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Abstract Volterra series is a powerful mathemati-
cal tool for nonlinear system analysis, which extends
the convolution integral for linear system to nonlin-
ear system. There is a wide range of nonlinear engi-
neering systems and structures which can be modeled
as Volterra series. One question involved in modeling
a functional relationship between the input and out-
put of a system using Volterra series is to identify the
Volterra kernel functions. In this article, a wavelet bal-
ance method-based approach is proposed to identify the
Volterra kernel functions from observations of the in-
and outgoing signals. The basic routine of the approach
is that, from the system outputs under multilevel excita-
tions, the Volterra series outputs of different orders are
first estimated with the wavelet balance method, and
then the Volterra kernel functions of different orders
are separately estimated through their corresponding
Volterra series outputs by expanding them with four-
order B-spline wavelet on the interval. The simulation
studies verify the effectiveness of the proposed Volterra
kernel identification method.
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1 Introduction

Linear systems, which have been widely studied by
researchers in different fields, have provided a basis
for the development of the majority of control sys-
tem synthesis, mechanical system analysis, and design.
However, it is well known that some dynamic behav-
iors which cannot be explained by linear system theory
would happen to nonlinear systems [1], i.e., frequency
distortion, generation of sub- and superharmonic com-
ponents, occurrence of sub-resonance, limit cycle oscil-
lation, bifurcation, chaos, and so on. To understand
those dynamic behaviors of nonlinear systems, vari-
ous theories and methods have been developed, such
as chaos [2–4], nonlinear time series analysis meth-
ods [5–9], multiple scales method [10], KBM method
[11], homotopy analysis method [12,13], and harmonic
balance method [14]. Unfortunately, there exists no
canonical representation that encompasses all conceiv-
able systems. Volterra series [15] is a powerful math-
ematical tool for nonlinear system analysis. It is one
of the earliest approaches to achieve a systematic char-
acterization of nonlinear system. Essentially, it is an
extension of the standard convolution description of
linear system to nonlinear system. The Volterra series
is particularly appropriate for any system with smooth
nonlinearity [16], which can be described by a poly-
nomial form differential equation model. The Weier-
strass approximation theorem [17] guarantees that any
continuous function on a closed and a bounded inter-
val can be uniformly approximated on that interval by
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a polynomial to any degree of accuracy. Therefore, a
wide class of nonlinear systems can be well represented
by the Volterra series. It has been seen that Volterra
series has a wide range of the applications includ-
ing aeroelastic system [18], biomedical engineering
[19], fluid dynamics [20], electrical engineering [21],
mechanical engineering [22–24], etc.

The key issue involved in modeling nonlinear sys-
tem using the Volterra series is the identification of its
kernel functions, which has proven to be a challenge
for applying the Volterra series in practice. The Volterra
kernel identification is fundamentally an ill-posed
problem since the objective is to determine the struc-
ture of the system from the in- and outgoing signals. To
address this problem, Wiener [25] developed a variation
of the Volterra series that is orthogonal provided that
the input signal is a Gaussian white noise. A number
of statistical approaches, such as the cross-correlation
technique [25], have been developed to identify Wiener
kernels. A problem with the Wiener kernels identifica-
tion is its difficulty to generate a Gaussian white noise
input in experimental system, if not impossible. The
identification of Volterra kernel functions is also diffi-
cult as the number of terms for modeling the kernels
is usually quite large. For example, we consider a sys-
tem with a memory of N samples. A simple discrete
Volterra model for such a system requires N p coeffi-
cients to represent the pth-order kernel function. There-
fore, to present the system, a Volterra model requires a
large number of coefficients even if only the first few
kernels are included. Furthermore, not only is the iden-
tification of such a model difficult, but the model is too
large to be used in many applications such as the con-
trol design. Clearly, it is necessary to obtain a reduced
order kernel representation.

In the consideration of these limitations, many other
approaches for kernels identification have been applied
in both the time and frequency domains. Some tech-
niques identify the kernels by applying specific input
excitations to the system. For example, Bedrosian and
Rice [26] developed a harmonic probing technique in
frequency domain, and Worden et al. [27] extended it to
deal with multi-input multi-output forms of the Volterra
functional series. Pavlenko [28] applied impulse inputs
to identify the time domain kernels from the impulse
response data. To reduce the required number of esti-
mated parameters, another common approach for ker-
nel identification is to expand the kernels in terms of
a set of function basis. For example, Marmarelis [29]

estimated the kernels for biological system in terms
of discrete Laguerre functions. Moodi and Bustan [30]
used Laguerre functions and wavelet packets as orthog-
onal basis to represent Volterra kernel functions. Da
Rosa et al. [31] derived an analytic solution to expand
the Volterra kernels with a set of Kautz functions. These
methods seek to represent the kernels in terms of a rel-
atively compact set of globally or locally supported
basis function. The advantage of these methods is that
they only require the input with sufficient bandwidth for
accurate kernels identification, but they do not require
any specific input excitations.

