∂2V
∂β∂ R

∣∣∣
e

∂2V
∂γ ∂ R

∣∣∣
e
− ω2

T m Reβ̂e

0 0 0 ωT Reα̂e

0 0
(

∂2V
∂α∂ R

∣∣∣
e

)T
0

(
∂2V

∂β∂ R

∣∣∣
e

)T
0

(
∂2V

∂γ ∂ R

∣∣∣
e

)T + ω2
T m Reβ̂e −ωT Reα̂e

∂2V
∂ R2

∣∣∣
e

ωT γ̂ e

−ωT γ̂ e
1
m I3×3

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

(34)

The second-order partial derivates of the gravita-
tional potential in Eq. (34) at the relative equilibria ze

are obtained through Eqs. (30–33) as follows:

∂2V

∂α∂ R

∣∣
∣∣
e

= −6μmτ2

R4
e

[
I3×3 − 4αeα

T
e

]
, (35)
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∂2V

∂β∂ R

∣∣
∣∣
e

= 6μmτ2

R4
e

βeα
T
e , (36)

∂2V

∂γ ∂ R

∣∣∣
∣
e

= −3μmτ0

R4
e

γ eα
T
e , (37)

∂2V

∂ R2

∣∣∣∣
e

= μm

R3
e

(
I3×3 − 3αeα

T
e

)

+ 3μ

2R5
e

⎧
⎪⎪⎨

⎪⎪⎩

[15Ixx − 5tr (I)+5τ0m−34τ2m] αeα
T
e

+4τ2mβeβ
T
e

−2τ0mγ eγ
T
e +2I −[5Ixx −tr (I)+τ0m

− 10τ2m] I3×3

⎫
⎪⎪⎬

⎪⎪⎭
.

(38)

In Eqs. (34–38), we have

α̂e =
⎡

⎣
0 0 0
0 0 −1
0 1 0

⎤

⎦ , β̂e =
⎡

⎣
0 0 1
0 0 0
−1 0 0

⎤

⎦ ,

γ̂ e =
⎡

⎣
0 −1 0
1 0 0
0 0 0

⎤

⎦ , αeα
T
e =
⎡

⎣
1 0 0
0 0 0
0 0 0

⎤

⎦ , (39)

βeβ
T
e =
⎡

⎣
0 0 0
0 1 0
0 0 0

⎤

⎦ , γ eγ
T
e =
⎡

⎣
0 0 0
0 0 0
0 0 1

⎤

⎦ ,

βeα
T
e =
⎡

⎣
0 0 0
1 0 0
0 0 0

⎤

⎦ , γ eα
T
e =
⎡

⎣
0 0 0
0 0 0
1 0 0

⎤

⎦ . (40)

As stated above, the nonlinear stability of the rel-
ative equilibria ze depends on the eigenvalues of the
projected Hessian matrix of the variational Lagrangian
F(z). The characteristic polynomial of the projected
Hessian matrix P(ze)∇2 F(ze)P(ze) can be calculated
by

P(s) = det
[
s I18×18 − P(ze)∇2 F(ze)P(ze)

]
. (41)

The eigenvalues of the projected Hessian matrix are
roots of the characteristic equation, which is given by

det
[
s I18×18 − P(ze)∇2 F(ze)P(ze)

]
= 0.

(42)

With the help of symbolic calculation in Matlab, the
characteristic equation of Eq. (42) can be obtained with
the following form:

s6(Izzs − 1)(m R5
e s2 + A1s + A0)

(2m R8
e s3 + B2s2 + B1s + B0)

(4Ixx R8
e s3 + C2s2 + C1s + C0)

(2m Iyys3 + D2s2 + D1s + D0) = 0.

(43)

The coefficients A1, A0, B2, B1, B0, C2, C1, C0 D2, D1

and D0 are functions of the parameters of the system:
μ, Re, ωT , τ0, τ2, m, Ixx , Iyy and Izz . The explicit for-
mulations of these coefficients are given in Appendix.

Notice that in our problem there are six linearly inde-
pendent Casimir functions, then as shown by Eq. (43),
the projected Hessian matrix have six zero eigenvalues
associated with the six-dimensional complement space
of the tangent space to the invariant manifold at the rela-
tive equilibria ze. The remaining twelve eigenvalues are
associated with the twelve-dimensional tangent space
T �|ze

to the invariant manifold, and if they are all
positive, then the relative equilibria ze is a constrained
minimum on the invariant manifold �, therefore it is
nonlinear stable.

