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Abstract In this paper, a hybrid control strategy
using both state feedback and parameter perturbation
is applied to control the Hopf bifurcation in a dual
model of Internet congestion control system. By choos-
ing communication delay as a bifurcation parameter, it
is proved that when it passes through a critical value,
a Hopf bifurcation occurs. However, by adjusting the
control parameters of the hybrid control strategy, the
Hopf bifurcation has been delayed without changing
the original equilibrium point of the system. Theo-
retical analysis and numerical results show that this
method can delay the onset of bifurcation effectively.
Therefore, it can extend the stable range in parame-
ter space and improve the performance of congestion
control system.

Keywords Internet congestion control · Dual model ·
Hopf bifurcation · Bifurcation control · Hybrid control

1 Introduction

With the rapid development of the Internet, the Internet
congestion control algorithm has become a subject of
intense research activities [1,2]. One of the important
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properties of congestion control algorithm is stability
[3]. In particular, the local asymptotic stability with
communication delays is widely studied by lineariz-
ing the model around the equilibrium point [1,2,4,5].
When the congestion control system loses its local sta-
bility, it causes some nonlinear dynamical behaviors
such as chaos and bifurcation [1,2,4–11]. Such a kind
of unstable phenomenon degrades the performance of
network [6]. For example, in [12], the period-doubling
bifurcation leads to the chaos state. In [1,2,4–11], the
Hopf bifurcations change the stability of Internet con-
gestion control model. Therefore, it is very significant
to study the problem of bifurcation and chaos in the
Internet congestion control system.

In reality, these complex dynamic behaviors mean
that the system changes from a stable state to an unsta-
ble one, which may be harmful to the system [2]. So,
in order to delay the onset of such an unstable phe-
nomenon and enlarge the stable range of the Inter-
net congestion control system, many effective control
methods have been proposed, such as delay feedback
control method [13,14], heterogeneous delay approach
[11,15,16], dynamic delayed feedback control [3,17],
and hybrid control strategy [12,18–21]. Especially, the
hybrid control has also been widely used in recent
years. In [12,18,19], a hybrid control method has been
used to control bifurcation and chaos in discrete non-
linear dynamical systems, and in [18], the authors
have applied hybrid control to a continuous nonlinear
dynamical system. In [20], hybrid control of bifurca-
tion is considered in a predator–prey system with three
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1042 D.-W. Ding et al.

delays. In [21], a parameter perturbation control and a
hybrid control are proposed.

The main contribution of this paper is that a hybrid
control strategy using both state feedback and parame-
ter perturbation is applied to control the Hopf bifurca-
tion in a first-order dual model of congestion control
system. Here we choose the communication delay as
a bifurcation parameter. Because the round-trip delay
varies depending on the network’s congestion status,
the system may exhibit complex behaviors in practice
[4]. By using this strategy, first, we increase the critical
value of communication delay and delay the onset of
undesirable Hopf bifurcation. Second, we extend the
stable range and improve the performance of the Inter-
net congestion control system. Therefore, this control
strategy is applicable in practice.

The rest of this paper is organized as follows. In
Sect. 2, we summarize some properties of the origi-
nal uncontrolled Internet congestion control system. In
Sect. 3, the proposed hybrid control strategy is applied
to the dual model, and the Hopf bifurcation of the con-
trolled system is studied. In Sect. 4, by applying the
center manifold theorem and the normal form theory,
the stability of bifurcating solutions and the direction of
the Hopf bifurcation are analyzed. Finally, numerical
examples and conclusion remarks are given in Sects. 5
and 6, respectively.

2 Hopf bifurcation in uncontrolled model

In this section, we consider a first-order dual model of
the Internet congestion control systems, the model can
be formulated as follows [2]:

ṗ(t) = kp(t)(x(t − τ)− c), (1)

where p(t) is the price at the link (packets), and x(t) =
f (p(t)) = 1/p(t) is a nonnegative continuous, strictly
decreasing demand function and has at least third-order
continuous derivatives (1/packets). The scalar c is the
capacity of the bottleneck link (packets/s), and k is a
gain parameter. τ is the round-trip time which consists
of the propagation delay and queuing delay (s).

Let p∗ be the nonzero equilibrium point of system
(1). It then satisfies the following equation:

f (p∗) = c.