Wavelets and multiresolution analysis can offer the
time and frequency localization of functions and sig-
nals. In many cases, a function can be represented in
a relatively small number of wavelet coefficients. This
approach can highly reduce the calculation complex-
ity of the identification process while improving the
accuracy of the results. The advantage of this method
is that once the basis is selected properly, the iden-
tification of coefficients is a linear question. Beylkin
et al. [32] demonstrated that the wavelets are particu-
larly effective for compressing various integral opera-
tors. Many subsequent researchers have sought to take
advantage of these results. For example, Nikolaou and
Mantha [33] used biorthogonal wavelets to express the
first- and second-order Volterra kernels, and Chou and
Guthart [34] derived sparse representations of Green’s
function operators with the orthogonal wavelet basis.
Wei et al. [35] derived nonparametric NARX model by
expanding each functional component of nonparamet-
ric NARX model into wavelet multiresolution expan-
sions. Coca and Billings [36,37] identified NARMAX
model from the data contaminated by noise based
on semi-orthogonal wavelet multiresolution approxi-
mation. When wavelet basis is used to represent the
Volterra kernels, the coefficients are nonvarying. There-
fore, the Volterra kernel functions are linear equations
with the nonvarying coefficients. Based on the advan-
tages, Kurdila et al. [38] considered the reduced order
Volterra kernel representations in terms of biorthogonal
wavelets. This approach utilized a family of biorthog-
onal wavelets proposed by Cohen et al. [39]. These
wavelets possess several preferable properties such as
biorthogonality, symmetry or antisymmetry, and rel-
atively compact support. In addition, the biorthogo-
nal wavelets do not have explicit expression and are
often defined by a procedure. This raises difficulties in
applying the biorthogonal wavelets particularly when
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the object is quadratures [39]. Prazenica and Kurdila
[40] constructed wavelets over the domain of the sup-
port of the triangular form of the second-order Volterra
kernel. These triangular wavelets are orthogonal, com-
pactly supported, and symmetric or antisymmetric.
However, these functions are piecewise constant, and
consequently do not yield very smooth kernel estima-
tion. In addition, the triangular wavelet construction is
specific to the second-order kernel. It is not straightfor-
ward to extend this approach to higher-order kernels.
Recently, To overcome the problem, Prazenica and
Kurdila [41] further presented an approach in which
the multiwavelets constructed from the classical finite
element basis functions using the technique of inter-
twining are used to obtain low-order estimations of the
first-, second-, and third-order Volterra kernels. These
results indicate the potential of the multiwavelet-based
algorithm in obtaining the reduced order models for
a large class of weakly nonlinear system. As pointed
by Prazenica and Kurdila [41], there was one problem
in applying the algorithm that the first-, second-, and
third-order Volterra kernel functions must be identi-
fied simultaneously. This problem reduces the identi-
fication accuracy of Volterra kernel functions. In this
article, to overcome this problem, a wavelet balance
method-based approach is proposed. The basic routine
of the approach is that, from the system outputs under
multilevel excitations, Volterra series outputs of dif-
ferent orders are first estimated with the wavelet bal-
ance method, and then the Volterra kernel functions
of different orders are separately estimated through
their corresponding Volterra series outputs by expand-
ing them with four-order B-spline wavelet on the inter-
val (BSWI).

The outline of this article is as follows. Section 2
briefly introduces the wavelet analysis and BSWI, and
presents the wavelet balance method in detail. The
detailed procedure of Volterra kernel identification is
presented in Sect. 3. Numerical simulations are pre-
sented in Sect. 4. Finally, the conclusions are given in
Sect. 5.

2 BSWI and wavelet balance method

2.1 Wavelet analysis

Wavelet function ψ(x) is a function whose integral
value is equal to zero during the integral interval of
(−∞,+∞),

+∞∫

−∞
ψ(x)dx = 0, (1)

ψ(x) is known as mother wavelet, by translating k and
dilating 2 j , we can obtain a function basis which is a
cluster of square integrable function space. L2(R).

ψ j,k(x) = 2 j/2ψ(2 j x − k) j, k ∈ Z . (2)

An arbitrary function f (x) ∈ L2(R) can be represented
as

f (x) =
∞∑

j,k=−∞
d j,kψ j,k(x), (3)

where

d j,k = 〈 f (x), ψ j,k(x)
〉
. (4)

A multiwavelet basis for L2(R) is derived by
translating and dilating multiple wavelet functions
[ψ1, . . . , ψr ]. These multiwavelets are generated from
r scale functions [φ1, . . . , φr ]. The multiwavelets
[ψ1, . . . , ψr ] and their associated scale functions
[φ1, . . . , φr ] satisfy the two scale equations,

φs(x) = √
2as,t

p φ
t (2 j x − k), s = 1, . . . , r,

ψ s(x) = √
2bs,t

p φ
t (2 j x − k), s = 1, . . . , r. (5)

The coefficients
[
as,t

p
]
,
[
bs,t

p
]

are elements of scale
function and wavelet filter matrices, respectively. The
scale translates and dilates of the scale functions and
multiwavelets are defined as

φs(x) = 2 j/2φs(2 j x − k),

ψ s(x) = 2 j/2ψ s(2 j x − k), (6)

where, parameter j ∈ Z , Z is the set of all integers.
In the multiwavelet-based multiresolution analysis,

an arbitrary function f (x) ∈ L2(R) can be approxi-
mated in terms of a fine resolution space Vj as [41]:

f j (x) =
r∑

s=1

∑
k∈Z

αs
j,kφ

s
j,k(x), (7)

where αs
j,k are scale function expansion coefficients,

and f j (x) denotes an approximation on level j . An
equivalent, multiscale representation of f j (x) can be
expressed as [41]

f j (x) =
r∑

s=1

∑
k∈Z

αs
j0,kφ

s
j0,k(x)

+
r∑

s=1

j−1∑
l= j0

∑
k∈Z

αs
l,kψ

s
l,k(x). (8)

123



988 C. M. Cheng et al.

It means that f (x) can be represented by level j0 scale
functions and level j0 through j − 1 multiwavelets. In
most cases, many of the coefficients in Eq. (8) are equal
to or close to zero. Consequently, the function can be
accurately represented by relatively few multiwavelet
coefficients.

