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Abstract In this paper, we studied the effect of
driver’s anticipation with passing in a new lattice
model. The effect of driver’s anticipation is exam-
ined through linear stability analysis and shown that
the anticipation term can significantly enlarge the sta-
bility region on the phase diagram. Using nonlinear
stability analysis, we obtained the range of passing
constant for which kink soliton solution of mKdV
equation exist. For smaller values of passing constant,
uniform flow and kink jam phase are present on the
phase diagram and jamming transition occurs between
them. When passing constant is greater than the crit-
ical value depending on the anticipation coefficient,
jamming transitions occur from uniform traffic flow
to kink-bando traffic wave through chaotic phase with
decreasing sensitivity. The theoretical findings are ver-
ified using numerical simulation which confirm that
traffic jam can be suppressed efficiently by consider-
ing the anticipation effect in the new lattice model.
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1 Introduction

In recent years, due to rapid increase of automobiles
on the roads, the problem of traffic jam has attracted
considerable attention of scientists and researchers. To
investigate the properties of traffic congestion and also
to reduce it, a lot of mathematical models [1–12] have
been proposed. Nagatani [13] firstly introduced a lat-
tice hydrodynamic model in which drivers adjust their
velocity according to the observed headway. Later,
many extended version of Nagatani’s lattice models
have been developed by considering different factors
like backward effect [14], lateral effect of the lane width
[15] and anticipation effect of potential lane chang-
ing [16] etc. Recently, Peng [17] proposed a new lat-
tice model by incorporating the effect of anticipation
individual driving behavior. Kang and Sun [18] intro-
duced a lattice hydrodynamic model by taking into
account driver’s delay effect in sensing relative flux
(DDSRF) and found that this effect has an important
influence on the traffic jams. Most of the above cited
models describe some traffic phenomena only on single
lane.

Furthermore, Nagatani [19] also extended his orig-
inal lattice model to two-lane traffic system and ana-
lyzed the lane changing behavior. Afterwards, in this
direction some modifications have also been pro-
posed by considering optimal current difference [20],
flow difference effect [21], density difference effect
[22] and effect of driver’s anticipation [23] in two-
lane system. Recently, Gupta and Redhu [24] devel-
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1002 A. K. Gupta, P. Redhu

oped a new model by considering driver’s anticipation
effect in sensing relative flux (DAESRF) in a two-lane
system.

In real traffic, drivers often adjust their velocity
according to the observed traffic situations and always
estimate their driving behavior. Therefore, driver’s
anticipation effect plays an important role in stabilizing
and destabilizing the traffic flow. In a traffic network,
faster moving vehicles always try to overtake slower
moving vehicles to maintain their optimal speed. In this
direction, Nagatani [25] extended his lattice hydrody-
namic model to take into account the passing effect.
systems, driver’s anticipation effect plays an impor-
tant role. But, upto our knowledge the effect of driver’s
anticipation has not been studied in traffic systems with
passing.

The paper is organized as follows: in the follow-
ing section, a more realistic lattice model considering
driver’s anticipation behavior with passing effect for
a single lane is proposed. In Sect. 3, the linear sta-
bility analysis is performed for the proposed model.
Section 4 is devoted to the nonlinear analysis in which
mKdV equation is derived. Numerical simulations are
carried out in Sect. 5 and finally, conclusions are given
in Sect. 6.

2 Proposed model

Nagatani [13] introduced the first lattice hydrodynamic
model by incorporating the idea of microscopic optimal
velocity model to analyze the density wave of traffic
flow and is given by

∂tρ j + ρ0
(
ρ jv j − ρ j−1v j−1

) = 0, (1)

∂t (ρ jv j ) = a
[
ρ0V (ρ j+1) − ρ jv j

]
, (2)

where j indicates site- j on the one-dimensional lattice;
ρ j and v j , respectively, represent the local density and
velocity at site- j at time t; ρ0 is the average density;
a(= 1/τ) is the sensitivity of drivers; V (·) is called
optimal velocity function and it is taken as

V (ρ) = Vmax

2

[

tanh

(
2

ρ0
− ρ

ρ2
0

− 1

ρc

)

+tanh

(
1

ρc

)]

,

(3)

here Vmax and ρc denote the maximal velocity and the
safety critical density, respectively. This optimal veloc-
ity function is monotonically decreasing, has an upper
bound and an inflection point at ρ = ρc = ρ0.

