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Abstract Microbeam dynamics is important in
MEMS filters and resonators. In this research, the
effect of piezoelectric actuation on the resonance
frequencies of a piezoelectrically actuated capaci-
tive clamped-clamped microbeam is studied. The
microbeam is sandwiched with piezoelectric layers
throughout its entire length. The lower piezoelectric
layer is exposed to a combination of a DC and a har-
monic excitation voltage. The DC electrostatic voltage
is applied to prevent the doubling of the excitation fre-
quency. The traditional resonators are tuned using DC
electrostatic actuation, which tunes the resonance fre-
quency only in backward direction on the frequency
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domain. The proposed model enables tuning the res-
onance frequencies in both forward and backward di-
rections. For small amplitudes of harmonic excitation
and high enough quality factor, the frequency response
curves obtained by the shooting method are validated
with those of the multiple time scales technique. Un-
like the perturbation technique, which imposes limita-
tion on both the amplitude of the harmonic excitation
and the quality factor to be applicable, the shooting
method can be applied to capture the periodic attrac-
tors regardless of how big the amplitude of harmonic
excitation and the quality factor are.

Keywords Clamped-clamped microbeam ·
Piezoelectric actuation · Primary resonance ·
Secondary resonance · Shooting method

1 Introduction

The field of nonlinear dynamics in MEMS is very ex-
tensive. The behavior of the most MEMS is strongly
nonlinear. There are various sources of nonlinearities
in MEMS including electrostatic excitation, nonlin-
ear damping mechanisms, and nonlinear geometries
[1, 2]. The most common way of actuation in MEMS
is electrostatic actuation, which is inherently a non-
linear position dependant force. The electrostatic ac-
tuation is usually a combination of a tuning DC volt-
age [3–5] and a harmonic AC voltage [6–13], which
prompts the system to oscillate about its equilibrium
position due to the tuning voltage. Another important
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source of nonlinearity in MEMS is the geometric non-
linearity. In clamped-clamped microbeams due to the
immovable boundary conditions, the stretching of the
mid-plane of the microbeam imposes an axial deflec-
tion dependant stress, which affects the bending stiff-
ness in such a way that resembles a cubic type of non-
linearity [2]. The presence of these two sources of
nonlinearities leads to the appearance of various in-
teresting dynamic behaviors including softening [11,
12, 14, 15], hardening [8, 11, 12], hysteresis [2], jump
phenomenon [2], chaotic response [13, 16, 17], multi-
valued responses [2], and generation of secondary sub
and superharmonic resonances in the microbeam re-
sponse [9, 15]. The very initial studies on the nonlin-
ear dynamics of the MEMS refers back to the inves-
tigation of the static and dynamic pull-in instabilities
under the effect of DC electrostatic force, which arises
in the analysis of the microswitches and microsensors
[5, 10, 18–25]. To reduce the energy consumption and
to use the MEMS in resonance conditions especially
in RF MEMS filters, application of simultaneous AC
harmonic electrostatic excitation is proposed in nu-
merous papers in the literature [2, 10, 13]. From 2003,
many papers have been published on the nonlinear dy-
namics of the clamped-clamped microbeams exposed
to a combination of a tuning DC and harmonic elec-
trostatic actuations [7, 10–12, 14, 26]. In most of the
papers, the multiple time scales method is applied to
obtain the frequency response curves [7, 14]. To ap-
ply the perturbation technique to the governing dif-
ferential equation of the motion, two conditions need
to be satisfied, small enough amplitude of AC voltage
and high enough quality factor, which implies a small
damping coefficient [27]. Nayfeh et al. [10] in 2007
used the shooting method [2, 28] as an outcome to the
shortage of the perturbation technique and reported the
frequency response curves regarding the primary res-
onance. The results show that as the applied DC tun-
ing voltage increases the softening effect of the elec-
trostatic nonlinearity dominates the hardening effect
of the cubic nonlinearity leading in the softening type
frequency response curve. Corresponding to a DC tun-
ing voltage, increasing the amplitude of the AC har-
monic excitation leads in the appearance of both hard-
ening and softening effects in the frequency response
curves. They obtained the pull-in band and discussed
on the bifurcation types. In 2009, Alsaleem et al. [26]
studied the nonlinear resonances and pull-in instabil-
ity of MEMS resonators. They verified their theoret-
ical results by experiments. They presented basins of