The first-order Volterra kernel function can be rep-
resented conveniently by these one-dimensional mul-
tiwavelets. In order to represent higher-order Volterra
kernel functions, higher dimensional multiwavelets are
required. Higher dimensional multiwavelets can be
constructed by the tensor products of one-dimensional
scale functions and multiwavelets [41].

2.2 B-spline wavelet on the interval (BSWI)

On a bounded interval, BSWI basis has the good char-
acteristics of compact support, symmetry, smoothness
[42,43], and explicit expression. Moreover, B-spline
wavelets have the best approximation properties among
all the known wavelets of a given order L [44]. There-
fore, the Volterra kernel functions can be conveniently
expressed by BSWI. Considering these advantages of
BSWI, we use BSWI multiwavelets to represent each
order Volterra kernel functions. Four-order B-spline
scale functions on the interval, j = 0, φ0

4,k (k =
−3,−2,−1, 0) can be expressed as [42]

φ0
4,−3(x)

= 1

6

{
6 − 18x + 18x2 − 6x3, x ∈ [0, 1]
0, otherwise

(9)

φ0
4,−2(x)

= 1

6

⎧⎪⎨
⎪⎩

18x − 27x2 + 21
2 x3, x ∈ [0, 1]

12 − 18x + 9x2 − 3
2 x3, x ∈ [1, 2]

0, otherwise

(10)

φ0
4,−1(x)

= 1

6

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

9x2 − 11
2 x3, x ∈ [0, 1]

−9 + 27x − 18x2 + 7
2 x3, x ∈ [1, 2]

27 − 27x + 9x2 − x3, x ∈ [2, 3]
0, otherwise

(11)

φ0
4,0(x)

= 1

6

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x3, x ∈ [0, 1]
4 − 12x+12x2 − 3x3, x ∈ [1, 2]
−44+60x − 24x2+3x3, x ∈ [2, 3]
64 − 48x+12x2 − x3, x ∈ [3, 4]
0, otherwise

. (12)
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Fig. 1 Four-order BSWI, j = 0

Four-order B-spline scale functions on the interval,
j = 0, φ0

4,k (k = −3,−2,−1, 0) are shown in Fig 1.

Four-order BSWI, j =0, ψ0
4,k (k = −3,−2,−1, 0)

can be expressed as [42,45]

5040ψ0
4,k(x) =

3∑
i=0

ai xi . (13)

The coefficients a0, a1, a2, a3 of different k in Eq.
(13) are not listed for the sake of simplicity. Interested
readers can find them in [42,45].

For arbitrary scale j, m order B-spline scale func-
tions φ j

m,k(x) and wavelet functions ψ j
m,k(x), can be

computed using the following formulae [42,45]:

φ
j
m,k(x)

=

⎧⎪⎪⎨
⎪⎪⎩

φl
m,k(2

j−l x), k = −m + 1, . . . ,−1 (0 boundary)
φl

m,2 j −m−k
(1 − 2 j−l x), k = 2 j − m + 1, . . . , 2 j − 1

(1 boundary)
φl

m,0(2
j−l x − 2−l k), k = 0, . . . , 2 j − m (internal)

(14)
ψ

j
m,k(x)

=

⎧⎪⎪⎨
⎪⎪⎩

ψ l
m,k(2

j−l x), k = −m + 1, . . . ,−1 (0 boundary)
ψ l

m,2 j −m−k
(1 − 2 j−l x), k = 2 j − m + 1, . . . , 2 j − 1

(1 boundary)
ψ l

m,0(2
j−l x − 2−l k), k = 0, . . . , 2 j − m (internal)

.

(15)

Four-order B-spline scale functions on the interval,
j = 3, φ0

4,k (k = −3,−2,−1, 0) are shown in Fig. 2.
Two-dimensional four-order B-spline scale functions
�(t1, t2) on the interval, j = 3, are shown in Fig. 3.
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Fig. 2 Four-order BSWI, j = 3

Fig. 3 Two-dimensional four-order BSWI, j = 3

2.3 Wavelet balance method

The basic principle of the wavelet balance method is
to expand the state variables by wavelet basis methods
[46], such as the biorthogonal wavelet basis. In order to
describe wavelet balance method well, a general ordi-
nary differential equation is used as an example. Con-
sidering the following ordinary differential equation,
we obtain [46],

dX

dt
= F(X, t), (16)

where X (t) = [X1(t), X2(t), . . . , Xn(t)]T are the state
variables, and F(X, t) is a given nonlinear vector func-
tion.

The state variables X (t) can be expanded by wavelet
basis as follows:

X (t)=

⎡
⎢⎢⎢⎣

X1(t)
X2(t)
...

Xn(t)

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

C11 C12 · · · C1M

C21 C22 · · · C1M
...

...
...

...

Cn1 Cn2 · · · CnM

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

φ1(t)
φ2(t)
...