For convenience, the results of system (1) are summa-
rized as follows. The analysis of specific details for the
system (1) has been described in [2].

Theorem 1 For the system (1), when τ0 = − π
2b2

and
ω0 = −b2, we can get the following results in [2]:

(i) When τ < τ0, the equilibrium point of the system
(1) is locally asymptotically stable;

(ii) When τ = τ0, the system (1) exists a Hopf bifur-
cation;

(iii) When τ > τ0 the equilibrium point of the system
(1) is unstable and a limit cycle exists.

3 Hybrid control of bifurcation

Equation (1) is donated as

ṗ(t) = g(p(t), τ ). (2)

Now, the hybrid control strategy is added to the model
(2), and then we can obtain the following controlled
system:

ṗ(t) = αg(p(t), τ )+ (1 − α)(p(t)− p∗),
= αkp(t)(x(t − τ)− c)+ (1 − α)(p(t)− p∗),

(3)

where α is a control parameter. The system (3) has the
same fixed points as the original system (1) [21]. So,
we know

f (p∗) = c. (4)

Set u(t) = p(t)− p∗, and then Eq. (3) is expanded by a
Taylor expansion around the equilibrium point p∗, we
can get

u̇(t) = a1u(t)+ a2u(t − τ)+ a4u(t)u(t − τ)

+a5u2(t − τ)+ a8u(t)u2(t − τ)

+a9u3(t − τ)+ O(u4), (5)

where

a1 = ∂

∂p(t)
[ ṗ(t)] |p∗ = αk(x(t − τ)− c)

+(1 − α)|p∗ = 1 − α,

a2 = ∂

∂x(t − τ)
[ ṗ(t)] |p∗ = αkp(t)x ′(t − τ)|p∗

= αkp∗x ′(p∗),

a4 = ∂2

2!∂x(t − τ)∂p(t)
[ ṗ(t)] |p∗ = 1

2
αkx ′(t − τ)|p∗

= 1

2
αkx ′(p∗),
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a5 = ∂2

2!∂2x(t − τ)
[ ṗ(t)] |p∗ = 1

2
αkp(t)x ′′(t − τ)|p∗

= 1

2
αkp∗x ′′(p∗),

a8 = ∂3

3!∂2x(t − τ)∂p(t)
[ ṗ(t)] |p∗ = 1

6
αkx ′′(t − τ)|p∗

= 1

6
αkx ′′(p∗),

a9 = ∂3

3!∂3x(t − τ)
[ ṗ(t)] |p∗ = 1

6
αkp(t)x ′′′(t − τ)|p∗

= 1

6
αkp∗x ′′′(p∗).

Consider the linear part of Eq. (5)

u̇(t) = (1 − α)u(t)+ a2u(t − τ) (6)

The characteristic equation of Eq. (6) is

λ− (1 − α)− a2e−λτ = 0. (7)

Lemma 1 When τ = τ0, λ = ±iω0, ω0 > 0 are pure
imaginary roots of Eq. (7).

Proof Assume that Eq. (7) has pure imaginary roots,
i.e., λ = ±iω, ω > 0. Then substituting them into Eq.
(7) and separating the real and imaginary parts, it is
straightforward to get{
(1 − α)+ a2 cos(ωτ) = 0,
ω + a2 sin(ωτ) = 0.

(8)

From Eq. (8), we obtain

ω0 =
√

a2
2 − (1 − α)2, (9)

τ0 = 1

ω0
arccos

(
−1 − α

a2

)
. (10)

��
Lemma 2 Equation (7) has roots with positive real
parts except for τ = τ0.

Proof Let λ = β + iω be a root of Eq. (7) with β > 0
and ω > 0, then{
β − (1 − α)− a2e−βτ cos(ωτ) = 0,
ω + a2e−βτ sin(ωτ) = 0.

(11)

From the first equation of Eq. (11), we get

(2n + 1)π

2
< ωτ <

(2n + 3)π

2
, n = 0, 2, 4, . . .

and from the second equation of Eq. (11), we get

ωτ <
(2n + 1)π

2
.

Therefore, Eq. (7) may have positive real parts except
for τ = τ0 . Finally, we will show that the transversality
condition of the Hopf bifurcation is also satisfied. ��
Lemma 3 Let λ = β + iω be the root of Eq. (7), the
following transversality condition holds:

Re

(
dλ

dτ

)
τ=τ0

�= 0.