The above model is further extended to take passing
effect into account by Nagatani [25]. The continuity
equation remain preserved even in passing case while
the evolution equation is modified by looking at the
difference of traffic currents on site- j and j + 1. When
the traffic current on site- j is larger than the current
on site- j + 1, passing occurs and is proportional to
the difference between the optimal currents at site- j
and j + 1. Then, the modified evolution equation by
considering passing effect is given by

∂t (ρ jv j ) = a
[
ρ0V (ρ j+1) − ρ jv j

]

+ aγ
[
ρ0V (ρ j+1(t)) − ρ0V (ρ j+2(t))

]
,

(4)

where, γ is a passing constant.
As observed in real traffic flow, drivers always adjust

their vehicles based on the available dynamic estima-
tion information and then take decisions after some
time. Suppose drivers sense the traffic relative infor-
mation at time t and make a decision to adjust their
velocity at a later time t + τ1, where τ1 is the delay
of driver’s response in sensing headway. Then, due to
the delay of car motion, vehicles move at a later time
t+τ1+τ2, where τ2 is the delay time of vehicles motion.
So, the total delay time can be divided into two parts
τ1 and τ2. For simplicity, we choose the linear relation-
ship between driver’s response delay τ1 and the total
delay time τ as τ1 = ατ , where α is the anticipation
coefficient corresponds to driver behavior and τ = 1/a
denote the delay time which allows for the time lag, that
it takes the traffic current to reach the optimal current
when the traffic is varying. However, the above dis-
cussed driver’s anticipation effect was not considered
in the lattice model with passing. In view this, we pro-
posed a new evolution equation with consideration of
driver’s anticipation effect on one-dimensional traffic
flow when passing is allowed as follows:

∂t (ρ jv j ) = a
[
ρ0V (ρ j+1(t + ατ)) − ρ jv j

]

+ aγ
[
ρ0V (ρ j+1(t + ατ))

− ρ0V (ρ j+2(t + ατ))
]
. (5)

Based on the sign of anticipation coefficient α, the
above equation can explore different characteristics of
driver’s anticipation behavior on a single lane highway.
Here, α > 0 represents anticipation driving behavior
or the driver’s forecast effect in a traffic system with
ITS. The idea is that drivers adjust their driving speeds
to the anticipation optimal speed at time t + ατ after
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Analyses of the driver’s anticipation effect 1003

delay time τ in advance. So, the bigger value of α cor-
responds to skillful drivers in the model.

For α < 0, i.e. negative anticipation coefficient cor-
responds to the explicit driver’s physical delay in sens-
ing relative flux. Whenα = 0, the new model reduces to
Nagatani’s [25] model. For simplicity, using the Taylor
series expansion and neglecting the non-linear terms,
the new evolution equation can be obtained as follows:

∂t (ρ j (t)v j (t))

= aρ0
[
V

(
ρ j+1(t)

) + ατ V ′(ρ j+1)∂tρ j+1(t)

− ρ j (t)v j (t)
]

+ aρ0γ
[
ΔV

(
ρ j+1(t)

) + ατ
(
V ′(ρ j+1(t)

)

× ∂tρ j+1(t)−V ′ (ρ j+2(t)
)
∂tρ j+2(t))

]
(6)

where ΔV (ρ j (t)) = V (ρ j+1(t)) − V (ρ j+2(t)). By
taking the difference form of Eqs. (1) and (6) and elim-
inating speed v j , the evolution equation of density is
obtained as

