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Abstract In this paper, the gravitational effect of
a fourth body on the resonance orbit defined in the
restricted three-body problem (RTBP) is considered.
In this regard, Resonance Hamiltonian of the RTBP
and the Hamiltonian associated with the fourth gravita-
tional body that perturbs the resonance orbit are com-
puted. The Melnikov approach is utilized as a mean
for the detection of chaos in resonance orbit under the
influence of the fourth gravitation body. In addition,
the numerical simulation of RTBP and bicircular four-
body model, time–frequency analysis (TFA), and fast
Lyapunov indicator (FLI) are performed to verify the
results of the Melnikov approach. The results indicate
that for the (2:1) resonance orbit, the Melnikov integral
computed over outer loop of separatrix does not cross
the zero line, and consequently chaos is unexpected. On
the other hand, the Melnikov integral computed over
the inner sepratrix loop crosses the zero line indicating a
potential for chaos. Similarly, it is shown that inclusion
of the fourth body gravitation leads the (3:1) as well as
the (4:1) resonance orbits to chaos. Additionally, sim-
ulation results indicate that for some initial conditions
on the separatrix, the fourth body effect bounds the
amplitude of the resonance orbits while diffusing its
corresponding trajectory in the bounded phase space.
TFA and the FLI verify similar results.
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List of symbols

a Semi-major axis
e Eccentricity
f True anomaly
G Gravitational constant
J Inclination
L Mean anomaly
M(t0) Melnikov function
mi Mass of ith primary
ω Argument of perigee
� Longitude of ascending node
Pj Legendre polynomial
R Potential of third mass in
r2 Distance relative to Earth
r3 Moon position relative to Earth
ψ True longitude
ωg Frequency of periapse angle
ωl Mean anomaly frequency
s, s′ Parameters of resonance condition

1 Introduction

Chaos in the RTBP has been investigated in a few
researches using various approaches. The simplest
effective numerical method for chaos detection is
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through Poincare section [1,2]. Other numerical meth-
ods such as fast Lyapunov indicator (FLI) [3] and time–
frequency analysis (TFA) [4] have also been used to
detect chaotic regions of the RTBP.

Resonance overlap criterion is among the analyti-
cal methods to explore chaos in dynamical system [5].
Resonance overlap for the onset of stochastic behavior
has been applied to RTBP with small mass ratios where
regions at which two resonances overlap is identified
in term of semi-major axis and eccentricity [6]. Unfor-
tunately, many phenomena and concepts observed in
RTBP do not remain the same in the four-body prob-
lem [7], such as libration point, halo orbit, etc. In other
words, equilibrium points (libration) do not exist in
the four body, and instantaneous equilibrium points as
well as halo orbit geometry are different [8]. A per-
tinent question of interest is how resonance orbits of
RTBP change in the context of the four body prob-
lem?

Definition of resonance in the four-body problem
(bicircular four body problem) is not simple or simi-
lar to that of the three-body problem. In other words,
a (p:q:r) resonance should be used instead of (p:q)
resonance. At RTBP, for example, (2:1) resonance in
Earth–Moon system means that Satellite revolves 2
times around the Earth when Moon revolves 1 time
around Earth. In the Sun–Earth–Moon–Satellite four-
body problem, the values of the resonance parameters
p and q are fixed as (1,12,r), which mean Sun revolves
once when Moon revolves 12 times and the Satellite
x times around Earth. Instead of defining new reso-
nance parameters, we can implicitly study the effect
of a fourth body (Sun) on the resonances defined in
the three-body problem (Earth–Moon–Satellite). In the
present paper, the Melnikov integral [9], TFA, and fast
Lyapunov exponent are utilized to specifically detect
an answer to the question of “Can a fourth body gravi-
tational attraction cause resonance orbit of the RTBP to
become chaotic.” Results obtained in this study indi-
cate that the fourth body gravitation can cause reso-
nance orbits of the RTBP to become chaotic. And on
the other hand, for some initial conditions the fourth
body effect can bound the growing motion of the reso-
nance trajectory while diffusing it in the phase space.