attraction for the limit cycles corresponding to some
actuation frequencies. Some papers have focused on
the discretization methods of the governing equation
to reduce it to finite degree of freedom consisting of
ordinary differential equations in time [29]. They mul-
tiplied both sides of the governing partial differen-
tial equation of the motion in the denominator of the
electrostatic force so that they could use the Galerkin
method; they showed that the Tailor expansion of the
electrostatic force fails to correctly represent the elec-
trostatic force as the deflection increases. In this pa-
per, a clamped-clamped piezoelectrically sandwiched
resonator is considered; the piezoelectric layers are de-
posited throughout the entire length of the microbeam.
Through the lower piezoelectric layer, the resonator
is exposed to a combination of a DC and a harmonic
AC electrostatic voltage. In the presented model, the
piezoelectric layers are used to shift the primary reso-
nances of the structure. The DC voltage in the MEMS
is apparently used for two main purposes: the first one
is to lower the resonance frequency (backward shift-
ing) and the other one is to prevent the doubling of
the harmonic excitation frequency [2] (in the case of
very small amplitudes of AC voltage in comparison
with the DC tuning voltage). Based on the axial force
(tensile/compressive) induced in the microbeam, due
to the piezoelectric excitation, the proposed model has
the potential of two-side shifting (forward/backward
shifting) the primary resonances. The shooting method
is applied to capture the periodic solutions correspond-
ing to each excitation frequency. The bifurcation types
in the frequency response curves are discussed and the
pull-in bands redetermined. The results of this study
can be used in the design of flexible band-pass RF
MEMS filters or flexible resonance band resonators.

2 Modeling

The proposed model is a clamped-clamped microbeam
sandwiched with two piezoelectric layers throughout
the entire length (Fig. 1). The piezoelectric layers are
deposited on pure silicon through the length of the
microbeam. The piezoelectric layers are actuated by
a DC voltage denoted by Vp; this voltage is applied
along the height direction of the piezoelectric layers.
Through the lower piezoelectric layer, the microbeam
is subjected to a combination of a DC and an AC
voltage with amplitude VAC and frequency Ω . Length
thickness and the width of the microbeam are respec-



Tuning the primary resonances of a micro resonator, using piezoelectric actuation 841

Fig. 1 Schematics of the clamped-clamped piezoelectrically
sandwiched microbeam and the electrodes

tively denoted by, l, h, and a; E and ρ correspond
to the Young’s modulus and the density of the sili-
con, respectively. Symbols with subscript “p” repre-
sent the geometrical or material properties correspond-
ing to the piezoelectric layer. The equivalent piezo-
electric coefficient is denoted by ē31. The coordinate
system as illustrated in Fig. 1, and is attached to the
mid-plane of the left clamped end of the microbeam
where x and z refer to the horizontal and vertical coor-
dinates, respectively. The deflection of the microbeam
along the z axis is denoted by w(x, t).

The total potential strain energy of the microbeam
is due to bending (Ub), axial force due to piezoelec-
tric actuation denoted by (Up), axial force due to the
mid-plane stretching represented by (Ua), and elec-
trical coenergy stored between the substrate and the
lower piezoelectric layer (U∗

e ) [30].
The strain energy due to mechanical bending is ex-

pressed as

Ub =
∫

εbσb

2
dv

=
∫

E

2

(
−z

∂2w

∂x2

)(
−z

∂2w

∂x2

)
dv (1)

where εb and σb are the strain and stress fields due
to the bending and dv is the volume of infinite small
element; considering the geometry of the microbeam
and simplifying, Eq. (1), reduces to

Ub = (EI)eq

2

∫ (
∂2w

∂x2

)2

dx (2)

where

(EI)eq = EI + EP hahP

(
h

2
+ hp

)
(3)

Due to the immovable edges, the extended length of
the beam (l′) becomes more than the initial length l

and this leads to the introduction of an axial stress and
accordingly an axial force denoted as [13]:

Fa = (EA)eq

l

(
l′ − l

) ≈ (EA)eq

2l

∫ l

0

(
∂w

∂x

)2

dx (4)

where

(EA)eq = Eah + 2Epahp (5)

Integration of the arc length “ds” gives the stretched
length (l′) as

l′ =
∫ l

0
ds ≈

∫ l

0

√
1 +

(
∂w

∂x

)2

dx = l

+ 1

2

∫ l

0

(
∂w

∂x

)2

dx (6)

The strain energy stored due to the mid-plane
stretching is as follows:

Ua = 1

2
Fa

(
l′ − l

)
(7)

substituting Eqs. (4) and (6) into Eq. (7), the strain en-
ergy due to the mid-plane stretching reduces to

Ua = (EA)eq

8l

(∫ l

0

(
∂w

∂x

)2)2

(8)

Piezoelectric actuation due to immovable boundary
conditions leads to the introduction of another axial
force; based on the constitutive equation of piezoelec-
tricity, [31, 32] and considering the direction of the
applied electrical field (E3) the axial stress due to the
piezoelectric actuation reduce to:

σ1 = −e31E3 (9)

where e31 is the corresponding piezoelectric voltage
constant (Coulomb/m2); Considering E3 = Vp/hp ,
the axial force due to the piezoelectric actuation re-
duces to

