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Abstract This study investigates the problem of
finite-time tracking control for a class of high-order
nonlinear systems. Due to the existence of uncertain
time-varying control coefficient and unknown nonlin-
ear perturbations in the nonlinear dynamics, the exist-
ing finite-time control results cannot solve the finite-
time tracking problem for this kind of nonlinear sys-
tems. Based on the technique of adding a power inte-
grator a variable structure control method is proposed.
Under the proposed control law, it is shown that the
reference signal can be tracked in a finite time. As an
application of the proposed theoretic results, the prob-
lem of finite-time attitude tracking control for the roll
channel of bank-to-turn missile is solved. Simulation
results are given to demonstrate the effectiveness of the
proposed method.
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1 Introduction

In this paper, we consider the following n-order non-
linear systems

ẋ1 = x2

ẋ2 = x3

...

ẋn = a(t)u + f (t, x1, . . . , xn) + d(t), (1)

where x = (x1, . . . , xn)T ∈ Rn is the system state,
u is the control law to be designed, a(t) is uncertain
time-varying parameter, f (t, x1, . . . , xn) is unknown
time-varying nonlinear perturbation, and d(t) is time-
varying external disturbance. The control objective is
to design a control law such that the state of system (1)
can track the reference signal in a finite time.

Since many practical individual systems, especially
mechanical systems, are of high-order dynamics, it
is significative and necessary to study control prob-
lem for the high-order nonlinear systems. Compared
to the conventionally asymptotic tracking control, the
closed-loop system with finite-time convergence usu-
ally demonstrates faster convergence rates, higher
accuracies, better disturbance rejection properties, and
robustness against uncertainties [1–4]. Although the
finite-time control has these advantages, the stability
analysis and controller design for finite-time control
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systems are very difficult due to the non-smoothness of
finite-time controller. In other words, the closed-loop
system with finite-time convergence does not satisfy
Lipschitz continuity. Although the design of finite-time
controller for different dynamic systems is difficult and
challenging, there are still some results in the literature,
such as finite-time stabilization by state feedback [1,5–
11] and output feedback [12–14], etc.

However, the previous listed finite-time control
results cannot solve the finite-time tracking problem for
nonlinear system (1) due to the uncertain time-varying
control coefficients and unknown external disturbance.
This certainly limits the application of finite-time con-
trol algorithm in the control practice where exist many
nonlinear systems with uncertain time-varying con-
trol coefficients and unknown nonlinear perturbations.
For example, to design a finite-time control algorithm
for the roll angle of BTT (bank-to-turn) missile (see
Sect. 4), uncertain time-varying aerodynamic parame-
ters will need to be addressed. It is well-known that in
the literature, the terminal sliding mode method [15,16]
can be used to design finite-time controller in the pres-
ence of uncertainties and external disturbances. How-
ever, as pointed out in [17,18], there usually is a singu-
larity problem in the terminal sliding mode controller
when the order of system is larger than three. Because
of such reasons, this paper will employ the technique
of adding a power integrator [19] to develop a non-
singular high-order finite-time control algorithm for the
high-order nonlinear system (1). The design procedure
is divided into two steps. First, the technique of adding a
power integrator [19] is employed to construct a finite-
time tracking control algorithm. Then, based on the
variable structure control method, a variable structure
finite-time controller is proposed. Rigorous theoretic
analysis shows that under the proposed controller the
system’s state can reach the desired signal in a finite
time.

2 Preliminaries and problem formulation

2.1 Problem formulation

Let xd = (xd
1 , . . . , xd

n )T denote the desired reference
state and satisfy

ẋd
1 = xd

2 , ẋd
2 = xd

3 , . . . , ẋd
n−1 = xd

n , ẋd
n = ud . (2)

Without loss of generality, assume ud(t) is bounded,
i.e., |ud(t)| ≤ L1 < +∞, where L1 is a known con-

stant. The control objective is to design a control law
such that the desired state in system (2) can be tracked
by the real state of system (1) in a finite time.

In addition, we need to impose the following
assumption conditions for the considered system:

Assumption 1 There are known positive constants
a, a, L2, and function F(x1, . . . , xn) such that

(i) a ≤ a(t) ≤ a,
(ii) | f (t, x1, . . . , xn)| ≤ F(x1, . . . , xn),
(iii) |d(t)| ≤ L2.