This paper is arranged as follows: Sect. 2 presents
the derivation of the Hamiltonian of the RTBP in terms
of Delaunay variables. In Sect. 3, Zeroth-Order Hamil-
tonian resonance of the RTBP is derived, and conse-
quently, the Hamiltonian of the fourth body gravitation

effect on resonance separatrix equation is obtained in
Sect. 4. At Sect. 4.1, Melnikov theory is used for detec-
tion of chaotic phenomena for resonance orbit defined
in RTBP under influence of fourth gravitational effect.
At Sects. 4.2 and 4.3, FLI and TFA have used as another
method for detection of chaos in mentioned problem.

2 Restricted three-body problem Hamiltonian

The equation of motion of a negligible mass P2 (Satel-
lite) under the gravitational force of two massive bod-
ies P1 (Earth) and P2 (Moon) rotating in circular orbit
around their center of masses, in the Earth centric
frame, is presented [10]:

d2r2

dt2 + μ
r2

ρ3
2

= −ε ∂R

∂r2
, (1)

where

R = �r3 · �r2

ρ3
3

− 1

|�r3 − �r2| ,
μ = G(m1 + m2), ε = Gm3. (2)

The perturbation term R can be written using the Legen-
dre polynomial [10]:

R = − 1

ρ3

∞∑

j=2

Pj (cos S)

(
ρ2

ρ3

) j

, (3)

where S is the angle between the Earth–Satellite and
Earth–Moon vectors, as shown in Fig. 1. Noting that
cosine of S can be written in terms of the orbital
parameters �,ω, J, and f [11] as follows:

cos S =
(

1 − 1

4
γ 2

)
cos(ψ − ψM )

+1

4
γ 2 cos(ψ + ψM − 2�)

ψ = �+ ω + f = 	 + f, ψM = �+ ω3

+ f3 = 	3 + f3, sin J = γ. (4)

Next the Hamiltonian function of the RTBP is defined.
This Hamiltonian consists of the two parts, one inde-
pendent of the inclination angle, denoted by H0 and
another part H2, in terms of γ 2 as follows:

H = − μ2

2L2 − G + εR = H0 + γ 2 H2 (5)

In other words, H0 can be considered as the Hamil-
tonian of the planar motion. Note that H0 and H2 con-
tain terms such as r i

2, r
j

3 , cos(k1	3 + k2	 + k3 f3 +
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Fig. 1 Restricted
three-body problem

k4 f + k5�). Through expansion of cos( f ), r2 and
r3 in terms of the mean anomalies: l, l3, and eccen-
tricities: e, e3, the system Hamiltonian can be written
in term of the Delaunay variables. This Hamiltonian
will be a function of a, a3, e, e3, L ,G as well as the
trigonometric function cos(i(ω3 − ω) + jl2 + kl3).
Since the mean anomaly motion of the Moon (P3) l3
is smaller than the mean motion of the Satellite, so l3
is neglected in the derived Hamiltonian. Additionally,
Moon’s Argument of perigee ω3 is replaced with mean
motion or ω3 = nt . The non-dimensional Moon mean
motion is equal to one, n = 1, in the RTBP. In addi-
tion, the following parameters are taken for the current
problem:

a3 =1, e3 = 0.0549006, ε = Moon mass

Earth mass
=0.0123.

Replacing the eccentricity and the semi-major axis
using Eq. (6) makes the Hamiltonian function only in
terms of the Delaunay variables.

e =
√

1 − G2

L2 , a = L2

μ
(6)

3 Zeroth-order resonance Hamiltonian

Resonance occurs when one of the cosine arguments is
nearly stationary. Since Hamiltonian is time dependent,

the resonance condition will then be [6]

0 = −sωl(L ,G)+ (s + s′) [1 − ωω(L ,G)] (7)

In order to obtain Poincare resonance variables, the
following canonical transformations are defined:

φ = l + ω − t
ψ = −sl + (s + s′)(t − ω)

(8)

The generating function of the defined canonical trans-
formation can be written as

F = [−sl + (s + s′)(t − ω)
]
� + [l + ω − t]�

(9)

Finally, by substituting the resonance variables in
Hamiltonian and keeping only the trigonometric cosine
functions that depend on the slow rate resonance angle
ψ , we will have the zero-order resonance Hamiltonian.