φM (t)

⎤
⎥⎥⎥⎦

= C ·�(t), (17)

where Cn×M is the coefficient matrix, {φi (t), i = 1, 2,
. . . ,M} is wavelet basis, and M is the total number of
function basis.

Substituting Eq. (17) into Eq. (16) gives

C D�(t) = G�(t) (18)

with

Di j =
〈

dφi (t)

dt
, φ j (t)

〉
, (19)

Gi j = 〈Fi (C�(t), t), φ j (t)
〉
. (20)

Then, because the left and right sides of Eq. (18)
must be equal all the time, we can get

C D = G. (21)

Consequently, the coefficient matrix C can be deter-
mined using a least square-based approach as

C = G D−1. (22)

Finally, according to the estimated C and Eq. (17), the
state variables X (t) can be calculated.

Comparing with the harmonic balance method
where the Fourier basis with a global support is
adopted, the main feature of the wavelet balance
method is that wavelet basis has compact or local sup-
port in the time domain and possesses several advan-
tages. [46–48]. First, it works in the time domain, so
that many complex problems in the frequency domain,
such as higher-order harmonics, can be handled effi-
ciently. Second, the adaptive scheme automatically
selects the proper wavelet basis functions given cer-
tain accuracy. High-level wavelet basis functions are
selected only near singularities. However, the Fourier
basis has global support, and it is infeasible to realize
such a selection in time domain. Therefore, numerous
researchers have done several studies about wavelet
balance method. For example, Barmada et al. [49]
used the wavelet balance method to solve the non-
linear equations. Soveiko and Nakhla [47,48] used
it to calculate the steady-state analysis of nonlinear
microwave circuits under periodic excitation. Zhou
et al. [50,51] pointed out that the wavelet balance
method increased significantly in sparsity of the equa-
tion matrices, and consequently decreased the CPU cost
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and storage requirements, while retaining accuracy and
convergence of the traditional approach.

3 Volterra series and Volterra kernel function
identification

3.1 Volterra series

If a system is linear and time-invariant, then the first-
order Volterra series represents the linear input–output
relation of system, which is shown as follows [25]:

y(t) =
+∞∫

−∞
h(t − τ)x(τ )dτ , (23)

where x(t) is the input, and y(t) is the output; when
Eq. (23) can be interpreted as Duhamel integral, system
is determined uniquely by impulse response function
h(t). As regards a large class of nonlinear system, the
input–output relation of system is nonlinear, which can
be represented by higher-order Volterra series. Higher-
order Volterra series is the extension of this familiar
convolution integral for linear system to a series of
multidimensional convolution integrals, which can be
shown as follows [25]:

y(t) =
∞∑

n=1

+∞∫

−∞

+∞∫

−∞
· · ·

+∞∫

−∞
hn(τ1, τ2, . . . , τn) . . .

n∏
i=1

x(t − τi )dτ1dτ2 . . . dτn, (24)

where functions hn(τ1, . . . , τn), n = 1, 2, . . . ,∞ are
the extension of impulse response function for lin-
ear system to nonlinear system, named Volterra kernel
functions in general.

In order to use Volterra series to model the input–
output relation of nonlinear system, each order Volterra
kernel functions should be identified. Rugh [15] pointed
out that the dimensional disaster makes the identifi-
cation of the Volterra kernel functions difficult. The
Volterra kernel function identification is a common
characteristic of ill-posed problems, and the problem is
exacerbated by the fact that all kernel functions must be
identified simultaneously. In order to improve the iden-
tification accuracy of Volterra kernel functions, the sub-
band Volterra kernels are introduced [52]. For example,
when a two-order Volterra series is considered, then the

first- and second-order Volterra series outputs can be
derived from following equations [52]:

(
Y1(n)
Y2(n)

)
=
(

1 1
a a2

)(
y1(n)
y2(n)

)
+
(

e1(n)
e2(n)

)
, (25)

where a �= 1, andY1(n), Y2(n) are the system’s total
output signals to input signals x(t), ax(t), respectively.
y1(n), y2(n) are the first- and second-order output sig-
nals, and e1(n), e2(n) are the errors between ideal
and practical outputs, respectively. Using matrix inver-
sion and neglecting e1(n), e2(n), y1(n), y2(n) can be
solved. However, as this method is directly imple-
mented in time domain, the Vander matrix inversion
may amplify the error in Y1(n), Y2(n). This disadvan-
tage will reduce the identification accuracy of Volterra
kernel functions. In order to overcome this disadvan-
tage, the wavelet balance method is used to derive the
sub-band Volterra series outputs.

From Eq. (24), when the input is u(t), the system
response is

Y (t) = y1(t)+ y2(t)+ · · · + yN (t), (26)

where

yn(t) =
+∞∫

−∞

+∞∫

−∞
· · ·

+∞∫

−∞
hn(τ1, τ2, . . . , τn) . . .

n∏
i=1

x(t − τi )dτ1dτ2 . . . dτn (27)

When the system is excited N times by multilevel
inputs amplitudes of which are a(1), . . . , a(N ), respec-
tively, N output responses Y(1), . . . ,Y(N ) are obtained.
From Eq. (24), the output response under the excitation
of amplitude a(n) can be determined as

Yn(t) = a(n)y1(t)+ a2
(n)y2(t)+ · · · + aN

(n)yn(t). (28)

Then, the output responses under multilevel excitations
can be expressed as follows:

⎛
⎜⎜⎝

Y1(t)
...