Proof Therefore, evaluating

dλ

dτ
= − a2λe−λτ

1 + a2τe−λτ .

Hence, let λ = β + iω be the root of Eq. (7), we have

dλ

dτ
= −a2(β + iω)e−(β+iω)τ

1 + a2τe−(β+iω)τ

= −a2(β + iω)e−βτ (cos(ωτ)− i sin(ωτ))

1 + a2τe−βτ (cos(ωτ)− i sin(ωτ))

(12)

From Eq. (12), we can get

Re

(
dλ

dτ

)

= − a2e−βτ (β cos(ωτ)+ ω sin(ωτ)+ a2βτe−βτ )
(1 + a2τe−βτ cos(ωτ))2 + (a2τe−βτ sin(ωτ))2

and

Im

(
dλ

dτ

)

= − a2e−βτ (ω cos(ωτ)− β sin(ωτ)+ a2ωτe−βτ )
(1 + a2τe−βτ cos(ωτ))2 + (a2τe−βτ sin(ωτ))2

.

When τ = τ0, β = 0, and ω0τ0 = −ω0/a2, then we
obtain the following formula:

Re

(
dλ

dτ

)
τ=τ0

= − ω2
0

(1 − (1 − α)τ0)2 + (ω0τ0)2
> 0

(13)

and

Im

(
dλ

dτ

)
τ=τ0

= ω0((1 − α)− a2
2τ0)

(1 − (1 − α)τ0)2 + (ω0τ0)2
. (14)

It is well known that when τ > τ0, the characteristic
equation of Eq. (6) has at least one root with positive
real parts. At the same time, the equilibrium point of
the system (3) is unstable and a limit cycle bifurcates
out from the equilibrium point. ��

Based on above analysis, we can get the follow-
ing theorem. When α = 1, the controlled system (3)
becomes the original uncontrolled system (1). The con-
clusion is as Theorem 1.
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Theorem 2 For the controlled system (3), we can eas-
ily obtain

(i) When τ ∈ [0, τ0), the equilibrium point p∗ of the
controlled system (3) is locally asymptotically
stable;

(ii) When τ = τ0, the controlled system (3) exists a
Hopf bifurcation at equilibrium point p∗;

(iii) When τ ∈ (τ0,+∞), the equilibrium point p∗
of the controlled system (3) is unstable.

4 Stability and direction of bifurcating periodic
solutions

In this section, the normal form theory and the cen-
ter manifold theorem are used to analyze the direction
of the bifurcation and the stability of bifurcating peri-
odic solutions of the controlled system (3). The analysis
process is as follows.

In order to simplify calculation, let τ = τ0 + μ. So
μ = 0 is the value of Hopf bifurcation for Eq. (6). Let

Lμϕ = (1 − α)φ(0)+ a2φ(−τ)
and

F(ϕ, μ)

= a4ϕ(0)ϕ(−τ)+ a5ϕ
2(−τ)+ a8ϕ(0)ϕ

2(−τ)
+ a9ϕ

3(−τ)+ O(|ϕ|4).
Therefore, the system (5) can be written in the follow-
ing form:

u̇(t) = Lμut + F(ut , μ). (15)

According to the Riesz representation theorem, there
is a function of bounded variation η(θ, μ) with θ ∈
[−τ, 0] such that

Lμφ =
0∫

−τ
dη(θ, φ)φ(θ)

which can be satisfied by choosing

dη(θ, ϕ) = (1 − α)δ(0)+ a2δ(−τ),
where δ is the Dirac delta function.

For arbitrary φ ∈ C1([−τ, 0],R), define

A(μ)φ =
⎧⎨
⎩

dφ
dθ , θ ∈ [−τ, 0)∫ 0
−τ dη(θ, μ)φ(θ), θ = 0

(16)

and

R(μ)φ =
{

0, θ ∈ [−τ, 0)
F(μ, φ), θ = 0

(17)

Hence, we can rewrite Eq. (5) as

u̇(t) = A(μ)ut + R(μ)ut , (18)

where ut = u(t + θ), θ ∈ [−τ, 0].
For arbitrary ψ ∈ C1([0, τ ],R), the adjoint opera-

tor A* of A is defined as

A∗(μ)ψ(s) =
{ dφ(s)

dθ , s ∈ (0, τ ]∫ 0
−τ dη(s, μ)ψ(−s), s = 0

For arbitraryφ∈C1([−τ, 0],R) andψ ∈C1([0, τ ],R),
an inner product is defined as follows:

〈ψ, ϕ〉 = ψ̄(0)ϕ(0)−
0∫

θ=−τ

θ∫
s=0

ψ̄(s − θ)dη(θ)ϕ(s)ds,

(19)

where dη(θ) = dη(θ, 0).
In order to determine the Poincare normal form of

the operator A(0), we need to compute the eigenvec-
tor q(θ) of A(0) associated with the eigenvalue iω0

and the eigenvector q∗(s) of A∗(0) associated with the
eigenvalue −iω0. We can easily get

q(θ) = exp(iω0θ), θ ∈ [−τ, 0)

and

q(s) = B exp(−iw0s), s ∈ (0, τ ].

Now, we can prove that 〈q∗, q̄〉 = 1 and 〈q∗, q〉 = 0.
From Eq. (19), we have

〈
q∗, q

〉 = q̄∗(0)q(0)−
0∫

θ=−τ

θ∫
s=0

q̄∗(s − θ)dη(θ)q(s)ds,

= B̄ −
0∫

θ=−τ

θ∫
s=0

B̄ exp(−iω0(s − θ))dη(θ) exp(iω0τ)ds,

= B̄ − B̄

0∫
θ=−τ

θ exp(−iω0τ)dη(θ).

= B̄(1 + a2τ exp(−iω0τ))

So, let B = 1
1+a2τ exp(iω0τ)

, we can obtain 〈q∗, q〉 = 1.
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Similarly, we need to prove that 〈q∗, q̄〉 = 0. Also
by using Eq. (19), we get

〈
q∗, q̄

〉 = q̄∗(0)q̄(0)−
0∫

θ=−τ

θ∫
s=0

q̄∗(s − θ)dη(θ)q̄(s)ds

= B̄ −
0∫

θ=−τ

θ∫
s=0

B̄ exp(−iω0(s − θ))dη(θ) exp(−iω0τ)ds

= B̄ + B̄

i2ω0

0∫
θ=−τ

(exp(−iω0τ)− exp(iω0τ))dη(θ)

= B̄

[
1 + a2(exp(−iω0τ)− exp(iω0τ))

i2ω0

]
.

Since A(0)q(0) = iω0q(0) and A∗(0)q(0) = −iω0q∗
(0), we get

(1 − α)+ a2 exp(−iω0τ) = iω0

and

(1 − α)+ a2 exp(iω0τ) = −iω0.

Hence

a2(exp(−iω0τ)− exp(iω0τ)) = −i2ω0.

Therefore 〈q∗, q̄〉 = 0. This completes the proof.
In the following, let ut be the solution of Eq. (18) at

μ = 0, we define

z(t) = 〈q∗, ut 〉
and

W (t, θ) = ut − zq − zq = ut − 2Re {z(t)q(θ)} .
Then, on the manifold C0, we have

W (t, θ) = W (z(t), z̄(t), θ),

where

W (z, z̄, θ)=W20(θ)
z2

2
+W11(θ)zz̄+W02(θ)

z̄2

2
+· · ·

(20)

Here z and z are local coordinates for C0 and C in the
directions of q and q∗, respectively. Note that W is real
if ut is real; we deal with real solutions only. Atμ = 0,
it is easy to get

ż(t) = 〈q∗ , ut 〉 ,
= 〈q∗, A(0)ut + R(0)ut 〉,
= iω0z(t)+ q̄∗(0)F0(z, z̄).

(21)

Equation (21) is simply written as

ż(t) = iω0z(t)+ g(z, z̄), (22)

where

g(z, z̄) = q̄∗(0)F0(z, z̄)

= g20
z2

2 + g11zz̄ + g02
z̄2

2 + g21
z2 z̄
2 + · · · (23)

Following the algorithms in [22], we have

Ẇ = u̇t − żq − .

z̄ q̄. (24)

By using Eqs. (18) and (22), we obtain

Ẇ =
{

AW −2Re{q̄∗(0)F0q(θ)}, θ ∈ [−τ, 0)
AW −2Re{q̄∗(0)F0q(0)} + F0, θ = 0

which is rewritten as

Ẇ = AW + H(z, z̄, θ), (25)

where

H(z, z̄, θ)= H20(θ)
z2

2
+H11(θ)zz̄+H02(θ)

z̄2

2
+· · ·

(26)