H0
ss′ = − 1

2(�− s�)2
+ (s + s′)�

−�− ε

∞∑

i=1

Ki cos iψ (10)

Resonance Hamiltonian is of constant value, and so by
assuming constant values for�, the resonance behavior
of RTBP can be plotted in terms of (�,ψ) in a 2D-
plane (Fig. 2). Zeroth order (2:1) resonance contours
for different values of� are shown in Fig. 3, where the
separatrix is obtained for � = 0.98, shown by dashed
lines.
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Fig. 2 Zero-order resonance Hamiltonian contours

4 Effect of fourth body gravitation
on the resonance separatrix

One can drive the equation of motion [6], if the system
is at resonance using the zeroth-order Hamiltonian.

�̇ = −∂H0
ss′

∂ψ
= −ε

∞∑

i=1

ki sin iψ

ψ̇ = ∂H0
ss′

∂�
= − s

(−s� +�)3
+ s + s′ (11)
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Fourth body gravitation effect 959

Fig. 3 Melnikov function of (2:1) resonance for � = 0.98. a inner loop and b outer loop

Fig. 4 Melnikov function of (3:1) resonance for � = 0.98. a inner loop and b outer loop

Defining the state vector x = [
� ψ

]T
, allows one

to represent the governing equations of motion (11) in
state-space format �̇x = f (�x). In this form, the Effect of
a fourth body (Sun) on the resonance can be considered
as a perturbation:

�̇x = f (�x)+ εg(�x, t), (12)

where g(�x, t) is the perturbation effect of the fourth
mass. In the following section, the derivation of g(�x, t)
for the bicircular four-body problem is presented. In
this regard, pertinent geometry, equation of motion, and
its associated Hamiltonian are provided.

Utilizing Newton’s gravitational law, the equation
of motion is initially determined. Subsequently, with

expansion of the trigonometric parts of the associated
Hamiltonian in terms of the Delaunay variables, the
perturbation Hamiltonian will be derived in terms of
resonance variables. Details of these derivations are
presented in the Appendix of this paper.

As for the bicircular four-body Hamiltonian (Eq.
39), ψ and φ angles are respectively of low and high
frequency, magnitudes of nSt and l4 (Sun mean motion)
are smaller with respect to other terms, one can neglect
nSt and l4 and compute the average over the high fre-
quency angle resulting in the average Hamiltonian (for
2:1 resonance) given by Eq. (13):

Hamfourth
2:1 = −7.068

ρ2
4

�2�2R3
S
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Fig. 5 Melnikov function of (4:1) resonance for� = 0.98 (outer
loop)

+9.15 × 10−10

ρ2
4

�2 cos (6ψ)�2R3
S

−1.13 × 10−8

ρ2
4

�2 cos (2ψ)�2R3
S

+3.31 × 10−9

ρ2
4

�2 cos (4ψ)�2R3
S

+6.63 × 10−8

ρ2
4

�2

√
� (−5�+2�)

(−2�+�)2
× cos (ψ)�2R3

S

−2.29 × 10−8

ρ2
4

�2

√
� (−5�+2�)

(−2�+�)2
× cos (3ψ)�2R3

S

+2.18 × 10−9

ρ2
4

�2

√
� (−5�+2�)

(−2�+�)2
× cos (5ψ)�2R3

S (13)

So g (x) in Eq. (12) will be (for resonance 2:1) as fol-
lows:

g (x) =
[

g1(�,ψ)

g2(�,ψ)