Since the projected Hessian matrix is symmetrical,
the eigenvalues are guaranteed to be real by the coef-
ficients of the polynomials in Eq. (43) intrinsically.
Therefore, in the conditions of nonlinear stability of
the relative equilibria, it is only needed to guarantee
that the roots of the polynomial equations in Eq. (43)
are positive.

According to the theory of the distribution of the
roots of the polynomial equation, notice that Izz > 0 is
always satisfied, that the remaining twelve eigenvalues
in Eq. (43) are positive is equivalent to

A1 < 0, A0 > 0,

B2 < 0, B1 > 0, B0 < 0,

C2 < 0, C1 > 0, C0 < 0,

D2 < 0, D1 > 0, D0 < 0.

(44)

We have given the conditions of the nonlinear stability
of the relative equilibria in Eq. (44). Given the para-
meters of the system, we can determine whether the
relative equilibria are nonlinear stable using the stable
criterion in Eq. (44).

4.2 Case studies

However, the expressions of the coefficients A1, A0,
B2, B1, B0, C2, C1, C0 D2, D1 and D0 in terms of the
parameters of the system are tedious, because there are
large amount of parameters in the system and the con-
sidered problem is a very high-dimensional system, the
invariant manifold of which is twelve-dimensional. It
is difficult to get general conditions of nonlinear stabil-
ity through Eq. (44) in terms of the parameters of the
system μ, Re, ωT , τ0, τ2, m, Ixx , Iyy and Izz .
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Therefore, we will consider an example asteroid
P , which has same mass, mean radius, and rotational
velocity ωT as the asteroid 4769 Castalia in Scheeres
et al. [41], but has different parameters for the oblate-
ness τ0 and ellipticity τ2. The parameters of the aster-
oid P are as follows: M = 1.4091 × 1012 kg, τ0 =
−2.9485 × 104 m2, τ2 = −2.7954 × 104 m2 and
ωT = 4.2883 × 10−4 s−1 with the uniform rotational
period equal to 4.07 h. Notice that the ellipticity τ2

is negative, and then the spacecraft is located on the
intermediate-moment principal axis of the asteroid, i.e.,
the shorter-axis of the equatorial plane.

The nonlinear stability criterion in Eq. (44) can be
determined by three mass distribution parameters of
the spacecraft: Ixx/m, Iyy/Ixx , and Izz/Ixx . The ratio
Ixx/m describes the characteristic dimension of the
spacecraft; the ratios Iyy/Ixx and Izz/Ixx describe the
shape of the spacecraft to the second-order.

Next we will determine the nonlinear stability by
Eq. (44) in a wide range of the three parameters of the
spacecraft: Ixx/m, Iyy/Ixx , and Izz/Ixx . Six different
values of the parameter Ixx/m are considered as fol-
lows:
Ixx

m
= 2, 10, 100, 500, 800, 1250, (45)

which have covered spacecraft with the characteristic
dimension order of 1–100 m.

In the case of each value of Ixx/m, the parameters
σy and σx are considered in the following range

− 1 ≤ σy ≤ 1, −1 ≤ σx ≤ 1, (46)

where σy and σx are defined as

σy =
(

Izz − Ixx

Iyy

)
, σx =

(
Izz − Iyy

Ixx

)
. (47)

The range in Eq. (46) has covered all the possible mass
distributions of the spacecraft to the second order.

For given mass distribution parameters of the space-
craft, the orbit radius Re at the relative equilibria can
be calculated by Eq. (25). Then with all the parameters
of the system known, i.e., μ, ωT , Re, τ0, τ2, m, Ixx , Iyy

and Izz , the nonlinear stability criterion in Eq. (44) can
be calculated.

We calculate the nonlinear stability criterion in
Eq. (44) for spacecraft within the above range of the
mass distribution parameters given by Eqs. (45) and
(46). We try to plot the points, which correspond to
the mass distribution parameters guaranteeing the non-
linear stability, on the σy − σx plane in the six cases

of different values of Ixx/m. Unfortunately, it is found
that with any value of Ixx/m, no mass distribution para-
meters in Eq. (46) can guarantee that the nonlinear sta-
bility criterion in Eq. (44) is satisfied, i.e., that all the
remaining twelve eigenvalues in Eq. (43) are positive.