ρ j (t + 2τ)

= ρ j (t + τ) − τρ2
0

[
V

(
ρ j+1(t)

) − V (ρ j (t))
]

− τρ2
0α

[
V ′ (ρ j+1(t)

)
Δ̃ρ j+1(t)

−V ′(ρ j (t))Δ̃ρ j (t)
]

− τρ2
0γ

[
2V

(
ρ j+1(t)

)−V (ρ j+2(t))−V (ρ j (t))
]

− ταγρ2
0

[
2V ′ (ρ j+1(t)

)
Δ̃ρ j+1(t)

− V ′(ρ j+2(t))Δ̃ρ j+2(t) − V ′(ρ j (t))Δ̃ρ j (t)
]
,

(7)

where Δ̃ρ j (t) = ρ j (t +τ)−ρ j (t), V ′(ρ j ) = dV/dρ j .

3 Linear stability analysis

To investigate the effect of driver’s anticipation on traf-
fic flow when passing is allowed, we conducted lin-
ear stability analysis in this section. The traffic density
and optimal velocity under uniform traffic condition
is taken as ρ0 and V (ρ0), respectively, where ρ0 is a
constant. Hence, the steady-state solution of the homo-
geneous traffic flow is given by

ρ j (t) = ρ0, Vj (t) = V (ρ0). (8)

Let y j (t) be a small perturbation to the steady-state
density on site- j . Then,

ρ j (t) = ρ0 + y j (t). (9)

Substituting ρ j (t) = ρ0 + y j (t) in Eq. (7), we obtain

y j (t + 2τ) − y j (t + τ) + τρ2
0 V ′(ρ0)Δy j (t)

+ τρ2
0αV ′(ρ0)Δ̃(Δy j (t)) − 2τρ2

0γ V ′(ρ0)Δ
2 y j (t)

− 2ταγρ2
0 V ′(ρ0)Δ

2(Δ̃y j (t)) = 0, (10)

where Δy j (t) = y j+1(t) − y j (t), Δ̃y j (t) = y j (t +
τ) − y j (t).

Putting y j (t) = exp(ik j + zt) in Eq. (10), we get

e2τ z − eτ z + τρ2
0 V ′(ρ0)

(
eik − 1

)

+ τρ2
0αV ′(ρ0)

(
eik − 1

) (
eτ z − 1

)

+ ταγρ2
0 V ′(ρ0)

(
2e2ik (

eτ z − 1
)

− e2ik
(

e2ik+τ z − e2ik
)

− (
eτ z − 1

)

− τρ2
0γ V ′(ρ0)

(
1 − eik

)2
)

= 0. (11)

Inserting z = z1(ik) + z2(ik)2 · · · into Eq. (11), we
obtained the first and second-order terms of the coeffi-
cient ik and (ik)2, respectively, as

z1 = −ρ2
0 V ′(ρ0), (12)

z2 = −3τ z2
1

2
− ρ2

0 V ′(ρ0)

2
− ταρ2

0 V ′(ρ0)z1

+ γρ2
0 V ′(ρ0). (13)

When z2 < 0, the uniform steady-state flow becomes
unstable for long-wavelength waves. For z2 > 0 the
uniform flow will remain stable. Thus, the neutral sta-
bility curve is given by

τ = − 1 − 2γ

ρ2
0 V ′(ρ0)(3 − 2α)

. (14)

The instability condition for the homogeneous traffic
flow can be described as

τ > − 1 − 2γ

ρ2
0 V ′(ρ0)(3 − 2α)

. (15)

Equation (15) clearly shows that anticipation coef-
ficient α plays an important role in stabilizing the traf-
fic flow when passing is considered. Solid curves in
Fig. 1a, b is the neutral stability curves in the phase
space corresponding to γ = 0.06 and γ = 0.3,
respectively, for different values of α. The apex of
each curve indicates the critical point. It can be eas-
ily depicted from the figure that the amplitude of these
curves decreases with an increase inα which means that
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Fig. 1 Phase diagram in
parameter space (ρ, a) for
a γ = 0.06, and b γ = 0.3
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larger value of α leads to enlargement of stability region
and hence, the traffic jam is suppressed efficiently. On
comparing Fig. 1a, b, it is found that the stable region
reduces for larger value of the passing coefficient.