]
=

[− d
dψHamfourth

2:1
d

d�Hamfourth
2:1

]

g1(�,ψ) = 5.49 × 10−9

ρ2
4

�2 sin (6ψ)�2R3
S

−2.27 × 10−8

ρ2
4

�2 sin (2ψ)�2R3
S

+1.32 × 10−8

ρ2
4

�2 sin (4ψ)�2R3
S

+6.63 × 10−8

ρ2
4

√
� (−5� + 2�)

(−2� +�)2

× sin (ψ)�2�2R3
S

−6.89 × 10−8

ρ2
4

√
� (−5� + 2�)

(−2� +�)2

× sin (3ψ)�2�2R3
S

+1.09 × 10−8

ρ2
4

√
� (−5� + 2�)

(−2� +�)2

× sin (5ψ)�2�2R3
S (14)

In addition, the function f (x) is equal to:

f (x) =
[

f1(�,ψ)

f2(�,ψ)

]
=

[− d
dψHamRTBP

2:1
d

d�HamRTBP
2:1

]
(15)

4.1 Melnikov theory

In the current study, Melnikov equation is utilized to
detect intersection (if any) stable and unstable mani-
folds of the separatrix. If stable and unstable manifold
intersect then the Melnikov function Eq. (16) becomes
zero. Subsequently if the Melnikov function M(t0)
equals to zero, chaos exists. Melnikov integral for the
system given by (12) is [12]:

M(t0)=
∞∫

−∞

[
f
(

q0(t−t0)
)
∧g

(
q0 (t−t0)

)
, t

]
dt,

(16)

where q0 is the Separatrix curve. This curve is shown
using the dashed lines in Fig. 2 for� = 0.98. Through
substation of (�,ψ) values from the separatrix curve,
one can compute the Melnikov function. For example
this Function value for � = 0.98 is shown in Fig. 3.
Using figures three through five, it can be concluded
that: for the (2:1) resonance, the Melnikov integral
computed over the outer loop does not cross the zero
line, and so consequently chaos would not exist. On the
other hand for the same resonance orbit, when the Mel-
nikov integral is computed over the inner loop, the zero
line is crossed that is an indication for potential chaotic
motion under the influence of the fourth gravitational
body (Figs. 3, 4). In addition for the (3:1) and (4:1) res-
onances the Melnikov integration over the inner as well
as the outer separatrix loop crosses the zero lines, and
so one can expect chaos to occur for these resonance
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Fourth body gravitation effect 961

Fig. 6 Resonance (2:1) trajectory (a1, a2), FLI (b1, b2), and time–frequency (c1, c2) in RTBP & bicircular (left inner loop, right outer
loop)
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962 S. H. Pourtakdoust, M. Sayanjali

Fig. 7 Resonance (2:1) trajectory (a1, a2), FLI (b1, b2), and time–frequency (c1, c2) in RTBP & bicircular (left inner loop, right outer
loop)
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Fourth body gravitation effect 963

Fig. 8 Resonance (2:1) trajectory (a), FLI (b), and time–frequency (c) in RTBP & bicircular

orbit trajectories under the influence of a fourth grav-
itation body. It will be shown in the next sections that
performing the numerical simulation for various ini-
tial conditions from the separatrix will also verify the
above Melnikov based conclusion, see Figs. 6–12. The
latter observation is made utilizing the fast Lyapunov
indicator (FLI) as well as the Time-Frequency Analy-
sis (TFA) as acceptable means of chaos detection in
dynamical systems. As mentioned earlier, Sections 4.2
and 4.3 cover the pertinent details of the FLI and TFA.

4.2 Fast Lyapunov exponent

Consider a trajectory x(t); x(t0) = x0 of a dynamical
system of the form ẋ = f (x, t), one can propagate a
tangent vector v0 along the trajectory by integrating the
linearized dynamics, v̇ = D f (x(t)) · v; v(t0) = v0.
Then the supremum of the norm of v(t) over an inte-
gration period [0, T ] provides the value of the FLI [3]:

FLIn(x0, {vi }, T ) = sup
i,t0≤t≤T

log ‖vi (t)‖n (17)
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Fig. 9 Resonance (3:1) trajectory (a1, a2), FLI (b1, b2), and time–frequency (c1, c2) in RTBP & bicircular (left inner loop, right outer
loop)
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Fourth body gravitation effect 965