Then, different example asteroids with a wide range
of the parameters ωT , τ0, and τ2 are considered, and
the nonlinear stability criterion in Eq. (44) is calculated.
However, it is found that the criterion in Eq. (44) cannot
be satisfied by the spacecraft with any mass distribution
parameters in the case of any example asteroid.

4.3 Some discussions on the nonlinear stability
condition

It is worth our special attention that the nonlinear sta-
bility condition that the relative equilibria ze is a con-
strained minimum on the invariant manifold �, i.e., all
the remaining twelve eigenvalues in Eq. (43) are posi-
tive, is actually the definition of the formal stability of
the relative equilibria. For a finite-dimensional system,
the formal stability implies nonlinear stability, but the
inverse is not true. That is to say, the nonlinear stability
condition we obtained by the energy-Casimir method
in this paper is only the sufficient condition, but not the
necessary condition, for the nonlinear stability of the
relative equilibria.

Therefore, the fact that the nonlinear stability crite-
rion in Eq. (44) cannot be satisfied does not imply that
the relative equilibria are always nonlinear unstable.
Indeed, it means that the energy-Casimir method we
adopted in this paper cannot provide any information
about the nonlinear stability of the relative equilibria,
and other more powerful tools are needed for a further
investigation.

For a canonical Hamiltonian system, when the
quadratic part of the Hamiltonian, i.e., the Hessian of
the Hamiltonian, is not sign definite, the Lagrange–
Dirichlet criterion is not applicable anymore. For the
system with two degrees of freedom, the Arnold’s the-
orem can be used in the case of nonresonance, and in
the case of the resonances other methods by Markeev
[27], Cabral and Meyer [12] and Elipe et al. [13–15]
should be adopted. However, in our problem, a non-
canonical Hamiltonian system with six degrees of free-
dom is dealt with. These existing methods mentioned
above are not applicable in our problem, and a new
method needs to be adopted.
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5 Conclusions

The nonlinear stability of the relative equilibria of the
full dynamics of a rigid spacecraft around a uniformly
rotating asteroid has been studied with the method of
geometric mechanics. Unlike the traditional spacecraft
dynamics, in the full dynamics the spacecraft is consid-
ered as a rigid body and the orbital and attitude motions
of the spacecraft are modeled in a unified approach,
i.e., the gravitational orbit–attitude coupling is taken
into account.

Based on the non-canonical Hamiltonian structure
and a classical kind of relative equilibria of the problem,
we have investigated the nonlinear stability of the rel-
ative equilibria using the energy-Casimir method pro-
vided by geometric mechanics. The nonlinear stabil-
ity criterion of the relative equilibria has been given
through the semi-positive definiteness of the projected
Hessian matrix of the variational Lagrangian.

Finally, example asteroids with a wide range of
parameters were considered, and nonlinear stability
criterion was calculated. However, it was found that
the nonlinear stability condition cannot be satisfied by
the spacecraft with any mass distribution parameters.
Notice that the nonlinear stability condition that the
relative equilibrium is a constrained minimum on the
invariant manifold is actually the definition of the for-
mal stability, and it is only the sufficient condition, but
not the necessary condition, for the nonlinear stability
of the relative equilibria. Therefore, the fact that the
nonlinear stability condition cannot be satisfied does
not imply that the relative equilibria are always nonlin-
ear unstable. It means that the energy-Casimir method
adopted by us in this paper cannot provide any informa-
tion about the nonlinear stability of the relative equilib-
ria, and more powerful tools, which are the analogues
of the Arnold’s theorem in the canonical Hamiltonian
system with two degrees of freedom, are needed for a
further investigation.
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Appendix: Formulations of coefficients
in characteristic equation

The explicit formulations of the coefficients in Eq. (43)
are given as follows:

A1 = 36 τ2 m2μ − 6 τ0 m2μ + 2 R2
e m2μ

+ 6 mμ Iyy − 12 Ixx mμ + 6 mμIzz − R5
e . (48)