Fp =
∫

Ap

σ1 dAp = 2
∫ hp

0
(−e31E3)a dh

= −2e31Vpahp (10)

The strain potential energy due to the axial piezoelec-
tric force is expressed as

Up = Fp

(
l′ − l

) = Fp

2

∫ l

0

(
∂w

∂x

)2

dx (11)



842 S. Azizi et al.

The total potential energy of the system reduces to

U = Ub + Ua + Up + Ue (12)

The kinetic energy of the microbeam is represented as

T = (ρah)eq

2

∫ x=l

x=0

(
∂w

∂t

)2

dx (13)

where

(ρah)eq = (ρA)eq = ρah + 2ρpah (14)

The work of the electrostatic force from zero deflec-
tion to w(x), is expressed as follows:

wel =
∫ l

0

(∫ w

0

ε0aV 2
es

2(g0 − ζ )2
dζ

)
dx

= ε0aV 2
es

2

∫ l

0

(
1

g0 − w
− 1

g0

)
dx (15)

where g0 is the initial gap between the microbeam and
the substrate and ε0 is the dielectric constant of the gap
medium and ζ is a dummy parameter. The governing
partial differential equation of the motion is obtained
by the minimization of the Hamiltonian using varia-
tional principle as

δ

∫ t

0
H dt = δ

∫ t

0
(T − U + wel) dt = 0 (16)

Introducing Eqs. (12), (13), and (15) into Eq. (16), the
Hamiltonian reduces to:

δ

∫ t

0
H dt =

∫ t

0

⎧⎪⎪⎨
⎪⎪⎩

−(EI)eqw
′′δw′∣∣l

0+(EI)eqw
′′′δw

∣∣l
0 − (EI)eq

∫ l

0 wIV δw dx

−Fpw′δw
∣∣l
0+Fp

∫ l

0 w′′δw dx − (EA)eq
2

∫ l

0 w′2 dxw′δw
∣∣l
0

+ (EA)eq
2

∫ l

0 w′2 dx
∫ l

0 w′′δw dx + ε0aV 2
es

2

∫ l

0
δw

(g0−w)2 dx

⎫⎪⎪⎬
⎪⎪⎭

dt

+
∫ t

0

{
(ρA)eq

∫ l

0
ẇδw|l0 − (ρA)eq

∫ t

0
ẅδw dt

}
dx = 0 (17)

The governing equation and the corresponding bound-
ary conditions reduce to

(EI)eq
∂4w(x, t)

∂x4
+ (ρA)eq

∂2w(x, t)

∂t2

−
(

FP + (EA)eq

2l

∫ l

0

(
∂w(x, t)

∂x

)2

dx

)

× ∂2w(x, t)

∂x2

= ε0a(VDC + VAC sin(Ωt))2

2(g0 − w(x, t))2
(18)

Subjected to the following boundary conditions:

w(0, t) = w(l, t) = 0,
∂w(0, t)

∂x
= ∂w(l, t)

∂x
= 0

(19)

The following nondimensional parameters are used to
obtain the equation of the motion in nondimensional
form.

ŵ = w

g0
, x̂ = x

l
, t̂ = t

t̃
,

	

Ω= Ωt̃ (20)

where

t̃ =
√

(ρA)eql4

(EI)eq
(21)

Substituting Eq. (20) in Eq. (18), and considering vis-
cous damping effect due to the squeeze film damping
[4] and dropping the hats the differential equation of
the motion in nondimensional form is obtained as

∂4w(x, t)

∂x4
+ ∂2w(x, t)

∂t2
− [

α1 + α2Γ (w,w)
]

× ∂2w(x, t)

∂x2
+ α3

∂w(x, t)

∂t

= α4[VDC + VAC sin(Ωt)]2

(1 − w)
2 (22)

Subject to the following boundary conditions in nondi-
mensional form:

w(0, t) = w(1, t) = 0,
∂w(0, t)

∂x
= ∂w(1, t)

∂x
= 0

(23)
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For simplicity in Eq. (22), the function Γ and the
coefficients αi are defined as

Γ
(
f1(x, t), f2(x, t)

) =
∫ 1

0

∂f1

∂x

∂f2

∂x
dx

α1 = FP l2

(EI)eq
, α2 = (EA)eqg

2
0

2(EI)eq
,

α3 =
	
c l2√

(ρA)eq(EI)eq
, α4 = ε0al4

2g3
0(EI)eq

(24)