Fig. 10 Resonance (3:1) trajectory (a1, a2), FLI (b1, b2), and time–frequency (c1, c2) in RTBP & bicircular (left inner loop, right
outer loop)
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Fig. 11 Resonance (3:1) trajectory (a), FLI (b), and time–frequency (c) in RTBP & bicircular

If the component of v(t) is denoted by (vx , vy, vz, vẋ ,

vẏ, vż), then ‖v‖n =
√

1
r

(
v2

x +v2
y +v2

z

)
+ 1
v

(
v2

ẋ +v2
ẏ +v2

ż

)
where

r and v represent the Euclidean norms of the position
and velocity of the spacecraft state at the current time t,
respectively. At Figs. 6–10, log ‖vi (t)‖2 are displayed
for different resonant orbits. As seen in Fig. 6, if one
selects an initial condition from the outer separatrix
loop, the Melnikov approach predicts no chaos. The
FLI method and the bicircular model also verify the
same results. On the other hand for initial conditions
from the inner separatrix loop,chaos was previously
detected, and one can also clearly see a jump in the FLI
for both models. The same discussions are generally
true for the remaining figures with one exception, see

Fig. 10. In this condition, FLI for RTBP is larger than
bicircular model, while resonance orbit in bicircular
model has increasing amplitude motion (increasing but
bounded).

4.3 Time–frequency analysis

A method of TFA based on wavelets is applied to res-
onance orbit in RTBP and bicircular model [4]. This
method is based on the extraction of instantaneous fre-
quencies from the wavelet transform of numerical solu-
tion in both model mentioned above. There are mainly
two methods to extract instantaneous frequency or the
time variation of the frequencies: the Gabor transform
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Fig. 12 Resonance (4:1) trajectory (a1, a2), FLI (b1, b2), and time–frequency (c1, c2) in RTBP& bicircular (outer loop)
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Fig. 13 Geometry of the
bicircular four-body
problem (P1 = Earth,
P2 = Moon, P3 = Sun,
P4 = Satellite)

and the wavelet transform. At this study, wavelet trans-
form is used. The wavelet transform is defined in terms
of a function ψ , called the mother wavelet, in the fol-
lowing way [13]

Lψ f (a, b) = 1√
a

∞∫

−∞
f (t)ψ̄

(
t − b

a

)
dt (18)

Mother wavelet must be like a wave with short duration
it must have compact support or decay rapidly to 0 for
|t | → ∞. There exist various wavelet forms used in
the open literature, such as the “Mexican hat,” Haar
and spline wavelets. In this study the Morlet wavelet,
Eq. 19 is used:

ψ(t) = 1

σ
√

2π
e2π iλt e−t2/2σ 2

(19)

The wavelet transform also depends on two parameters:
a is called the scale and is multiple of the inverse of
the frequency; and b is the time parameter that slides
the wavelet as a time window. The wavelet transform
consists of expansion of a function in terms of wavelet
ψab that is constructed as dilations and translations of
the mother wavelet ψ

ψab(t) = 1√
a
ψ

(
t − b

a

)
b ∈ R a > 0 (20)

Let f (t) = A f (t) exp
[
iφ f (t)

]
be an analytic signal.

If the wavelet ψ is an analytic signal itself, and it is

written in the form

ψ(t) = Aψ(t) exp
[
iφψ(t)

]
(21)

Then the wavelet transform coefficients can be com-
puted as

Lψ f (a, b) = 1√
a

∞∫

−∞
Mab(t) exp [i�ab(t)] dt, (22)

where

Mab = A f (t)Aψ

(
t − b

a

)

�ab(t) = φ f (t)− φψ

(
t − b

a

)
(23)

Let t0 be a unique point such that �′
ab(t0) = 0 and

�′′
ab(t0) �= 0. t0 is called a stationary point. We can

apply the method of stationary phase to obtain the
expression,

Lψ f (a, b) � 1√
a

f (t0) ψ̄

(
t0 − b

a

) √
2π∣∣�′′
ab(t0)