4 Nonlinear stability analysis

Using reduction perturbation method, now, we investi-
gate the evolution characteristics of traffic jam around
the critical point (ρc, ac) on coarse-grained scales.
Long-wavelength expansion method is used to under-
stand the slowly varying behavior near the critical
point. The slow variables X and T for a small posi-
tive scaling parameter ε (0 < ε � 1) are defined as

X = ε( j + bt), T = ε3t, (16)

where b is a constant to be determined. Let ρ j satisfy
the following equation:

ρ j (t) = ρc + εR(X, T ). (17)

By expanding Eq. (7) to fifth order of ε with the help of
Eqs. (16) and (17), we obtain the following nonlinear
equation:

ε2 (
b + ρ2

c V ′) ∂X R

+ ε3
(

3

2
b2τ + ρ2

c V ′

2
− ατbρ2

c V ′ − γρ2
c V ′

)
∂2

X R

+ ε4

⎛

⎝
∂T R+

(
7
6 b3τ 2+ αρ2

c V ′
2

(
bτ +b2τ 2

)

−γρ2
c V ′−ταbρ2

c V ′+ ρ2
c V ′
6

)
∂3

X R+ ρ2
c V ′′′

6 ∂X R3

⎞

⎠

+ ε5

⎛

⎜⎜
⎜⎜
⎝

(
3bτ +ατρ2

c V ′) ∂T ∂X R+ γ (1−2γ )ρ2
c V ′′′

6 ∂2
X R3

+
(

5
8 b4τ 3+ ατρ2

c V ′
6

(
bτ +6 b2τ 2

4 + b3τ 3

1

)
− 7

12 γρ2
c V ′

− αγρ2
c V ′ (− 1

2 b2τ 2 − bτ
)+ ρ2

c V ′
24

)
∂4

X R,

⎞

⎟⎟
⎟⎟
⎠

= 0, (18)

where V ′ = dV (ρ)
dρ

|ρ=ρc , V ′′′ = dV 3(ρ)

dρ3 |ρ=ρc . Near the
critical point (ρc, ac), the value of τ is set as

τ = τc(ε
2 + 1). (19)

By taking b = −ρ2
c V ′(ρc) and eliminating the second

and third-order terms of ε, we obtain

ε4
(

∂T R−
(

− 12α2γ 2−24γ 2α+14γ 2−12αγ +13γ +α2 − 1

3(2α−3)2

)

× (−ρ2
c V ′) ∂3

X R + ρ2
c V ′′′

6
∂X R3

)

+ ε5

⎛

⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎝

−
(

3−6γ−6α−4α2

4(3−2α)

)
ρ2

c V ′∂2
X R+

(
3−6γ

12(2α−3)

)
ρ2

c V ′′′∂2
X R3

+(16γ 4α+4γ 3(12α2−24α−11)

−6γ 2(16α3−40α2+26α−17)

+2γ (52α3−184α2+221α−111)

−4α3+10α2−9α+10)
( −ρ2

c V ′
12(2α−3)3

)
∂4

X R

⎞

⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎠

=0

(20)

In order to drive the standard mKdV equation, we make
the following transformation in Eq. (20):

T ′ =
(

− 12α2γ 2−24γ 2α+14γ 2−12αγ +13γ +α2−1

3(2α−3)2

×
(
−ρ2

c V ′)
)

T,

R =
(−2(12α2γ 2−24γ 2α+14γ 2−12αγ +13γ +α2−1)

V ′′′(2α−3)2 V ′
) 1

2

R′,

(21)

with the existence condition as

− 12α2γ 2+24γ 2α−14γ 2+12αγ −13γ −α2+1>0.