YN (t)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

a1 · · · aN
1

...
. . .

...

aN · · · aN
N

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

y1(t)
...

yN (t)

⎞
⎟⎟⎟⎠ . (29)
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Expressing Y1(t), Y2(t), . . . ,YN (t), y1(t), y2(t),
. . . , yN (t) by wavelet basis, respectively, yields

Y1(t) =
∑

j

∑
k

Y1, j,kψ j,k(t)

...

YN (t) =
∑

j

∑
k

YN , j,kψ j,k(t)

y1(t) =
∑

j

∑
k

y1, j,kψ j,k(t)

...

yN (t) =
∑

j

∑
k

yN , j,kψ j,k(t). (30)

Substituting Eq. (30) into Eq. (29), and according
to the wavelet balance method, it can be derived as
follows:

⎛
⎜⎜⎜⎝

Y1, j,k

Y2, j,k
...

YN , j,k

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

a1 a2
1 · · · aN

1
a2 a2

2 · · · aN
2

...
...

. . .
...

aN a2
N · · · aN

N

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

y1, j,k

y2, j,k
...

yN , j,k

⎞
⎟⎟⎟⎠ (31)

and

⎛
⎜⎜⎜⎝

y1, j,k

y2, j,k
...

yN , j,k

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

a1 a2
1 · · · aN

1
a2 a2

2 · · · aN
2

...
...

. . .
...

aN a2
N · · · aN

N

⎞
⎟⎟⎟⎠

−1⎛
⎜⎜⎜⎝

Y1, j,k

Y2, j,k
...

YN , j,k

⎞
⎟⎟⎟⎠ .

(32)

Then, based on the identified y1, j,k, y2, j,k, . . . yN , j,k ,
the subband Volterra series outputs y1(t), y2(t), . . . ,
yN (t)can be derived by using Eq. (30).

By implementing the Vander matrix inversion on the
wavelet transform coefficients, the sub-band Volterra
series outputs are calculated based on the wavelet bal-
ance method. From the estimated Volterra series out-
puts y1(t), y2(t), . . . , yN (t), the Volterra kernels of
different orders can be identified separately. The identi-
fication accuracy of Volterra kernel functions is depen-
dent on the accuracy of each order Volterra series
outputs. Consequently, the identification method pre-
sented in this article can improve the identification
accuracy of Volterra kernel functions.

3.2 The first-order kernel function

The first-order Volterra series can be represented by
[15]

y1(t) =
t∫

0

h1(τ )x(t − τ)dτ . (33)

In order to derive a discrete form of (33), the input u
is approximated using zero-order hold. The input and
output are sampled at the rate of 2 j Hz, and the number
of data points is N . The zero-order hold approximation
of the input can be written as [41],

u j (t) =
N−1∑
k=0

u j,kχ j,k(t). (34)

Define function χ j,k(t) as [41],

χ j,k(t) = 2 j/2χ(2 j t − k)

=
{

2 j/2, t ∈ [2− j k, 2− j (k + 1)]
0, otherwise

, (35)

where χ is the characteristic function of interval [0, 1].
The coefficients

{
u j,k
}

are equivalent to scale samples
of the input [41],

u j,k = 2− j/2u(2− j k), k = 0, . . . , N − 1. (36)

By discretizing the output at a sampling rate of 2 j

Hz, Eq. (33) yields N equations for the discrete first-
order outputs [41]:

y1, j (tn)=
tn∫

0

h1(τ )x(tn −τ)dτ , n = 1, . . . , N , (37)

where tn = 2− j n; the translated zero-order hold
approximation of the input can be expressed as [41],

u j (tn − τ) =
n−1∑
k=0

u j,n−k−1(τ )χ j,k(τ ). (38)

The first-order kernel can be approximated by the
B-spline scale functions on level j1:

h1, j1(τ ) =
∑

p

r∑
s=1

αs
j1,pφ

s
j1,p(τ ). (39)

Substituting Eqs. (38) and (39) into Eq. (37), the
discrete first-order outputs are derived:

y1, j (tn) =
n1−1∑
k=0

∑
p

r∑
s=1

u j,n−k−1α j1,p

×
T1∫

0

φs
j1,p(τ )χ j,k(τ )dτ (40)
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with

n1 =
{

n, n < 2 j T1

2 j T1, n ≥ 2 j T1
. (41)

Equation (40) can be written in matrix form as [41],

y
1, j

= [M1]α1, (42)

where y
1, j

is a vector of discrete first-order outputs,
and α1 is a vector of scale function coefficients that
represent the first-order kernel. The N×N1 matrix [M1]
is calculated by using Eq. (40), where the integrals are
calculated using Gauss–Legendre quadrature.

Equivalent to the single-scale expansion in Eq. (39),
the multiscale representation of the kernel can be
expressed as [41],

h1, j1(τ ) =
∑

p

r∑
s=1

αs
j0,pφ

s
j0,p(τ )

+
j1−1∑
l= j0

∑
p

r∑
s=1

βs
l,pψ

s
l,p(τ ), (43)

where j0 is the coarsest level chosen in the wavelet
decomposition. Denoting β

1
as the vector of multiscale

kernel coefficients, and denoting [T1] as the invertible
matrix that performs the discrete wavelet transform,
Eq. (42) can be written as

y
1, j

= [M1][T1]−1β
1

= [A1]β1
. (44)

3.3 The second-order kernel

The second-order Volterra series can be represented
by [15]

y2(t) =
+∞∫

−∞

+∞∫

−∞
h2(τ1, τ2)x(t − τ1)x(t − τ2)dτ1dτ2.