Remark 1 It should be pointed out that the considered
system (1) in this paper is more general than the double
integrators model which is commonly studied in the lit-
erature, see for example [3,5,12]. First, in practice, the
system parameters might not be precisely known due to
the lack of detailed knowledge of system specifications.
In some cases, the parameters are even varying caused
by various reasons such as mechanical wears, model
errors, environments changes, etc. A specific exam-
ple is that the BTT missile model [20,21] has time-
varying aerodynamic parameters, which is shown in
Example part. Second, there usually are unknown non-
linear perturbations and external disturbance in the con-
trol channel, e.g., the model of BTT missile. Hence, in
this paper we consider the systems with unknown para-
meters and perturbations to encompass more practical
systems included BTT missile in applications. In addi-
tion, although the problem of finite-time stabilization
for double-integrators system has been solved in [3],
the proposed method is not available here for system
(1) due to the unknown parameters and perturbations.

2.2 Some lemmas

Lemma 1 [1] Consider system ẋ = f (x), f (0) =
0, x ∈ Rn, where f (·) : Rn → Rn is a continu-
ous vector function. Suppose there exists a continu-
ous, positive definite function V (x) : U → R defined
on an open neighborhood U of the origin such that
V̇ (x) + c(V (x))α ≤ 0 on U \ {0} for some c > 0 and
α ∈ (0, 1). Then, the origin is a finite-time stable equi-
librium of system ẋ = f (x) and the finite settling time

T satisfies T ≤ V (x(0))1−α

c(1−α)
.

Lemma 2 [19] If 0 < p = p1/p2 ≤ 1, where p1 >

0, p2 > 0 are positive odd integers, then

|x p − y p| ≤ 21−p|x − y|p.

123



Finite-time tracking control for a class of high-order nonlinear systems 1135

Lemma 3 [19] For x ∈ R, y ∈ R, c > 0, d > 0, then

|x |c|y|d ≤ c

c + d
|x |c+d + d

c + d
|y|c+d .

Lemma 4 [22] For xi ∈ R, i = 1, . . . , n, and a real
number 0 < p ≤ 1, then

(|x1| + · · · + |xn|)p ≤ |x1|p + · · · + |xn|p.

3 Main result

In this section, it will be shown that the problem of
finite-time tracking control of nonlinear system (1) is
solvable. To solve this problem, a recursive design
method is employed. To construct such a finite-time
control law, we first define

ri = 1 + (i − 1)τ, i = 1, . . . , n + 1, (3)

with a constant τ ∈ (−1/n, 0). For simplicity of state-
ment, in this paper, we assume τ = −q/p with a posi-
tive even integer q and a positive odd integer p. Based
on this, ri , i = 1, . . . , n+1, will be odd in both denom-
inator and numerator, which will simplify the notation
of the controller since sri = sign(s)·|s|ri for any s ∈ R.
In the case when τ cannot be represented as an even/odd
ratio, a similar proof can be obtained for any real num-
ber τ by defining [s]ri /r j = sign(s) · |s|ri /r j as shown
in [23].

Now, we present our main result.

Theorem 1 For the nonlinear system (1) under
Assumption 1, if the control law u is designed as

u = −βn

a
srn+τ − F(x1, . . . , xn) + L1 + L2

a
sign(s),

s =
(

xn − xd
n

) 1
rn + β

1
rn
n−1

[ (
xn−1 − xd

n−1

) 1
rn−1 + · · ·

+β

1
r3
2

[ (
x2 − xd

2

) 1
r2 + β

1
r2
1

(
x1 − xd

1

) ]
· · ·

]
,

(4)

where β1, . . . , βn are appropriate gains, then system’s
state will track the desired state (i.e., the state of system
(2)) in a finite time, i.e., x(t) → xd in a finite time.

Proof Define

e1 = x1 − xd
1 , e2 = x2 − xd

2 , . . . , en = xn − xd
n

as the tracking error, then it follows from system (1)
and (2) that the error system’s dynamic is

ė1 = e2, ė2 = e3, . . . , ėn = a(t)u + f (t, x1, . . . , xn)

+ d(t) − ẋd
n . (5)

The finite-time controller design is based on a recursive
argument.