(22)
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After applying above transformation, Eq. (20) becomes

∂T ′ R′ = ∂3
X R′ − ∂X R′3

−ε

[
g3

g1
∂2

X R′+ g4

g1
∂4

X R′+ g5

g2
∂2

X R′3
]

, (23)

where

g1 =−12α2γ 2−24γ 2α+14γ 2−12αγ +13γ +α2−1

3(2α−3)2

×
(
−ρ2

c V ′)

g2 = ρ2
c V ′′′

6
, g3 = −3 − 6γ − 6α − 4α2

4(3 − 2α)
ρ2

c V ′

g4 =
[
16γ 4α + 4γ 3(12α2 − 24α − 11)

− 6γ 2(16α3 − 40α2 + 26α − 17)

+ 2γ (52α3 − 184α2 + 221α − 111)

−4 α3 + 10α2 − 9α + 10
] (−ρ2

c V ′)

12(2α − 3)3

g5 =
(

3 − 6γ

2α − 3

)
ρ2

c V ′′′

12

After ignoring the o(ε) terms in Eq. (23), we get mKdV
equation whose desired kink soliton solution is given
by

R′
0(X, T ′) = √

c tanh

√
c

2
(X − cT ′). (24)

In order to determine the value of propagation velocity
for the kink–antikink solution, it is necessary to satisfy
the solvability condition:

(
R′

0, M[R′
0]

) ≡
∞∫

−∞
d X R′

0 M
[
R′

0

] = 0, (25)

with M[R′
0] = M[R′]. By solving Eq. (23), the selected

value of c is

c = 5g2g3

2g2g4 − 3g1g5
. (26)

Hence, the kink–antikink solution is given by

ρ j = ρc + ε

√
g1c

g2
tanh

(√
c

2
(X − cg1T )

)
, (27)

with ε2 = ac
a − 1 and the amplitude A of the solution

is

A =
√

g1

g2
ε2c. (28)

The above kink solution exist only if condition (22) is
satisfied. So the existence condition for kink solution
is

0 ≤ γ < η(α), (29)

where

η(α) = 12α−13+√
(−(2α2−3)2(12α2+12α−25))

4(6α2−9α+7)
.

(30)

For γ ≥ η(α), the mKdV equation (23) can-
not be derived from above nonlinear analysis. The
kink–antikink solution represents the coexisting phase
including both congested phase and freely moving
phase which can be described by ρ j = ρc ± A, respec-
tively, in the phase space (ρ, a) for γ < η(α). The
dashed lines in Fig. 1a represent the coexisting curves
which divide the phase plane into three regions: stable,
metastable and unstable. In the stable region, the traf-
fic flow will remain stable under a disturbance while
in metastable and unstable region; a small disturbance
will lead to the congested traffic. From Fig. 1a, it is
clear that with an increase of anticipation coefficient α,
the corresponding neutral and coexisting curves both
lower down, which means that α can stabilize the traf-
fic flow. For γ = 0.3, as the condition γ ≥ η(α), is
not satisfied, coexisting curers do not exist and are not
shown in Fig. 1b forγ = 0.3. Figure 2a shows the phase
diagram in parameter space (γ, a) for different values
of α. Curves ac = (3 − 2α)/(1 − 2γ ), predicated by
the linear stability analysis, represent the phase bound-
aries between no jam and kink jam for γ < η(α) and
no jam with chaotic jam for γ ≥ η(α). The modified
Korteweg de Varies equation (23) has a kink–antikink
soliton solution only for γ < η(α), therefore there exist
only two regions no jam and kink jam for γ < η(α)