(45)

The second-order kernel can be represented by a
combination of two-dimensional tensor product scale
functions as [41],

h2, j2(τ1, τ2) =
∑
p,q

α j2,p,qφ j2,p(τ1)φ j2,q(τ2). (46)

The second-order kernel is assumed to decay to zero
after finite time T2. Then, the symmetric second-order
kernel is supported on the [0, T2] × [0, T2] square
domain.

Substituting Eq. (46) and the zero-order hold approx-
imation of the input (38) into Eq. (45), N equations for
the discrete second-order outputs can be obtained [41]:

y2, j (tn) =
n2−1∑

k,m=0

∑
p,q

r∑
s,v=1

u j,n−k−1u j,n−m−1α
s,v
j2,p,q

×
t∫

0

t∫

0

φs
j2,p(τ1)φ

v
j2,q(τ2)χ j,k,m(τ1, τ2)

× dτ1dτ2, (47)

where, n = 1, . . . , N . The upper limit in the summa-
tions over kand m is given by [41],

n2 =
{

n, n < 2 j T2

2 j T2, n ≥ 2 j T2
. (48)

Equation (47) can be written in the matrix form:

y
2, j

= [M2]α2, (49)

where y
2, j

is a vector of discrete second-order outputs
and α2 is a vector of single-scale second-order kernel
coefficients.

Equivalent to the single-scale expansion in Eq. (46),
the multiscale representation of the second-order kernel
can be expressed as [41],

h2, j2(τ1, τ2) =
∑
p,q

r∑
s,v=1

α
(s,v)
j0,p,q

φs
j0,p(τ1)φ

v
j0,q(τ2)

+
j2−1∑
l= j0

∑
p,q

r∑
s,v=1

β
1,(s,v)
l,p,q φs

l,p(τ1)ψ
v
l,q(τ2)

+
j2−1∑
l= j0

∑
p,q

r∑
s,v=1

β
2,(s,v)
l,p,q ψ s

l,p(τ1)φ
v
l,q(τ2)

+
j2−1∑
l= j0

∑
p,q

r∑
s,v=1

β
3,(s,v)
l,p,q ψ s

l,p(τ1)ψ
v
l,q(τ2).

(50)

Similar to the first-order case, it is possible to con-
struct an invertible matrix [T2] that decomposes the
vector of single-scale coefficients into a vector of mul-
tiscale coefficients. Then, Eq. (49) can be represented
as [41],

y
2, j

= [M2][T2]−1β
2
. (51)

Taking advantage of the symmetry of the second-
order kernel, the number of unknown coefficients in
Eq. (47) can be significantly reduced. The symmetry
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of the kernel means that the number of coefficients can
be reduced from N 2

2 to Ñ2 = (N 2
2 + N2)/2. Therefore,

an Ñ2-dimensional vector of second-order kernel coef-
ficients can be defined as α̂2. This vector can be related
to α2 by a transformation matrix [P2] [41],

α2 = [P2]α̂2. (52)

Then, the discrete second-order Volterra model can be
expressed in the following form [41]:

y
2, j

= [M2][P2]α̂2 = [A2]α̂2. (53)

3.4 The third-order kernel

The third-order Volterra series output can be repre-
sented by [15]

y3(t) =
t∫

0

t∫

0

t∫

0

h3(τ1, τ2, τ3)u(t − τ1)u(t − τ2)

×u(t − τ3)dτ1dτ2dτ3, (54)

where h3(τ1, τ2, τ3) is the symmetric third-order ker-
nel. The single-scale representation of the third-order
kernel can be written as [41]

h3, j3(τ1, τ2, τ3) =
∑
p,q,z

r∑
s,v,w=1

α(s,v,w)
j3,p,q,z

φ(s)
j3,p

×(τ1)φ
(v)
j3,q
(τ2)φ

(w)
j3,z
(τ2). (55)

Due to computational constraints, the discretization
level j3 is usually chosen to be much coarser than the
input/output discretization. The third-order kernel is
assumed to decay to zero after finite time T3. Then,
the symmetric third-order kernel is supported on a
[0, T3] × [0, T3] × [0, T3] three-dimensional domain.

The zero-order hold approximation of the input in
Eq. (38) and the single-scale representation of the ker-
nel in Eq. (55) are substituted into Eq. (54). N equations
for the discrete third-order outputs can be obtained [41]

y3, j (tn) =
n3−1∑

k,m, f =0

∑
p,q,z

r∑
s,v,w=1

u j,n−k−1

× u j,n−m−1u j,n− f −1α
s,v,w
j3,p,q,z

. . .

×
t∫

0

t∫

0

φs
j3,p(τ1)φ

v
j3,q(τ2)φ

w
j3,z(τ3)χ j,k,m

× (τ1, τ2, τ3)dτ1dτ2dτ3 (56)

n = 1, . . . , N . The upper limits in the summations over
k, m, and f are given by [41]

n3 =
{

n, n < 2 j T3

2 j T3, n ≥ 2 j T3
. (57)

Equation (56) can be written in the matrix form [41],

y
3, j

= [M3]α3, (58)

where y
3, j

is a vector of discrete third-order outputs,
and α3 is a vector of third-order kernel coefficients.