3 Numerical solution

The approximate solution of Eq. (22) is supposed to
be in the following form:

w(x, t) =
M∑
i=1

ui(t)ϕi(x) (25)

where ui(t) is the generalized coordinate and ϕi(x)

is the ith undamped mode shape function, which is
normalized such that

∫ 1
0 ϕiϕj dx = δij and governed

by

ϕiv
i = α1ϕ

′′
i + ω2

i ϕi

ϕi = 0 ϕ′
i = 0 at x = 0 and x = 1

(26)

here, ωi is the ith natural frequency of the clamped-
clamped microbeam. Both sides of Eq. (22) are multi-
plied by ϕn(x)(1 − w)2, and Eq. (26) is substituted in
the resulting equation. Considering Eq. (26) and inte-
grating the outcome from x = 0 to x = 1 reduce to:

ω2
nun +

M∑
i=1

M∑
j=1

M∑
k=1

ω2
i uiujuk

∫ 1

0
ϕnϕiϕjϕk dx

− 2
M∑
i=1

M∑
j=1

ω2
i uiuj

∫ 1

0
ϕnϕiϕj dx + ün

+
M∑
i=1

M∑
j=1

M∑
k=1

uiuj ük

∫ 1

0
ϕnϕiϕjϕk dx

− 2
M∑
i=1

M∑
j=1

uiüj

∫ 1

0
ϕnϕiϕj dx + α3u̇n + α3

×
M∑
i=1

M∑
j=1

M∑
k=1

uiuj u̇k

∫ 1

0
ϕnϕiϕjϕk dx

− 2α3

M∑
i=1

M∑
j=1

uiu̇j

∫ 1

0
ϕnϕiϕj dx − α2

×
M∑
i=1

M∑
j=1

M∑
k=1

uiujukΓ (ϕi, ϕj )

∫ 1

0
ϕnϕ

′′
k dx

− α2

M∑
i=1

M∑
j=1

M∑
k=1

M∑
l=1

M∑
m=1

uiujukulumΓ (ϕi, ϕj )

×
∫ 1

0
ϕnϕmϕlϕ

′′
k dx

+ 2α2

M∑
i=1

M∑
j=1

M∑
k=1

M∑
l=1

uiujukulΓ (ϕi, ϕj )

×
∫ 1

0
ϕnϕlϕ

′′
k dx

= α4
[
VDC + VAC cos(Ωt)

]2
∫ 1

0
ϕn dx

for n = 1,2, . . . ,M (27)

Equation (27), is the discretized form of the equa-
tion of the motion; to catch the periodic solutions and
accordingly plot the frequency response curves using
shooting method, the single degree of freedom model
is considered and the equations of the motion are in-
tegrated numerically to get the components of the so-
called monodromy matrix at time T ; and the stability
of the periodic solutions are examined using the Flo-
quet theory [2].

4 Perturbation analysis

To validate the frequency responses obtained by the
shooting technique, we have applied multiple time
scales of perturbation technique to Eq. (22). As men-
tioned, to apply the perturbation method to the equa-
tion of the motion and analyze the response in the
vicinity of the primary resonance, the amplitude of the
motion needs to be sufficiently small; to satisfy this
condition, it is assumed that the deflection of the mi-
crobeam u is a combination of static component ws

due to VDC, VP and dynamic component wd due to the
harmonic excitation VAC; and study the motion gov-
erning the wd .

w(x, t) = ws(x) + wd(x, t) (28)
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To calculate the static deflection ws , we set the time
derivatives and the harmonic excitation in Eq. (22)
equal to zero and get

wIV
s (x) − [

α1 + α2Γ (ws,ws)
]
w′′

s = α4
V 2

es

(1 − ws)2

(29)

Subject to the following boundary conditions:

ws(x = 0,1) = 0,
dws

dx
= 0 (30)

Substituting Eq. (28) in Eq. (22), considering Eq. (29)
and expanding the electrostatic force in Tailor expan-
sion about the static equilibrium position, the problem
governing the dynamic behavior is generated as

ẅd + α3ẇd + wIV
d − [

α1 + α2Γ (ws,ws)
]
w′′

d

− 2α2Γ (ws,wd)w′′
d − 2α2Γ (ws,wd)w′′

s

− α2Γ (wd,wd)w′′
s − α2Γ (wd,wd)w′′

d = α4

[
2V 2

DC

(1 − ws)3
wd + 3V 2

DC

(1 − ws)4
w2

d

+ 4V 2
DC

(1 − ws)5
w3

d
+ 2VDCVAC cos(Ωt)

(1 − ws)2

+ 4VDCVAC cos(Ωt)

(1 − ws)3
wd + · · ·

]

(31)

wd(x, t) = ∑n
i=1 qi(t)ϕi(x) is substituted in Eq. (31)

where qi(t) is the generalized coordinate correspond-
ing to the dynamic component of the deflection. Using
Galerkin method and considering the first mode in the
governing ordinary differential equations gives:

q̈(t) + Cq̇(t) + Kq(t) + Knqq2(t) + Kncq
3(t)