Step 1: Construct a Lyapunov candidate

V1 = 1

2
e2

1. (6)

which yields

V̇1 = e1e2. (7)

Denote ξ1 = e1 and choose the virtual controller

e∗
2 = −β1ξ

r2
1 with constant β1 = n, (8)

which renders

V̇1 ≤ −nξ2+τ
1 + ξ1

(
e2 − e∗

2

)
. (9)

Step 2: Denote ξ2 = e1/r2
2 − e∗

2
1/r2 and construct the

Lyapunov function

V2 = V1 +
e2∫

e∗
2

(
μ1/r2 − e∗

2
1/r2

)2−r2
dμ. (10)

We first prove that this Lyapunov function is positive
definite. By Lemma 2, we have

|μ − e∗
2 | = |

(
μ1/r2

)r2 −
(

e∗1/r2
2

)r2 |
≤ 21−r2 |μ1/r2 − e∗1/r2

2 |r2 , (11)

then

|μ1/r2 − e∗1/r2
2 | ≥

(
2r2−1|μ − e∗

2 |
)1/r2

. (12)

If e2 ≥ e∗
2, by (12) we have

e2∫

e∗
2

(
μ1/r2 − e∗

2
1/r2

)2−r2
dμ

≥
e2∫

e∗
2

(
2r2−1(μ − e∗

2)
)2/r2−1

dμ

=
(
2r2−1

)2/r2−1

2/r2
(μ − e∗

2)2/r2

∣∣∣
e2

e∗
2

= r222−r2−2/r2
(
e2 − e∗

2

)2/r2 . (13)

In the case of e2 < e∗
2, the proof is similar and (13) is

still true. Based on the definition of V1, we conclude
that V2 is positive definite.
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Together with (9), the derivative of V2 along system
(5) is

V̇2 ≤ −nξ2+τ
1 + ξ1

(
e2 − e∗

2

) + ξ
2−r2
2 e3

+
d

[
−e∗

2
1/r2

]

dt

e2∫

e∗
2

(
μ1/r2 − e2

∗1/r2
)1−r2

dμ. (14)

Using Lemma 2 and Lemma 3 results in
∣∣∣ξ1

(
e2 − e∗

2

) ∣∣∣ ≤ |ξ1| ·
∣∣∣
(

e1/r2
2

)r2 −
(

e∗1/r2
2

)r2
∣∣∣

≤ 21−r2 |ξ1||ξ2|r2 ≤ 1

2
ξ2+τ

1 + c1ξ
2+τ
2 (15)

where c1 is a positive constant.
Note that

d
[
−e∗

2
1/r2

]

dt
= β

1/r2
1 ξ̇1 = β

1/r2
1 e2. (16)

Since |e2| =
∣∣∣ξ2 + e∗

2
1/r2

∣∣∣
r2

, it follows from Lemma 4

that

|e2| ≤ |ξ2|r2 + |e∗
2| = |ξ2|r2 + β1|ξ1|r2 . (17)

In addition, by Lemma 2, we have

∣∣∣
e2∫

e∗
2

(
μ1/r2 − e2

∗1/r2
)1−r2

ds
∣∣∣ ≤ |ξ2|1−r2 |e2 − e∗

2 |

≤ 21−r2 |ξ2|1−r2 |ξ2|r2 = 21−r2 |ξ2|. (18)

Together (18) with (16), (17) and since r2 = 1 + τ ,
it follows from Lemma 3 that

∣∣∣
d

[
−e∗

2
1/r2

]

dt

e2∫

e∗
2

(
μ1/r2 − e2

∗1/r2
)1−r2

dμ

∣∣∣

≤ c2|ξ2|2+τ + 1

2
|ξ1|2+τ (19)

for a positive constant c2.
Substituting (15) and (19) into (14) gives

V̇2 ≤ −(n − 1)ξ2+τ
1 + [c1 + c2]ξ2+τ

2 + ξ
2−r2
2 e3. (20)

Thus, a virtual controller of the form

e∗
3 = −ξ

r3
2 [n − 1 + c1 + c2] := −ξ

r3
2 β2 (21)

is such that

V̇2 ≤ −(n − 1)
(
ξ2+τ

1 + ξ2+τ
2

)
+ ξ

2−r2
2 [e3 − e∗

3]. (22)

Inductive Step: Suppose at step k − 1, there are a set
of virtual controllers e∗

1, . . . , e∗
k , defined by

e∗
1 = 0, ξ1 = e1,

e∗
2 = −ξ

r2
1 β1, ξ2 = e1/r2

2 − e∗
2

1/r2 ,

e∗
3 = −ξ

r3
2 β2, ξ3 = e1/r3

3 − e∗
3

1/r3 ,
...