As usual, there is an equivalent multilevel represen-
tation of the third-order kernel. An invertible matrix
[T3] can be formed that decomposes the single-scale
coefficients into the vector of multiscale coefficients.
However, just as in the second-order case, it is not
practical to form this matrix. Therefore, low-order
approximations of the third-order kernel are obtained
by choosing an appropriately coarse resolution level
j3 in Eq. (56). Therefore, the multiscale kernel coeffi-
cients do not appear explicitly in the discrete third-order
model.

Then, similar to the second-order case, we get

α3 = [P3]α̂3, (59)

where α̂3 is a vector of unique third-order kernel coef-
ficients. The discrete third-order Volterra model can be
written in the form:

y
3, j

= [M3][P3]α̂3 = [A3]α̂3. (60)

Taking advantage of derived y1, j , y2, j , and y3, j , the
coefficients of the first-, second-, and third-order ker-
nels can be identified through Eqs. (44), (53), (60),
respectively. According to the identified coefficients,
the first-, second- and third-order kernels can be sepa-
rately derived. Therefore, based on this Volterra kernel
function identification method put forward in this arti-
cle, the first-, second-, and third Volterra kernel func-
tions can be identified separately. This is quite different
from the method presented by Prazenica and Kurdila
[41] in which the first-, second-, and third-order kernels
must be identified simultaneously. This may degrade
the accuracy of the estimated third-order kernel.

It should be noted that this identification problem is
ill-posed in that the objective is to determine the struc-
ture of the system from the in- and outgoing signals
[41]. Therefore, in order to obtain stable kernel estima-
tion, a regularization technique must be used to solve
the least squares problem. There are many regulariza-
tion methods discussed in the literature [53,54]. In this
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article, we use truncated singular value decomposition
to compute the least squares solution of Eqs. (44), (53),
and (60).

4 Numerical simulations

In this section, two nonlinear dynamical systems are
used to demonstrate the feasibility of the Volterra ker-
nel function identification based on wavelet balance
method.
Case 1: The system is a nonlinear oscillator considered
in [41], having the following equation of motion,

m
d2 y

dt2 + c
dy

dt
+ k1 y(t)+ k2 y2(t) = u(t), (61)

where m is the mass, c is the damping coefficient, k1

is the linear stiffness coefficient, and k2 is a quadratic
spring stiffness. The system parameters are chosen as

m =1 kg, c=3 Ns/m, k1 =4π2 N/m, k2 = 4π2 N/m2.

Because the dynamics of motion is known, the ana-
lytic expressions of Volterra kernels can be derived in
the frequency domain using the method of harmonic
probing [26]. Based on the method of harmonic prob-
ing, the analytic expressions of the first-, second-, and
third-order kernels in the frequency domain can be cal-
culated as follows:

H1(ω1) = 1

−mω2
1 + jcω1 + k1

(62)

H2(ω1, ω2) = −k2 H1(ω1)H1(ω2)H1(ω1 + ω2)

(63)

H3(ω1, ω2, ω3) = 2k2
2 H1(ω1)H1(ω2)H1ω3)

×H1(ω2 + ω3)H1(ω1 + ω2 + ω3).

(64)

From the expression of the first-order kernel in the
frequency, we can find that the linear FRF is exactly
equivalent to the FRF of its associated linear system,
which is generated by keeping the linear characteris-
tic parameters unchanged and setting all the nonlinear
characteristic parameters to be zero. The associated lin-
ear system of system (61) can be expressed as

m
d2 y

dt2 + c
dy

dt
+ k1 y(t) = u(t). (65)

Time domain Volterra kernels can be derived by tak-
ing inverse Fourier transforms of the expressions in
Eqs. (62)–(64). The first-order kernel is equivalent to

the impulse response function of Eq. (65) whose the
expression is

h1(t) = 1

mωd
e−ξωnt sin(ωdt), (66)

where ξ is the damping ratio, ωn is the natural fre-
quency, and ωd is the damped natural frequency
defined as

ξ = c

2
√

k1m

ωn = √k1/m

ωd = ωn

√
1 − ξ2. (67)

In this case study, these parameters in Eq. (67) are
set to be

ξ = 0.75

ωn = 2π rad/s

ωd = 4.156 rad/s. (68)

Similarly, the time domain forms of the second-
and third-order kernels are obtained by taking multi-
dimensional inverse Fourier transforms of Eqs. (63)
and (64). This calculation is performed in Maple. The
analytic expressions for these time domain kernels are
extremely complicated and not given here.

Since a linear chirp input used by Prazenica and
Kurdila [40] only has one frequency at a time, it is
insufficient to identify higher-order kernels of nonlin-
ear system. Therefore, in order to generate the input
signal that possesses multiple frequencies all the time.
The input to the system is chosen as follows [55]:

u(t) = A
12

π t
[sin(2π ∗ 2t)− sin(2π ∗ 4t)]. (69)

The input signal is shown in Fig. 4.
The response of the system (61) to the input (69)

is simulated by numerically integrating, using function
ode45 in MATLAB. The amplitudes A of the multilever
inputs are chosen as 1, 0.7, and 0.5. Correspondingly,
three sets of output responses are obtained, and then
they are used to identify the kernels. The data are sam-
pled at the rate of 64 Hz (or j = 6). The time duration
of the simulation is 32 s. The number of each dataset
is 2048.