= F1VAC cos(Ωt) + F2q(t)VAC cos(Ωt) (32)

where

C = α3

K =
∫ x=1

x=0
ϕ1(x)ϕIV

1 (x) dx − [
α1 + α2Γ (ws,ws)

]

×
∫ x=1

x=0
ϕ1(x)ϕ′′

1 (x) dx

− 2α2Γ
[
ws,ϕi(x)

] ∫ x=1

x=0
ϕ1(x)w′′

s dx

− 2α4V
2
DC

∫ x=1

x=0

ϕ1(x)ϕ1(x)

(1 − ws)3
dx

Knq = −2α2Γ
[
ws,ϕk(x)

] ∫ x=1

x=0
ϕ1(x)ϕ′′

1 (x) dx

− α2Γ
[
ϕ1(x),ϕ1(x)

] ∫ x=1

x=0
ϕ1(x)w′′

s dx (33)

− 3α4V
2
DC

∫ x=1

x=0

ϕ1(x)ϕ1(x)ϕ1(x)

(1 − ws)4
dx

Knc = −α2Γ
[
ϕ1(x),ϕ1(x)

] ∫ x=1

x=0
ϕ1(x)ϕ′′

1 (x) dx

− 4α4V
2
DC

∫ x=1

x=0

ϕ1(x)ϕ1(x)ϕ1(x)ϕ1(x)

(1 − ws)5
dx

F1 = 2α4VDC

∫ x=1

x=0

ϕ1(x)

(1 − ws)2
dx

F2 = 4α4VDC

∫ x=1

x=0

ϕ1(x)ϕ1(x)

(1 − ws)3
dx

We consider a uniform asymptotic solution of Eq. (32)
in the following form:

q(t) = εq1(T0, T1, T2) + ε2q2(T0, T1, T2)

+ ε3q3(T0, T1, T2) + · · · (34)

Here, ε is a nondimensional book keeping parameter.
T0 = t , T1 = εt , and T2 = ε2t are time scales, respec-
tively. In order that the nonlinearity balances the ef-
fects of damping and excitation, they are scaled so
that they appear together in the modulation equation;
hence in Eq. (32) we consider VAC = ε3VAC,Cij =
ε2Cij . Considering the operator Dn = ∂

∂tn
, substitut-

ing Eq. (34) in Eq. (32) and equating coefficients of
like powers of ε.

εD2
0q1 + ω2q1 = 0, ω2 = K

ε2D2
0q2 + ω2q2 = −2D0D1q1 − Knqq2

1

ε3D2
0q3 + ω2q3 (35)

= −2D0D1q2 − 2D0D2q1 − D2
1q1 − CD0q1

− 2Knqq1q2 − Kncq
3
1 + F1VAC cos(ΩT0)

The solution of the first ordinary differential equation
is expressed as

q1 = A(T1, T2)e
iωT0 + Ā(T1, T2)e

−iωT0 (36)
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Substituting Eq. (36) in the ordinary differential equa-
tion corresponding to ε2 and considering the solvabil-
ity condition, it can is concluded that the A is a com-
plex valued function of the slow time scale A = A(T2)

that is determined by imposing the solvability condi-
tion at third order. The solution of the second-order
equation is expressed as

q2 = Knq

3ω2

(
A2e2iωT0 + Ā2e−2iωT0

) − 2Knq

ω2
AĀ (37)

In order to describe the closeness of the excitation fre-
quency Ω to the fundamental frequency ω, the detun-
ing parameter σ is defined as

Ω = ω + ε2σ (38)

Substituting Eqs. (36), (37), and (38) into the equation
of ε3, the secular terms need to vanish for uniform ex-
pansion as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−CiωA(T2) − 2
dA(T2)

∂T2
iω + 4

K2
nq

ω2
A2(T2)Ā(T2)

− 2

3
K2

nq

ω2 A2(T2)Ā(T2) − 3KncA
2(T2)Ā(T2)

+ F1
VAC

2
eiσT2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

× eiωT0 = 0 (39)

To determine a second-order approximation of the so-
lution we need only three time scales (T0, T1 and T2);
hence there is no need to solve the equation of the
third order ε3 for q3 but only to solve the correspond-
ing solvability condition Eq. (39) to determine A as a
function of T2 [33].