∣∣

×ei sgn�′′
ab(t0)π/4 (24)

Then the equation t0(a, b) = b gives a curve in time-
scale plane. This leads to the following definition:

Definition 1 The ridge of the wavelet transform is the
collection of points for which t0(a, b) = b
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From the equation �′
ab(t0) = 0, we have that

�′
ab(t0) = φ′

f (t0)− 1

a
φ′
ψ

(
t0 − b

a

)
= 0 (25)

And then, by definition, the points on the ridge satisfy

�′
ab(t0) = φ′

f (t0)− 1

a
φ′
ψ

(
t0 − b

a

)
= 0 (26)

Therefore, the instantaneous frequency φ′
f (b) of the

function f can be obtained from this equation once we
have determined the ridge of the wavelet transform.
The ridge of the wavelet transform can be obtained
by computing the maximum modulus of the wavelet
transform (with respect to scale) for each point in time.
Therefore, the maximum in scale for each time t = b
corresponds to the instantaneous frequency of f (t). In
Figs. 6–10, instantaneous frequency for different reso-
nance orbit has shown. In resonance (2:1) (outer loop,
Fig. 6), instantaneous frequencies are similar in RTBP
and bicircular model, similarity for Fig. 7 (outer loop).
But in Fig. 8, a jump in instantaneous frequencies is
appeared, which indicates chaos. But at some of fig-
ures, e.g. Fig. 7 (inner loop), same behavior in instanta-
neous frequencies is seen for both RTBP and bicircular
model, while numerical integration of motion indicates
that chaos exists in bicircular model (for example).

5 Concluding remarks

Utilizing the Melnikov method, it is proved that the
fourth body gravitational effect can cause some of the
resonance orbits of the RTBP (Earth–Moon–Satellite)
to become chaotic. The results indicate that different
resonance orbits exhibit different behaviors under the
similar (Sun) gravitational effect. Also it is proved that
inner and outer sepratrix loops exhibit different behav-
iors. It is shown that if we select (2:1) resonance orbit
(outer loop sepratrix), then chaotic phenomena do not
appear, except in point of conjunction of inner and outer
loops. But for resonance (3:1) and (4:1), chaotic motion
is appeared under the influence of fourth gravitation
body. Also, the obtained result verified using numer-
ical integration, FLI and TFA. Also results also show
that fourth body gravitation may reduce amplitude of
resonance trajectory relative to numerical integration of
trajectory in RTBP, but fourth body diffuse trajectory
in bounded phase space.

Appendix

Utilizing Newton’s gravitational law, one obtains that
the motion of P1 and P4 in an inertial frame (ξ1, ξ2) is
described by the following equations:

d2�ξ4

dt2 = Gm1
�ξ1 − �ξ4∣∣∣�ξ1 − �ξ4

∣∣∣
3 + Gm2

�ξ2 − �ξ4∣∣∣�ξ2 − �ξ4

∣∣∣
3

+ Gm3
�ξ3 − �ξ4∣∣∣�ξ3 − �ξ4

∣∣∣
3 (27)

d2�ξ1

dt2 = Gm2
�ξ2 − �ξ1∣∣∣�ξ2 − �ξ1

∣∣∣
3 + Gm3

�ξ3 − �ξ1∣∣∣�ξ3 − �ξ1

∣∣∣
3

+ Gm4
�ξ4 − �ξ1∣∣∣�ξ4 − �ξ1

∣∣∣
3 (28)

Defining the Earth centric frame (P1), the following
relative distance are defined:

�r4 = �ξ4 − �ξ1, �r3 = �ξ3 − �ξ1, �r2 = �ξ2 − �ξ1 (29)

Thus, the equation of motion for P4 will be

d2�r4

dt2 = −μ �r4

ρ3
4

+ ε

[
− �r2

ρ3
2

+ �r2 − �r4

|�r2 − �r4|3
]