On the other hand, on C0

Ẇ = Wzż + Wż z̄. (27)

Using Eqs. (20) and (22) to replace Wz, ż, and their
conjugates by their power series expansions, we get a
second expression for Ẇ :

Ẇ = iω0W20(θ)z
2 − iω0W02(θ)z̄

2 + · · · (28)

Comparing the coefficients of the above equation with
those of Eq. (25), we get⎧⎨
⎩
(A − i2ω0)W20(θ) = −H20(θ)

W11(θ) = −H11(θ)

(A + i2ω0)W02(θ) = −H02(θ)

(29)

Observing

ut (θ) = W (z, z̄, θ)+ zq(θ)+ z̄ · q̄(θ)

= W20(θ) · z2

2 + W11(θ)zz̄ + W02(θ) · z̄2

2+z exp(iω0θ)+ z̄ exp(−iω0θ)+ · · ·
which we obtain ut (0) and ut (−τ)
ut (0) = W (z, z̄, 0)+ z + z̄,

ut (−τ) = W (z, z̄,−τ)+z exp(−iω0τ)+ z̄ exp(iω0τ).

As we only need the coefficients of z2, zz̄, z̄2, and z2 z̄,
we keep these relevant terms in the following expan-
sions:

ut (0)ut (−τ) = z2 exp(−iω0τ)+ zz̄(exp(iω0τ)

+ exp(−iω0τ))+ z̄2 exp(iω0τ)

+ z2 z̄

[
W11(0) exp(−iω0τ)+ W20(0)

2
exp(iω0τ)

+W11(−τ)+ W20(−τ)
2

]
+ · · ·
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u2
t (−τ) = z2 exp(−i2ω0τ)+ z̄2 exp(i2ω0τ)+ 2zz̄

+z2 z̄
[
2 exp(−iω0τ)W11(−τ)
+ exp(iω0τ)W20(−τ)

] + · · ·
ut (0)u

2
t (−τ) = z2 z̄(exp(−i2ω0τ)+ 2)+ · · ·

u3
t (−τ) = 3z2 z̄ exp(−iω0τ)+ · · ·

Therefore, we have

g(z, z̄) = z2 B̄(a4 exp(−iω0τ)+ a5 exp(−i2ω0τ))

+ zz̄ B̄
[
a4(exp(iω0τ)+ exp(−iω0τ))+ 2a5

]
+ z̄2 B̄(a4 exp(iω0τ)+ a5 exp(i2ω0τ))

+ z2 z̄ B̄
[
a4W11(0) exp(−iω0τ)+ W20(0)

2 exp(iω0τ)

+ W11(−τ)+ W20(−τ)
2

+ a5(2W11(−τ) exp(−iω0τ)

+ W20(−τ) exp(iω0τ))+ a8(exp(−i2ω0τ)+ 2)

+ 3a9 exp(−iω0τ)
]

Comparing above coefficients with those in Eq. (23),
we get

g20 = 2B̄(a4 exp(−iω0τ)+ a5 exp(−i2ω0τ)) (30)

g11 = B̄
[
a4(exp(iω0τ)+ exp(−iω0τ))+ 2a5

]
(31)

g02 = 2B̄(a4 exp(iω0τ)+ a5 exp(i2ω0τ)) (32)

g21 = 2B̄[a4W11(0) exp(−iω0τ)+ W20(0)
2 exp(iω0τ)

+ W11(−τ)+ W20(−τ)
2 + a5(2W11(−τ) exp(−iω0τ)

+ W20(−τ) exp(iω0τ))

+ a8(exp(−i2ω0τ)+ 2)+ 3a9 exp(−iω0τ)]

(33)

We still need to compute W20(0), W20(−τ), W11(0) and
W11(−τ) for the expression of g21. For θ ∈ [−τ, 0),

H(z, z̄, θ) = −2Re{q̄∗(0)F0q(θ)}
= −2Re{g(z, z̄)q(θ)}
= −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ)

= −
(

g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ · · ·

)
q(θ)

−
(

ḡ20
z̄2

2
+ ḡ11zz̄ + ḡ02

z2

2
+ · · ·

)
q̄(θ)

Comparing the coefficients of above equation with
those of Eq. (26), we obtain{

H20(θ) = −g20q(θ)− ḡ02q̄(θ).