A(T2) = 1

2
aeiβ, a = a(T2), β = β(T2) (40)

Here, a and β are real functions of T2. Substituting
Eq. (40) in Eq. (39) and multiplying both sides in e−iβ ,
Eq. (39) reduces to

a′ = 1

ω

(
−Cω

1

2
a + F1

VAC

2
sin(γ )

)

γ ′ = 1

ωa

(
ωaσ + a3

(
5

12

K2
nq

ω2
− 3

8
Knc

)

+ F1
VAC

2
cos(γ )

)
(41)

where σT2 − β = γ and prime denotes the differen-
tiation with respect to T2. To determine the steady
state responses, there is no need to integrate Eq. (41)
for long time; instead, we use the fact that a and γ

are constants, and obtain the fixed points of Eq. (41)
(a0, γ0); By setting a′ = γ ′ = 0 and eliminating γ0

from Eq. (41), the frequency response curve is ob-
tained as

4

(
ωaσ + a3

(
5

12

K2
nq

ω2
− 3

8
Knc

))2

+ (Cωa)2

= (F1VAC)2 (42)

Equation (42) is an implicit function of the amplitude
a of the periodic solution, as a function of the detun-
ing parameter σ as a representative of the excitation
frequency, the quadratic Knq and cubic stiffness Knc

terms, the damping coefficient C, and the amplitude of
the harmonic excitation VAC. The stability of the peri-
odic orbits are is determined by determining the eigen-
values of the Jacobian matrix of Eq. (41) evaluated at
the fixed points (a0, γ0).

5 Results and discussions

The geometrical and mechanical properties of the case
study are represented in Table 1 as follows.

Figure 2 depicts the static equilibria of the cen-
ter of the microbeam versus VDC, for three different
levels of the piezoelectric actuation voltages (0 mV,
20 mV, and −20 mV). Corresponding to each VDC,
there are two equilibria including one stable and one
unstable (the unstable one is nearer to the substrate).
As VDC increases, these two equilibria approach each
other and their distance decreases; the stable equilib-
rium point meets the unstable one in the saddle node
bifurcation point where stable and unstable manifolds
destroy each other; this type of bifurcation in MEMS
is classified as a dangerous bifurcation since the sys-
tem is forced to escape to the substrate, so-called pull-
in. Beyond the saddle node bifurcation point, there are
neither stable nor unstable equilibria. Piezoelectric ac-
tuation with negative polarity decreases the bending
stiffness of the microbeam due to the generation of
compressive axial force; this is why the microbeam
undergoes saddle node bifurcation in a lower VDC in
comparison with positive piezoelectric polarity.
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Table 1 Geometrical and
material properties of the
microbeam and
piezoelectric layers

Geometrical and material properties Microbeam Piezoelectric layers

Length (L) 600 µm 600 µm

Width (a) 30 µm 30 µm

Height (h) 3 µm 0.01 µm

Initial gap (w0) 2 µm –

Young’s modulus (E) 169.61 GPa 76.6 GPa

Density (ρ) 2331 kg/m3 7500 kg/m3

Piezoelectric constant e31 – −9.29

Permittivity constant (ε0) 8.845 × 10−12 F/m

Fig. 2 Maximum static deflection versus VDC, for three differ-
ent levels of piezoelectric voltage

As mentioned in the previous section, in order that
the perturbation technique to be applicable to the gov-
erning equation, the damping coefficient and the am-
plitude of the excitation frequency need to be of the
orders VAC = ε3VAC,Cij = ε2Cij ; this means that for
low quality factors and high amplitudes of the har-
monic excitation the perturbation technique is not a
good candidate; hence, in the following case with
VDC = 2.0 v, VAC = 10.0 mV, and VP = 0.0 V, we
validate the results of the shooting technique with
those of perturbation method and in the rest of the
paper regardless of the amounts of the quality factor
and the amplitude of the excitation frequency we re-
port the results based on the shooting technique. As
Fig. 3 exhibits, the amplitude of the periodic solutions
predicted by the perturbation technique and shooting
method are in good agreement. The difference be-
tween the amplitudes of the periodic attractors, pre-

Fig. 3 Frequency response curve obtained by the perturba-
tion technique (solid lines represent stable manifold) and shoot-
ing method (filled squares represent the stable manifold) for
VDC = 2 V, VAC = 10 mV and VP = 0.0 mV

dicted by the multiple times scale and shooting method
increases as the orbit amplitude increases. This can be
due to the Tailor expansion of the electrostatic force;
Tailor series expansion is used to avoid strong nonlin-
earities and to apply the perturbation method.

For dynamic analysis, we have adopted two levels
of VDC (2 and 4 volt). Figure 4 illustrates the frequency
response curve near the primary resonance with dif-
ferent piezoelectric voltages; here, we assume qual-
ity factor Q = 1000, which is related to the damp-
ing coefficient and the fundamental natural frequency
as c = ω1/Q; the more the quality factor, the more
the resonator efficiency; however, it is worth noting
that the amount of the quality factor does not qualita-
tively affect the frequency response curve, but changes
the amplitude of the periodic solutions; In the present
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Fig. 4 Frequency response curve representing the hardening effect near primary resonance (filled squares represent the stable periodic
solutions) VDC = 2 V, VAC = 10 mV (a) VP = 0.0 mV, (b) VP = −20.0 mV, (c) VP = 20.0 mV

study, the quality factor is supposed to be constant.
The shooting technique is utilized to capture the peri-
odic solutions [10, 28] and the stability of the periodic
solutions are investigated via the Floquet theory [1, 3].
The filled and unfilled squares, respectively, represent
the stable and unstable branches of periodic solutions.