...

e∗
k = −ξ

rk
k−1βk−1, ξk = e1/rk

k − e∗
k

1/rk ,

(23)

with positive constants β1, . . . , βk−1, and a C1 Lya-
punov function

Vk−1 = V1 +
e2∫

e∗
2

(
μ1/r2 − e∗

2
1/r2

)2−r2
dμ · · ·

+
ek−1∫

e∗
k−1

(
μ1/rk−1 − e∗

k−1
1/rk−1

)2−rk−1
dμ (24)

such that

V̇k−1 ≤ −(n − k + 2)
(
ξ2+τ

1 + ξ2+τ
2 + · · · + ξ2+τ

k−1

)

+ ξ
2−rk−1
k−1

[
ek − e∗

k

]
. (25)

In the sequel, we will show that (25) also holds at step k.
To prove this issue, consider the following C1 Lyapunov
function

Vk = Vk−1 +
ek∫

e∗
k

(
μ1/rk − e∗

k
1/rk

)2−rk
dμ. (26)

Together with (25), the derivative of Vk along system
(1) is

V̇k ≤ −(n − k + 2)
(
ξ2+τ

1 + ξ2+τ
2 + · · · + ξ2+τ

k−1

)

+ ξ
2−rk−1
k−1

[
ek − e∗

k

] + ξ
2−rk
k ek+1

+d
[−ek

∗1/rk
]

dt

ek∫

e∗
k

(
μ1/rk −ek

∗1/rk
)1−rk

ds.

(27)

A similar proof as that in Step 2 leads to

V̇k ≤ −(n − k + 1)
(
ξ2+τ

1 + ξ2+τ
2 + · · · + ξ2+τ

k−1

)

+ ckξ
2+τ
k + ξ

2−rk
k ek+1. (28)

for a positive constant ck . Clearly, we can choose a
virtual controller in the form of

e∗
k+1 = −ξ

rk+1
k [n − k + 1 + ck] := −ξ

rk+1
k βk (29)
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such that

V̇k ≤ −(n − k + 1)
(
ξ2+τ

1 + · · · + ξ2+τ
k

)

+ ξ
2−rk
k [ek+1 − e∗

k+1] (30)

which completes the inductive proof.
From the above inductive proof, at step n, we can

find series of gains β1, · · · , βn−1 such that

V̇n ≤ −
(
ξ2+τ

1 + ξ2+τ
2 + · · · + ξ2+τ

n−1

)
+ cnξ2+τ

n

+ ξ2−rn
n [a(t)u + f (t, x1, · · · , xn) + d(t) − ẋd

n ].
(31)

where cn is a positive constant and

Vn = V1 +
e2∫

e∗
2

(
μ1/r2 − e∗

2
1/r2

)2−r2
dμ + · · ·

+
en∫

e∗
n

(
μ1/rn − e∗

n
1/rn

)2−rn
dμ. (32)

Let

s = ξn, βn = cn + 1 (33)

and design u as

u = −βn

a
srn+τ

− F(t, x1, . . . , xn) + L1 + L2

a
sign(s). (34)

Under Assumption 1 and control law (34), it follows
from (31) that

V̇n ≤ −
(
ξ2+τ

1 + ξ2+τ
2 + · · · + ξ2+τ

n

)
. (35)

Finally, it will be shown that Vn will reach zero in
finite time. Based on the definition of Vn in (32), and
by Lemma 2, we have for i = 2, . . . , n,

∣∣∣
ei∫

e∗
i

(
μ1/ri − ei

∗1/ri
)2−ri

dμ

∣∣∣ ≤ |ξi |2−ri |ei − e∗
i |

≤ 21−ri ξ2
i , (36)

which implies that there is a constant ρ > 0 such that

Vn ≤ ρ
(
ξ2

1 + ξ2
2 + · · · + ξ2

n

)
. (37)

With (35) and (37) in mind, it follows from Lemma 4
that

V̇n + ρ− 2+τ
2 V

2+τ
2

n ≤ 0. (38)

Noticing τ < 0, by Lemma 1, we conclude that Vn

reaches zero in a finite time, which implies there exists
a time T < +∞, such that Vn(t) ≡ 0,∀t ≥ T , i.e.,
ei (t) = 0, i = 1, · · · , n, ∀t ≥ T . Thus, the proof is
completed. 
�

Remark 2 In the literature, in order to achieve finite-
time control for nonlinear systems, an available method
is to employ the terminal sliding mode method [15].
Nevertheless, as pointed out in [17,18], there is a sin-
gularity problem in the terminal sliding mode controller
when the system is high-order case. However, it should
be pointed out that in our proposed finite-time con-
troller (4) which is based on the technique of adding a
power integrator [19], there is not any singularity prob-
lem.