in the phase plane. It is also clear from Fig. 2a that
kink region reduces with an increase in the value of α

for γ < η(α). This findings is in accordance with the
results obtained in Ref. [24] that traffic jam suppressed
efficiently by considering driver’s anticipation effect.
For γ ≥ η(α), based upon the kinds of density wave,
the unstable region is further divided into two subre-
gions: kink jam and chaotic jam. The boundary between
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Fig. 2 Phase diagram in
a (γ, a) space, and b (η, α)
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Fig. 3 Spatiotemporal
evolutions of density when
γ = 0.06 for a = 2.7
a α = 0, b α = 0.1,
c α = 0.2, d α = 0.3, and
e α = 0.4, respectively
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kink and chaotic jam is the line a = (3−2α)/(1−2η).
It is worth to mention here that for α = 0, the results are
similar to those obtained in Ref. [25]. The driver’s antic-

ipation effect also plays an important role when passing
rate is high (γ ≥ η(α)). The increase in the value of
α enlarges the free flow region while the chaotic and
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Fig. 4 Density profiles at
time t = 20,200 when
γ = 0.06 for a = 2.7
a α = 0, b α = 0.1,
c α = 0.2, d α = 0.3, and
e α = 0.4, respectively
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kink jam region reduces. Figure 2b, depicts the rela-
tionship between driver’s anticipation effect with the
critical value of γ . It is clear from the figure that the
value of η(α) firstly increases with respect to α and
then decreases sharply to zero as soon as α = 1.

5 Numerical simulation

To check whether the proposed model is capable of
describing the role of driver’s anticipation effect on
traffic flow dynamics with passing and validate linear
as well as nonlinear stability analysis, numerical simu-
lation is carried out for the proposed model under peri-

odic boundary conditions. To study the chaotic behav-
ior in the proposed lattice model, we use nonrandom
initial conditions. Initially, we defined density in term
of a step function as

ρ j (0) =
{

ρ0 − σ ; 0 ≤ j < L
2

ρ0 + σ ; L
2 ≤ j < L

and

ρ j (1) =
{

ρ0 − σ ; 0 ≤ j < L
2 − m, L − m ≤ j L

ρ0 + σ ; L
2 − m ≤ j < L − m

where σ is the initial disturbance and constant, m is
positive integer and L is the total number of sites taken
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Fig. 5 Spatiotemporal
evolutions of density when
γ = 0.3, a = 3.1 for
a α = 0, b α = 0.1,
c α = 0.2, d α = 0.3, and
e α = 0.4, respectively
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as 100. The value of the parameters are chosen as:
σ = 0.05, m = 0 and ρ0 = ρc = 0.2. From nonlinear
stability analysis, it is derived that kink soliton solu-
tion of mKdV equation exist only for 0 ≤ γ < η(α).
Therefore, now presented the discussion on results for
two different range of γ .

Case 1 γ < η(α)

Figure 3 shows the spatiotemporal evolution of den-
sity after sufficiently long time, namely 2 × 104 steps
for different values of α on traffic system when pass-
ing is allowed at a smaller rate. It is clear from the
Fig. 3a–d that initial disturbance leads to the kink soli-
ton which propagates in the backward direction. Due
to this, initial small amplitude disturbance evolves into
congested flow as the instability condition (15) is sat-
isfied. In the stable region, a small amplitude pertur-

bation to the homogeneous density dies out and kink
wave disappears for α = 0.4.

Figure 4 describes the density profile at time t =
20,200 s corresponding to panel of Fig. 3. The region of
free flow turns wide and the amplitude of density waves
is weakened with the increase in anticipation coefficient
which means that anticipation effect enhances the sta-
bility of the traffic flow. For α = 0.4, the traffic jam
disappears and flow becomes uniform. Our Numeri-
cal results are consistent with theoretical findings for
γ < η(α). Therefore, it is reasonable to conclude
that driver’s anticipation effect enhances the stability
of traffic flow for smaller rate of passing.