According to Fig. 4, there are no pull-in bands re-
gardless of the polarity of the piezoelectric actuation;
this means that at least one stable periodic solution
corresponding to each excitation frequency exists. In
some regions in the vicinity of the primary resonance,
there are even up to three periodic solutions includ-
ing two stable and one unstable. There are no basins
of attraction for the unstable periodic solution. The
trajectory in the phase space is attracted to a partic-
ular periodic solution; this depends on the location
of the initial conditions. As mentioned, two different
sources of nonlinearity in this study have two different
effects on the frequency response curves. The electro-
static actuation has a softening effect whereas the cu-
bic nonlinear stiffness (so-called nonlinear geometric
stiffness) has a hardening effect. In Fig. 4, the harden-
ing effect of nonlinear stiffness overweighs the soften-
ing effect of electrostatic actuation; this is due to the
low amplitudes of the periodic orbits. Figure 5 shows
the frequency response curves for the same VDC and
VP as of Fig. 4, but different VAC = 200 mV. Unlike
the frequency response curves represented in Fig. 4,
the frequency response curves here do not close within
the figure and three cyclic fold bifurcations occur (A,
B , and C in Fig. 5(c)); one of the Floquet multipliers
appertaining to the cyclic fold bifurcation points ap-
proaches unity while the slope of the curve approaches

infinity. Higher amplitudes of VAC imply the existence
of periodic orbits about the static equilibrium position
with higher amplitudes; this causes the softening ef-
fect of electrostatic actuation to dominate the harden-
ing effect of the geometric nonlinearity for periodic
orbits with higher amplitudes. The frequency response
curves for VAC = 200 mV, for small amplitudes of
the periodic orbits are of hardening nature, this is due
to the hardening effect of the geometric nonlinearity.
As Fig. 5 exhibits, the resonance region strongly de-
pends on both the amount and the polarity of the piezo-
electric actuation. Application of piezoelectric voltage
with positive and negative polarities shifts the reso-
nance frequency to the right and left on the frequency
axis, in comparison to the zero piezoelectric voltage,
respectively.

Figure 6 illustrates the three periodic attractors cor-
responding to the parameters of Fig. 5(a) and Ω =
25.85 (These periodic attractors are indicated by P1,
P2, and P3 in Fig. 5a). The initial conditions obtained
by the shooting method are on the periodic orbits;
hence, there is no transient dynamics on the temporal
response.

Figure 7 represents the basins of attraction corre-
sponding to the periodic attractors 1, 2, and 3 repre-
sented in Fig. 6.

It is worth mentioning that the periodic attractors
with lower amplitudes have larger basins of attrac-
tion in comparison with high amplitude attractors; this
means a that a randomly chosen initial condition will
most probably be attracted to a periodic solution with
lower amplitude provided that the chosen initial con-
dition is out of the pull-in band.
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Fig. 5 Frequency response curve representing the hardening-softening effect near primary resonance (filled squares represent the
stable periodic solutions) VDC = 2 V, VAC = 200 mV, (a) VP = 0.0 mV, (b) VP = −20.0 mV, (c) VP = 20.0 mV

Fig. 6 Periodic attractors
corresponding to VDC = 2
VAC = 200 mV, Ω = 25.85
(a) temporal response,
(b) phase plane

Figure 8 represents the frequency response curves
for the resonator exhibiting softening type behavior
where VDC = 4.0 V and VAC = 10 mV.

Figure 9 represents the frequency response curves
for the resonator with VDC = 4.0 V and VAC =
200 mV. Some frequency bands in these figures are de-
noted as pull-in bands; in these frequency bands, there
are no stable periodic attractors; however, there are
some unstable periodic orbits. An unstable periodic
orbit has no basins of attraction; hence, no trajectory
is attracted to an unstable orbit unless the initial con-
ditions are exactly located on the corresponding orbit,
which can solely be a mathematical point of interest
rather than a physical problem. In a pull-in band, al-
though some unstable periodic orbits exist, practically
no trajectory in phase space is attracted to these orbits

and the resonator collapse to the substrate leading to
pull-in. This band for Vp = −20.0 mV is larger than
that for Vp = 0.0 mV; this is because of the reduction
of bending stiffness of the resonator due to the com-
pressive piezoelectric axial load. Since the piezoelec-
tric actuation with positive polarity imposes tensile
force leading to the increase of the bending stiffness,
the pull-in band vanishes for Vp = 20.0 mV.