Remark 3 Note that the discontinues control in the pro-
posed finite-time controller (4) may lead to a chatter-
ing phenomenon in practice. To avoid this problem, it
is often to use a continuous saturation function sat( x

ε
)

with a small positive constant ε instead of the discontin-
uous function sign(x). The modified finite-time control
law is given as:

u = −βn

a
srn+τ− F (x1, · · · , xn) + L1 + L2

a
sat

( s

ε

)
,

s =
(

xn − xd
n

) 1
rn + β

1
rn
n−1

[ (
xn−1 − xd

n−1

) 1
rn−1 + · · ·

+β

1
r3
2

[ (
x2 − xd

2

) 1
r2 + β

1
r2
1

(
x1 − xd

1

) ]
· · ·

]
,

(39)

Table 1 Model parameters for different operation points [20]

Operating points a(t) c(t)

t1(4.4s) 1.264 1787.048

t2(11.7s) 1.600 1832.067

t3(19.5s) 1.636 2128.877

t4(23s) 1.635 2231.985

t5(28s) 1.607 3045.292

t6(35s) 0.936 1329.481

t7(40s) 0.644 818.706

123



1138 Y. Cheng et al.

0 1 2 3 4 5 6 7 8
5

10

15

20

Time (sec)

R
ol

l A
ng

le
 (

de
g) Roll Angle

Reference Signal

0 1 2 3 4 5 6 7 8
−40

−20

0

20

Time (sec)

R
ol

l R
at

e 
(d

eg
/s

ec
)

Roll Rate

Reference Signal

0 1 2 3 4 5 6 7 8
−0.2

0

0.2

Time (sec)

R
ol

l C
on

tr
ol

 (
de

g) Roll Control

Fig. 1 The response curves of the BTT missile under the proposed finite-time controller (41)

where ε > 0 and the other parameters are the same as
that of Theorem 1. Simulation results will demonstrate
this case.

4 Example

In this section, we will use one example to illustrate the
efficiency of the proposed theoretic result.

Consider the problem of finite-time attitude control
of roll channel of bank-to-turn (BTT) missile. From
[20,21], the mathematical model for BTT missile is
described as

γ̇ = ω

ω̇ = −a(t)ω − c(t)δ + d(t), (40)

where γ and ω are the roll angle and roll rate,
respectively, δ is roll control deflection angle, to

be designed. Coefficients a(t) and c(t) are time-
varying aerodynamic parameters of the missile sys-
tem. d(t) is time-varying bounded external distur-
bance. By [20], we know that the parameters a(t)
and c(t) are usually bounded and satisfy a(t) ∈
[0.491, 1.673], c(t) ∈ [584.220, 3045.292], which
means Assumption 1 holds. Assume the desired signal
of the roll angle for the missile is γd(t) = 10 − sin(t).

According to Theorem 1, we can design finite-time
attitude tracking controller in the form of

δ = β2

c
sr2+τ + a|ω| + L1 + L2

c
sign(s),

s = (ω − γ̇d)
1

r2 + β

1
r2
1 (γ − γd), (41)

where β1, β2 are appropriate gains.
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Fig. 2 The response curves of the BTT missile under the modified finite-time control law (39)

In simulation, as shown in [24], to simulate the time-
varying aerodynamic parameters, the time-varying
parameters are given as follows:

a(t)=
{

a(t1), 0 ≤ t ≤ t1;
a(t j−1) + a(t j )−a(t j−1)

t j −t j−1
, (t − t j−1), j = 2, . . . , 7, (t − t j−1),

(42)

where a(t j ) is the parameter’s value at different oper-
ation points given in Table 1. The time-varying para-
meter c(t) is given by the same way. In addition, the
external disturbance is given as: d(t) = 1.1sin(8t −1),

which implies L2 can be selected as L2 = 1.1. By a
careful calculation, the controller gains can be chosen
as β2 = 20, β1 = 10, and τ = −2/5. Under the pro-
posed finite-time controller (4), the response curves of
the closed-loop systems (41, 40) are shown in Fig. 1,
respectively, where the initial conditions are chosen as
γ (0) = 20, ω(0) = 0. It is easy to see that the roll
angle will track the reference signal.

In addition, from the control response curves, i.e.,
Fig. 1, it can be found that there is a chatting phe-
nomenon in the finite-time controller (41). To this end,
we use the modified finite-time control law (39) with
ε = 0.1. The response curves of closed-loop systems
(39, 40) are shown in Fig. 2. It is clear that the chatting
phenomenon can be avoided.

5 Conclusions

In this paper, we have studied the problem of finite-
time tracking control for a class of high-order non-
linear systems. Rigorous theoretic analysis shows that
the proposed finite-time algorithm can deal with the
case with uncertain time-varying control coefficient
and unknown nonlinear perturbations. Future works
include how to extend the result of this paper to output
feedback case.
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