+ gm3

[
− �r3

ρ3
3

+ �r3 − �r4

|�r3 − �r4|3
]
, (30)

where

μ = G(m1 + m4) and

ε = Gm2

Subsequently, (30) can be rewritten as

d2�r4

dt2 = −μ �r4

ρ3
4

+ ε

[
− �r2

ρ3
2

+ �r2 − �r4

|�r2 − �r4|3
]

+γ
[
−�r3 + R3

s
�r3 − �r4

|�r3 − �r4|3
]
, (31)

where γ = gm3
R3

s

It can be shown that the perturbation terms in the
RHS of (31) can be simplified as,

− �r2

ρ3
2

+ �r2 − �r4

|�r2 − �r4|3
= ∂

∂r4

(
−�r2 · �r4

ρ3
2

+ 1

|�r2 − �r4|

)

−�r3+R3
s

�r3−�r4

|�r3 − �r4|3
= ∂

∂r4

(
−�r3 · �r4 + R3

s
1

|�r3 − �r4|
)

(32)
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Finally, the equation of motion and the Hamiltonian
of the negligible mass (P4) in the bicircular model
will be

d2�r4

dt2 = −μ �r4

ρ3
4

− ε
∂R1

∂�r4
− γ

∂R2

∂�r4
(33)

H = − μ2

2L2 + εR1 + γ R2, (34)

where

R1 = �r2 · �r4

ρ3
2

− 1

|�r2 − �r4|3

R2 = �r3 · �r4 − R3
s

1

|�r3 − �r4|3
(35)

One can also express R2 in terms of the resonance
variables. Note that R2 can also be defined as posed in
Eq. (3),

R2 =
∞∑

j=2

Pj (cos S2)

(
ρ4

ρ3

) j

, (36)

where S2 is the angle between Earth–Satellite and
Earth–Sun vectors, see Fig. 13. Similarly cos S2 can
be defined:

cos S2 =
(

1 − 1

4
γ 2

)
cos(ψ − ψS)

+1

4
γ 2 cos(ψ + ψS − 2�) (37)

Substitution of (37) into (36) with expansion of the
trigonometric parts in terms of the Delaunay variables
will result in the perturbation Hamiltonian R2 in terms
of resonance variables. In Eq. (38), the Hamiltonian
associated with the fourth body mass is shown, assum-
ing a zero inclination orbit:

Ham0 = 1

16384

1

ρ4
4

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−8960R3
Sρ

4
4 cos (4	4 + 4 f4 − 4	3 − 4 f3)

−5120R3
Sρ

4
4 cos (2	4 + 2 f4 − 2	3 − 2 f3)

−10240R3
Sρ

3
4ρ3 cos (3	4 + 3 f4 − 3	3 − 3 f3)

−6144R3
Sρ

3
4ρ3 cos (	4 + f4 −	3 − f3)

−2304R3
Sρ

4
4 − 12288R3

Sρ
2
4ρ

2
3 cos (2	4 + 2 f4 − 2	3 − 2 f3)

−4096R3
Sρ

2
4ρ

2
3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(38)

Expressing orbital parameters using Delaunay vari-
ables and assuming zero eccentricity for the Sun’s orbit
and equating higher orders of� and� to zero will yield
(39).

123



Fourth body gravitation effect 971

Ham := − 1

16384

1

ρ4
4⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

73728ρ2
4 cos (2nSt + 2l4 − 2φ − 2t) s2�2�2

+73728
√
�s′(−2s�−s′�+2�)

(−s�+�)2 . ρ2
4 cos

(−2s′t−ψ−sφ+2ns ts′+2l4s′−3φs′
s′

)
s2�2�2

−14592�2�2s′2
√
�s′(−2s�−�s′+2�)

(−s�+�)2 ρ2
4 cos

(
2l4s′−2s′t+3ψ+3sφ+s′φ+2ns ts′

s′
)

−36864�2s′ρ2
4 s�2 − 403200�2s′2ρ2

4 cos (2nst + 2l4 − 2φ − 2t)�2

−87552�2�2s′
√
�s′(−2s�−�s′+2�)