A0 = 6 μ mτ0 − 2 R2
e mμ − 36 μ mτ2 − ω2

T R5
e m

− 6 μ Iyy + 12 Ixx μ − 6 μ Izz . (49)
B2 = −9m R3

e μ Iyy + 3 m2 R3
e μ τ0 − 3 m R3

e μ Izz

− 42 m2 R3
e μ τ2 − 2 m2 R5

e μ − 12 m2 R5
e μ τ2

+ 12 m R3
e Ixx μ − 2 R8

e . (50)
B1 = −72 m2μ2τ2 Ixx + 2 μ m R5

e − 18 m3μ2τ2 τ0

− 3 m R3
e μ τ0 + 12 μ m R5

e τ2 + 12 m3μ2τ2 R2
e

+ 9 R3
e μ Iyy + 54 m2μ2τ2 Iyy − 12 R3

e Ixx μ

+ 3 R3
e μ Izz + 18 m2μ2τ2 Izz + 108 m3μ2τ 2

2

− 2 mω2
T R8

e + 42 m R3
e μ τ2. (51)

B0 = −18 mμ2τ2 Izz + 72 m Ixx μ2τ2 − 12 m2 R2
e μ2τ2

+ 12 m2 R5
e ω2

T τ2 μ + 18 m2μ2τ2 τ0

− 108 m2μ2τ 2
2 − 54 mμ2τ2 Iyy . (52)

C2 = −2 R8
e ω2

T Ixx Izz − 4 m R5
e Ixx μ − 4 R8

e

+ 24 R3
e I 2

xxμ − 6 R3
e Ixx μ Iyy − 18 R3

e Ixx μ Izz

− 60 m R3
e Ixx μ τ2 − 2 mω2

T Ixx R10
e + 6 m R5

e Ixx μ τ0

− 12 m R5
e Ixx μ τ2 + 18 m R3

e Ixx μ τ0. (53)
C1 = −2 R8

e ω2
T Ixx + 4 μ m R5

e + 12 μ m R5
e τ2 − 24 R3

e Ixx μ

+ 18 R3
e μ Izz − 9 m R3

e Ixx μ ω2
T Izz τ0

− 9 m Ixx μ2τ0 Iyy − 72 m I 2
xxμ

2τ2 + 11 m R5
e Ixx μ ω2

T Izz

+ 6 m2 R5
e ω2

T τ2 μ Ixx + 3 R3
e Ixx μ ω2

T Iyy Izz

− 6 μ m R5
e τ0 + 3 m2 R5

e ω2
T μ τ0 Ixx + 2 R8

e ω2
T Izz

+ 3 m R5
e Ixx μ ω2

T Iyy + 2 mω2
T R10

e + 9 R3
e Ixx μ ω2

T I 2
zz

− 2 m2ω4
T Ixx R10

e + 2 m2 Ixx μ ω2
T R7

e + 18 m Ixx μ2τ2 Iyy

− 72 m2μ2τ2 τ0 Ixx − 12 R3
e I 2

xxμ ω2
T Izz

+ 108 m2 Ixx τ 2
2 μ2 − 6 m2 R2

e Ixx μ2τ0 + 12 m2 R2
e Ixx μ2τ2

− 27 m Ixx μ2τ0 Izz − 12 m R5
e I 2

xxμ ω2
T

+ 9 m2μ2τ 2
0 Ixx +54 m Ixx μ2τ2 Izz +30 m R3

e Ixx μ τ2 ω2
T Izz

− 18 m R3
e μ τ0 + 36 m I 2

xxμ
2τ0

+ 60 m R3
e μ τ2 + 6 R3

e μ Iyy . (54)

C0 = −9 m2μ2τ 2
0 + 2 m2ω4

T R10
e − 11 μ m R5

e ω2
T Izz

− 3 μ m R5
e ω2

T Iyy + 3 R3
e Ixx μ ω2

T Iyy + 21 R3
e Ixx μ ω2

T Izz

− 3 m2 R5
e ω2

T μ τ0 − 3 R3
e μ ω2

T Iyy Izz + 14 ω2
T R5

e m Ixx μ

− 6 m2 R5
e ω2

T τ2 μ − 9 R3
e μ ω2

T I 2
zz

− 18 mμ2τ2 Iyy + 72 m Ixx τ2 μ2 − 36 m Ixx μ2τ0
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− 54 mμ2τ2 Izz + 9 mμ2τ0 Iyy − 108 m2μ2τ 2
2

− 2 m2μ ω2
T R7

e − 12 R3
e ω2

T I 2
xxμ + 72 m2μ2τ2 τ0

+ 6 m2 R2
e μ2τ0 − 12 m2 R2

e μ2τ2 + 27 mμ2τ0 Izz

+ 9 m R3
e μ ω2

T Izz τ0 − 9 m R3
e ω2

T Ixx μ τ0

− 30 m R3
e μ τ2 ω2

T Izz + 30 m R3
e ω2

T Ixx τ2 μ. (55)

D2 = −2 m − 2 Iyy − ω2
T Iyy Izz m − m2ω2

T Iyy R2
e .