Case 2 γ ≥ η(α)

Figure 5 depicts the spatiotemporal evolution of den-
sity for different values of α after sufficiently long
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Fig. 6 Density profiles at
time t = 20,200 when
γ = 0.3, a = 3.1 for
a α = 0, b α = 0.1,
c α = 0.2, d α = 0.3, and
e α = 0.4, respectively
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time with passing at higher rate. It is clear from the
figures that the pattern of density profiles is different
for small values of α as compare to those for larger
value of α. From Fig. 5a–c, it is observed that traf-
fic is in kink phase as a < (3 − 2α)/(1 − 2η) while
in Fig. 5d, e, the traffic becomes chaotic. Also, in
Fig. 5d, e, the density waves band with one another,
break up and propagates in the backward direction.
From these results, we can conclude that kink as well as
chaotic region exist in the instable region on the phase
plane which also satisfies theoretical results shown in
Fig. 2a.

Figure 6 describes the density profile at time t =
20,200 s corresponding to panel of Fig. 5. On com-
paring Fig. 6a–c with Fig. 4a–c, it is observed that the
kink jam profile in larger rate of passing is different
than those obtained for smaller rate of passing. For
γ = 0.3, the density profile consists of two traveling
waves of different speed, separated by a growing and
decaying region of density. Such nonlinear waves are
knows as a Bando waves [25,26] and highlighted by
circle in the Fig. 6a. On Further increasing the value of
α, these kink-bando wave becomes chaotic wave (see
Fig. 6d, e). These numerical results confirm the theo-
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Fig. 7 Plots of density
difference ρ(t) − ρ(t − 1)

vs density ρ(t) when
γ = 0.3, correspond to the
panels in Fig. 5,
respectively
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retical findings that for a is less than ac corresponding
to α then traffic is in kink phase while a is greater than
ac, traffic is chaotic and becomes uniform for larger
values of a.

To further classify traffic states, we draw phase space
plots of density difference ρ(t)−ρ(t −1) against ρ(t)
for t = 20,000−30,000, in Fig. 7 corresponding to the
traffic patterns in Fig. 5. The pattern in Fig. 7 represents
the set of dispersed points in the phase space plot. For
smaller values of α, the pattern exhibits the limit cycle
shown in Fig. 7a–c. It corresponds to the periodic traffic

behavior. As α increases, the pattern exhibits dispersed
plots around a closed loop which corresponds to the
irregular traffic behavior. This chaotic behavior exhibits
the behavior characteristics of chaos. The points on the
right and left ends represent, respectively, the states
within the traffic jams and within the freely moving
phase. Therefore, it is reasonable to conclude that the
driver’s anticipation effect plays a significant role in one
dimensional lattice hydrodynamic model with passing
and enhances the stability of traffic flow for all possible
rates of passing.
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6 Conclusion

We proposed a new lattice hydrodynamic model of
traffic flow by considering driver’s anticipation effect
when passing is allowed. The traffic behavior has
been analyzed through linear and nonlinear analy-
sis. Through nonlinear stability analysis, we derived
the mKdV equation to describe the traffic jam near
the critical point and found the condition for which
kink soliton solution of mKdV equation exists. For
smaller rate of passing, there exist two regions kink
jam and no jam on the phase plane while another phase
known as chaotic jam exists for larger rate of pass-
ing. Phase diagrams are plotted and phase boundary
are discussed for smaller and larger rate of passing. It
is concluded that anticipation coefficient corresponds
to driver’s behavior increases significantly the stabil-
ity of traffic flow for any value of passing constant.
The simulation results are compared and found in good
accordance with the theoretical findings which veri-
fies that our consideration is reasonable. Therefore, it
is worth to conclude that driver’s anticipation effect
plays an important role in stabilizing the traffic flow
and this effect should be considered in traffic flow
modeling.
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