H11(θ) = −g11q(θ)− ḡ11q̄(θ).

From Eqs. (16) and (29), we get

Ẇ20(θ) = i2ω0W20(θ)+ g20q(θ)+ ḡ02q̄(θ) (34)

and

Ẇ11(θ) = g11q(θ)+ ḡ11q̄(θ) (35)

Solving the Eqs. (34) and (35), we have

W20(θ) = − g20

iω0
q(0) exp(iω0θ)− ḡ02

i3ω0
q̄(0)

exp(−iω0θ)+ E1 exp(i2ω0θ) (36)

and

W11(θ) = g11

iω0
q(0) exp(iω0θ)

− ḡ11

iω0
q̄(0) exp(−iω0θ)+ E2, (37)

where E1 and E2 are both constants and can be deter-
mined by setting θ = 0 in H(z, z̄, θ). It is evident that

H(z, z̄, 0) = −2Re
{
q̄∗(0)F0q(0)

} + F0

Thus,

H20(0) = −g20q(0)− ḡ20q̄(0)+ 2(a4 exp(−iω0τ)

+a5 exp(−i2ω0τ)) (38)

H11(0) = −g11q(0)− ḡ11q̄(0)

+ [
a4(exp(iω0τ)+ exp(−iω0τ))+ 2a5

]
(39)

From Eq. (29) and recall that

AW20(0) = (1 − α)W20(0)+ a2W20(−τ),
AW11(0) = (1 − α)W11(0)+ a2W11(−τ).
We get

(1 − α)W20(0)+ a2W20(−τ)− i2ω0W20(0)
= g20q(0)+ ḡ20q̄(0)− 2(a4 exp(−iω0τ)

+a5 exp(−i2ω0τ))

(40)

and

(1 − α)W11(0)+ a2W11(−τ)
= g11q(0)+ ḡ11q̄(0)− [a4(exp(iω0τ)

+ exp(−iω0τ))+ 2a5]
(41)

Substituting Eq. (36) into Eq. (40), we obtain

E1 = �1

(1 − α)+ a2 exp(−i2ω0τ)− i2ω0
,

where

�1 = ((1 − α)− i2ω0)
(

g20
iω0

+ ḡ02
i3ω0

)
+a2(

g20
iω0

exp(−iω0τ)+ ḡ02
i3ω0

exp(iω0τ))

+g20+ ḡ02 − 2(a4 exp(−iω0τ)+ a5 exp(−i2ω0τ))

Similarly, substituting Eq. (37) into Eq. (41), weget
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E2 = �2

(1 − α)+ a2
,

where

�2 = −(1 − α)
(

g11
iω0

− ḡ11
iω0

)
− a2

(
g11
iω0

exp(iω0τ)

− ḡ11
iω0

exp(−iω0τ)
)

+ g11 + ḡ11

−[a4(exp(iω0τ)+ exp(−iω0τ))+ 2a5].
Therefore, we have formulas to compute the following
parameters:

C1(0) = i
2ω0

(
g20g11 − 2 |g11|2 − 1

3 |g02|2
) + g21

2 ,

μ2 = − Re{C1(0)}
Reλ′(0) ,

T2 = − I m{C1(0)}+μ2 I mλ′(0)
ω0

,

β2 = 2Re {C1(0)}

(42)

where μ2 > 0(< 0) is the Lyapunov coefficient. Now
we give the main results of this section.

Theorem 3 For the controlled system (3), we summa-
rize the above analysis:

(i) If μ2 > 0(<0), the Hopf bifurcation is super-
critical (subcritical), and the bifurcating periodic
solutions exist for τ > τ0(τ < τ0), i.e., μ2 deter-
mines the direction of the Hopf bifurcation.

(ii) If β2 < 0(>0), the bifurcating periodic solutions
are stable (unstable), i.e., β2 determines the sta-
bility of the bifurcating periodic solution.

(iii) If T2 > 0(<0), the period increases (decreases),
i.e., T2 determines the period of the bifurcating
periodic solution.

5 Numerical simulations

In this section, we illustrate the effectiveness of the
hybrid control by numerical simulation. For compari-
son, we choose the same parameter as [2], i.e., x(t) =
1/p(t), c = 50, k = 0.01.