Based on the wavelet balance method described in
Sect. 3, the first-, second-, and third-order Volterra out-
puts of system (61) can be derived using db4 wavelet.
The first three Volterra outputs of different orders are
shown in Fig. 5.
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From the estimated first three Volterra outputs, the
first three-order Volterra kernels are identified using
the procedure introduced in Sect. 3. The identified and
analytic results of the first-order kernels are shown in
Fig. 6. The identified kernel matches with the analytic
kernel very well. The identified and analytic results of
the second- and third-orders are shown in Figs. 7 and 8,
respectively. The identified kernels generally matches
with the analytic kernels.

To validate this Volterra kernel function identifi-
cation method, the output predicted by the identified
first-order Volterra kernel h1(τ ) and the first-order
Volterra output y1 are shown in Fig. 9. The output pre-
dicted by the identified second-order Volterra kernel
h2(τ1, τ2) and the second-order Volterra output y2 are
shown in Fig. 10. The predicted first- and second-order
Volterra outputs closely match with the simulated out-
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0.08
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)
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Fig. 6 The first-order Volterra kernels (solid identified, dash
analytic)

puts. Clearly, the first two-order-identified kernels are
able to accurately predict the first two-order Volterra
outputs to the input. The output predicted by the iden-
tified third-order Volterra kernel h3(τ1, τ2, τ3) and the
simulated third-order Volterra output y3 are shown in
Fig. 11. The predicted third-order Volterra output gen-
erally matches with the simulated third-order Volterra
output. Therefore, the identified third-order kernel is
capable of predicting most of the third-order Volterra
output.
Case 2: The system is a two-order discrete Volterra
series that is usually regarded as nonlinear filter [56].
Several researchers have used such nonlinear sys-
tem representations for studying nonlinear channel
equalization [57] and nonlinear distortion in electronic
devices [58]. Koh and Powers [59] had utilized it to
study the nonlinear drift oscillations of moored ves-
sels subject to random sea waves. One example of the
second-order Volterra filters can be described as fol-
lows:

y(n) = −0.78x(n)− 1.48x(n − 1)+ 1.39x(n − 2)

+ 0.04x(n−3)+1.75x(n)2+1.26x(n)x(n−1)

+ 0.7x(n)x(n − 2)+ 0.09x(n)x(n − 3)

+ 0.85x(n − 1)2 + 0.39x(n − 1)x(n − 2)

− 0.1x(n−1)x(n−3)+0.055x(n−2)x(n−2)

− 0.31x(n − 2)x(n − 3)− 0.524x(n − 3)2.

(70)

The input to the system is,

u(t) = A
3

2π t
[sin(2π ∗ 2t)− sin(2π ∗ 4t)]. (71)
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Fig. 7 The second-order Volterra kernels

Fig. 8 The third-order Volterra kernels (τ3 = 0.5 s)

The amplitudes A of the multilever inputs are cho-
sen as 1 and 0.5, respectively. Correspondingly, two
sets of output responses are obtained, and then they
are used to identify the kernels. The data are sampled
at the rate of 64 Hz (or j = 6). The time duration of
the simulation is 32 s. The number of each dataset is
2048.

Based on the Volterra kernel function identifica-
tion method described in the above sections, the first-
and second-order Volterra kernel functions can be
derived. The identified and accurate first-order kernels
h(n) are given in Table 1, the identified and accu-
rate second-order kernels are given in Table 2. From
Tables 1 and 2, it can be seen that the identified first-
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and second-order kernels are very close to their real
values.

Overall, the results in Cases 1 and 2 verify the effec-
tiveness of the Volterra kernel function identification
method based on wavelet balance method.

Table 1 Identified and accurate first-order Volterra kernels

h (n) h (0) h (1) h (2) h (3)

Identified −0.7800 −1.4799 1.3898 0.0406

Accurate −0.7800 −1.4800 1.3900 0.0400

h (n) h (4) h (5) h (6) h (7)

Identified −0.0011 0.0013 −0.0011 6.6250e−4

Accurate 0.0000 0.0000 0.0000 0.0000

Table 2 Identified and accurate second-order Volterra kernels

h (n1, n2) h (0, 0) h (0, 1) h (1, 1) h (0, 2) h (1, 2)

Identified 1.7491 1.2586 0.8507 0.7023 0.3933

Accurate 1.7500 1.2600 0.8500 0.7000 0.3900

h (n1, n2) h (2, 2) h (0, 3) h (1, 3) h (2, 3) h (3, 3)

Identified 0.0535 0.0910 −0.1047 −0.3105 −0.5222

Accurate 0.0550 0.0900 −0.1000 −0.3100 −0.5200

5 Conclusion

In this article, a wavelet basis expansion-based
approach is proposed to identify the Volterra kernel
function through multilevel excitations. The approach
first estimated the Volterra series outputs of differ-
ent orders based on the wavelet balance method, from
the system outputs under multilevel excitations. Then,
Volterra kernel functions of different orders are, respec-
tively, estimated through their corresponding Volterra
series outputs by expanding them with four-order
BSWI. Two simulation studies verify the effectiveness
of the proposed Volterra kernel identification method.
This is basically the theoretical study for a novel
Volterra kernel function identification. Further studies
will be concerned with the application of the proposed
technique to identify the Volterra kernel functions of
different engineering structures under different cases.
This kernel functions identification approach can be
used in the health monitoring of structures.
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