(−s�+�)2 ρ2
4 cos

(
2l4s′−2s′t+3ψ+3sφ+s′φ+2ns ts′

s′
)

s

−147456�2s′ρ2
4 cos

(
2(nSts′+l4s′−s′t+ψ+sφ)

s′
)

s�2

−32256�2�2s′
√
�s′(−2s�−�s′+2�)

(−s�+�)2 ρ2
4 cos

( 1
s′

(−2s′t + 5ψ + 5sφ + 2nSts′ + 2l4s′ + 3φs′)) s

+294912�2�2s′
√
�s′(−2s�−�s′+2�)

(−s�+�)2 ρ2
4 cos

( 1
s′

(−2s′t − 3ψ − 3sφ − 5φs′ + 2nSts′ + 2l4s′)) s

+205824�2s′2ρ2
4 cos

(
2(nSts′+s′l4−s′t+ψ+sφ)

s′
)
�2

+207360�2s′ρ2
4 cos (2nSt + 2l4 − 2φ − 2t) s�2

−77568�2�2s′2
√
�s′(−2s�−�s′+2�)

(−s�+�)2 ρ2
4 cos

(−2s′t−ψ−sφ+2nSts′+2l4s′−3φs′
s′

)

+49152�2�2s′2
√
�s′(−2s�−�s′+2�)

(−s�+�)2 ρ2
4 cos

(−2s′t−3ψ−3sφ−5φs′+2nSts′+2l4s′
s′

)

−221184
√
�s′(−2s�−�s′+2�)

(−s�+�)2 ρ2
4 cos

(−2s′l4−2s′t+ψ+sφ−φs′+2nSts′
s′

)
s2�2�2

+18432�2s′ρ2
4 cos

(
2(−s′t−ψ−sφ+nSts′+s′l4−2s′φ)

s′
)

s�2

+346368�2s′2ρ2
4 cos

(
2(−s′t−ψ−sφ+nSts′+s′l4−2s′φ)

s′
)
�2

+69120�2�2s′
√
�s′(−2s�−�s′+2�)

(−s�+�)2 ρ2
4 cos

(
2s′l4−2s′t+ψ+sφ−φs′+2nSts′

s′
)

s

−92160�2s′2ρ2
4 cos

(
2(s′l4−s′t−2ψ−2sφ−3φs′+nSts′)

s′
)
�2

+16128�2s′2ρ2
4 cos

(
2(nSs′t+l4s′+3sφ+2s′φ+3ψ−s′t)

s′
)
�2

−49152
√
�s′(−2s�−�s′+2�)

(−s�+�)2 cos
(

sφ+s′φ+ψ
s′

)
ρ2

4 s2�2�2 − 6144�2s′2ρ2
4�

2

+36864�2s′ρ2
4 cos

(
2(sφ+s′φ+ψ)

s′
)

s�2 + 6144�2s′2ρ2
4 cos

(
2(sφ+s′φ+ψ)

s′
)
�2

+24576ρ2
4 s2�2�2

+11520�2�2s′2
√
�s′(−2s�−�s′+2�)

(−s�+�)2 ρ2
4 cos

(
2l4s′−2s′t+ψ+sφ−φs′+2nSts′

s′
)

−465408�2�2s′2
√
�s′(−2s�−�s′+2�)

(−s�+�)2 ρ2
4 cos

(−2s′t−ψ−sφ+2nSts′+2l4s′−3φs′
s′

)
s

−5376�2�2s′2
√
�s′(−2s�−�s′+2�)

(−s�+�)2 ρ2
4 cos

(−2s′t+5ψ+5sφ+2nSts′+2l4s′+3φs′
s′

)

+32256�2s′ρ2
4 cos

(
2(−s′t+2ψ+2sφ+nSts′+l4s′+φs′)

s′
)

s�2

−54528�2s′2ρ2
4 cos

(
2(−s′t+2ψ+2sφ+nSts′+l4s′+φs′)

s′
)
�2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

· R3
S

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(39)
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