First we choose α = 1, therefore, the system is the
uncontrolled model. By direct calculation we can get

p∗ = 0.02, ω0 = 0.5, τ0 = 3.1416

μ2 = 5259.2, T2 = 2125, β2 = −758.38.

Fig. 1 Waveform plot and phase portrait of uncontrolled system (1) with τ = 2.9

Fig. 2 Waveform plot and phase portrait of uncontrolled system (1) with τ = 3.35, the equilibrium loses its stability
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Fig. 3 Waveform plot and phase portrait of controlled system (3) with α = 1.3 and τ = 3.35, the equilibrium is asymptotically stable

Figures 1 and 2 illustrate the dynamic behaviors of the
uncontrolled model (1). The simulation results are as
follows:

(i) When τ < τ0, the equilibrium point is asymptot-
ically stable (see Fig. 1);

(ii) When τ passes through τ0, the equilibrium point
p∗ loses its stability, and a Hopf bifurcation occurs
(see Fig. 2);

(iii) Since μ2 > 0 and β2 < 0, the Hopf bifurcation
is supercritical, and the bifurcating periodic solu-
tions are stable.

Now we consider the influence of the hybrid con-
trol for the Hopf bifurcation. By choosing an appro-
priate control parameter, we can delay the onset of
Hopf bifurcation without changing the original equi-
librium point. For example, when choosing α = 1.3,
the system becomes the controlled model, the critical
value τ0 increases from 3.1416 to 3.5561. By adjusting
the control parameter, limit cycle in the uncontrolled
system (see Fig. 2) becomes an asymptotically stable
equilibrium point in the controlled system (see Fig. 3).
Moreover, the bifurcation diagram of uncontrolled sys-
tem and controlled system are obtained in Figs. 4 and
5, respectively. It is shown that the onset of the Hopf
bifurcation is delayed, and the stable range in parameter
space is extended.

When choosing α = 1.5, for the controlled model,
we obtain
p∗ = 0.02, ω0 = 0.5590, τ0 = 4.1153,
μ2 = 11167, T2 = 2410.7, β2 = −476.6734.

It is seen from Figs. 6 and 7 that when τ = 3.9,
the equilibrium point of the controlled system (3) is
asymptotically stable. When τ passes the critical value
τ0 = 4.1153, a Hopf bifurcation occurs.

Fig. 4 Bifurcation diagram of uncontrolled system (1) with τ =
τ0 = 3.14

Fig. 5 Bifurcation diagram of controlled system (3) with α =
1.3 and τ = τ0 = 3.5561

The relationship between the critical value τ0 and
the control parameter α is shown in Fig. 8. From this
Fig. 8 we know that when increasing α, the critical
value increases. For example, by choosing α = 1.85,
the critical value is τ0 = 7.4991. In detail, we choose
τ = 6 and α = 1.85, we can see the Hopf bifurcation
is delayed from Fig. 9.
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Fig. 6 Waveform plot and phase portrait of controlled system (3) with α = 1.5 and τ = 3.9

Fig. 7 Waveform plot and phase portrait of controlled system (3) with α = 1.5 and τ = 4.3

Finally we can draw the conclusion that the con-
trolled system (3) is more stable than uncontrolled
system (1). Limit cycle in the uncontrolled system
becomes an asymptotically stable equilibrium point in
the controlled system.

Thus, by the control strategy, first, we can increase
the critical value of communication delay and delay
the onset of undesirable Hopf bifurcation. Second, we
extend the stable range in parameter and guarantee a
stable sending rate for a larger delay. It is suitable for
future high bandwidth-delay-product networks which
may have a large communication delay in the networks.
The proposed control method can also be used to study
the higher dimensional nonlinear time-delay systems.

6 Conclusions

In this paper, a hybrid control strategy is used to control
the Hopf bifurcation in a dual model of Internet conges-
tion control system. By choosing an appropriate control

Fig. 8 The fluctuation of τ0 depending on α

parameter, we can delay the onset of Hopf bifurcation.
It has been shown that the hybrid control can effec-
tively control Hopf bifurcation. Furthermore, by the
normal form theory and the center manifold theorem,
we analyze the stability and direction of periodic solu-
tions bifurcating. Finally, numerical simulations have
demonstrated the correctness of theoretical analysis.
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Fig. 9 Waveform plot and phase portrait of controlled system (3) with α = 1.85 and τ = 6
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