(56)

D1 =2+ω2
T Izz m+m2ω2

T R2
e +ω2

T Iyy Izz −ω2
T Iyy m.

(57)

D0 = −ω2
T Izz + ω2

T Iyy . (58)
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ative equilibria in the unrestricted problem of a sphere
and symmetric rigid body. Mon. Not. R. Astron. Soc. 403,
848–858 (2010)

46. Wang, Y., Xu, S.: Analysis of gravity-gradient-perturbed
attitude dynamics on a stationary orbit around an asteroid via
dynamical systems theory. AIAA/AAS Astrodynamics Spe-
cialist Conference, AIAA 2012–5059, Minneapolis, MN,
13–16 Aug (2012)

47. Wang, Y., Xu, S.: Hamiltonian structures of dynamics of a
gyrostat in a gravitational field. Nonlinear Dyn. 70(1), 231–
247 (2012)

48. Wang, Y., Xu, S.: Gravitational orbit-rotation coupling of
a rigid satellite around a spheroid planet. J. Aerosp. Eng.
27(1), 140–150 (2014).

49. Wang, Y., Xu, S.: Symmetry, reduction and relative equilib-
ria of a rigid body in the J2 problem. Adv. Space Res. 51(7),
1096–1109 (2013)

50. Wang, Y., Xu, S.: Stability of the classical type of relative
equilibria of a rigid body in the J2 problem. Astrophys. Space
Sci. 346(2), 443–461 (2013)

51. Wang, Y., Xu, S.: Linear stability of the relative equilibria of
a spacecraft around an asteroid. 64th International Astronau-
tical Congress, IAC-13-C1.9.5, Beijing (2013). Accessed
23–27 Sept (2013)

52. Wang, Y., Xu, S.: Gravity gradient torque of spacecraft orbit-
ing asteroids. Aircr. Eng. Aerosp. Technol. 85(1), 72–81
(2013)

53. Wang, Y., Xu, S.: Equilibrium attitude and stability of a
spacecraft on a stationary orbit around an asteroid. Acta
Astronaut. 84, 99–108 (2013)

54. Wang, Y., Xu, S.: Attitude stability of a spacecraft on a sta-
tionary orbit around an asteroid subjected to gravity gradient
torque. Celest. Mech. Dyn. Astron. 115(4), 333–352 (2013)

55. Wang, Y., Xu, S.: Equilibrium attitude and nonlinear stability
of a spacecraft on a stationary orbit around an asteroid. Adv.
Space Res. 52(8), 1497–1510 (2013)

56. Wang, L.-S., Krishnaprasad, P.S., Maddocks, J.H.: Hamil-
tonian dynamics of a rigid body in a central gravitational
field. Celest. Mech. Dyn. Astron. 50, 349–386 (1991)

57. Wang, Y., Xu, S., Tang, L.: On the existence of the relative
equilibria of a rigid body in the J2 problem. Astrophys. Space
Sci. (2013). doi:10.1007/s10509-013-1542-y

58. Wang, Y., Xu, S., Zhu, M.: Stability of relative equilibria of
the full spacecraft dynamics around an asteroid with orbit–
attitude coupling. Adv. Space Res. (2014). doi:10.1016/j.
asr.2013.12.040

59. Woo, P., Misra, A.K., Keshmiri, M.: On the planar motion
in the full two-body problem with inertial symmetry. Celest.
Mech. Dyn. Astron. 117(3), 263–277 (2013)

123

http://dx.doi.org/10.1007/s10509-013-1542-y
http://dx.doi.org/10.1016/j.asr.2013.12.040
http://dx.doi.org/10.1016/j.asr.2013.12.040

	On the nonlinear stability of relative equilibria of the full spacecraft dynamics around an asteroid
	Abstract
	1 Introduction
	2 Statement of the problem
	3 Non-canonical Hamiltonian structure  and relative equilibria
	4 Nonlinear stability of the relative equilibria
	4.1 Nonlinear stability
	4.2 Case studies
	4.3 Some discussions on the nonlinear stability condition

	5 Conclusions
	Appendix: Formulations of coefficients  in characteristic equation
	Appendix: Formulations of coefficients in characteristic equation
	References