Figure 10 illustrates the frequency response curves
for the same VDC as that of Fig. 9, but with a higher
VAC = 500 mV. The frequency response curves for
VP = −20.0 mV is not represented here because the
unstable periodic solutions in the pull-in band are
highly unstable; hence, one is likely to deviate from
an unstable periodic solution even if the initial condi-
tions are precisely determined.
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Fig. 7 The basins of
attraction corresponding to
the (a) Periodic attractor 1,
(b) Periodic attractor 2,
(c) Periodic attractor 3 (the
filled areas are the basins of
attraction)

Fig. 8 Frequency response curve representing the softening effect near primary resonance (filled squares represent the stable periodic
solutions) VDC = 4 V, VAC = 10 mV (a) VP = 0.0 mV, (b) VP = −20.0 mV, (c) VP = 20.0 mV

6 Conclusion

The nonlinear dynamics of a piezoelectrically sand-
wiched clamped-clamped microbeam exposed to elec-
trostatic actuation was studied. The differential equa-
tion of the motion was derived using the Hamiltonian
principle and extended to dissipative viscous systems.

The static equilibria of the microbeam for pure VDC

with different piezoelectric voltages were investigated;
then the bifurcation types considering VDC as the con-
trol parameter were clarified. It was shown that the po-
larity of the piezoelectric actuation directly affects the
bending stiffness of the microbeam, and accordingly
the locus of saddle node bifurcation point shifts on the
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Fig. 9 Frequency response curve representing the softening effect near primary resonance (filled squares represent the stable periodic
solutions) VDC = 4 V, VAC = 200 mV (a) VP = 0.0 mV, (b) VP = −20.0 mV, (c) VP = 20.0 mV

Fig. 10 Frequency
response curve representing
the softening effect near
primary resonance (filled
squares represent the stable
periodic solutions)
VDC = 4 V, VAC = 500 mV
(a) VP = 0.0 mV (b)
VP = 20.0 mV

bifurcation diagram. It was shown that the positive po-
larity of the piezoelectric actuation adds to the bend-
ing stiffness of the microbeam; however, negative po-
larity reduces the bending stiffness. This phenomenon
was used as a tool for tuning the primary resonance of
the structure. Furthermore, we used the benefit of this
event to cancel the pull-in band from the frequency
response curves, which is the most famous failure in
MEMS structures. We studied the dynamics of the
model with two different levels of DC electrostatic
voltage (VDC = 2, 4 V), three levels of AC harmonic
excitation (10, 200, and 500 mV), and three different
piezoelectric excitations (VP = −20, 0, and 20 mV).
The frequency response curves with different levels of
actuation were determined; the shooting method was
applied to capture the periodic attractors. The stability
of the periodic orbits was studied by determining the
eigenvalues of the so-called monodromy matrix. There

were two dominant sources of nonlinearities in the dy-
namics of the problem including electrostatic actua-
tion and nonlinear geometric stiffness due to the mid-
plane stretching resembling cubic type of nonlinearity.
It was revealed that the electrostatic voltage has a soft-
ening effect, whereas the geometric nonlinearity has
a hardening effect on the frequency response curves.
For VDC = 2.0 V and VAC = 10 mV, the frequency re-
sponse curves were all of the hardening type and they
closed themselves within the figure. Increasing the
amplitude of the harmonic excitation resulted in the
appearance of three cyclic fold bifurcation points on
the frequency response curve and also the appearance
of both softening and hardening behaviors. Increasing
the amplitude of VDC led to the disappearance of hard-
ening behaviors on the frequency response curves due
to the domination of the electrostatic nonlinearity. The
pull-in bands were also determined on the frequency
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response curves; in these regions, there were no sta-
ble periodic attractors; hence, any trajectory evolution
regardless of the locus of the initial conditions on the
phase plane led to pull-in, and accordingly the collapse
of the microbeam to the substrate. As one of the inter-
esting results of the present study, we could cancel the
pull-in band in the frequency response curves by ap-
plying piezoelectric voltage with an appropriate polar-
ity and amplitude. One of the challenging dilemmas in
the design process of MEMS RF resonators is the tun-
ing of the resonance frequency; unlike the traditional
tunings, the proposed model enables both forward and
backward tuning of the resonance frequency. This is
due to the introduction of a compressive/tensile axial
force due to the different polarities of the piezoelec-
tric actuation. In the case of small amplitudes of har-
monic excitation and high enough quality factors, the
frequency response curves were validated with those
of multiple time scales of the perturbation technique.
The results of present study can be used in the design
of novel MEMS resonators.

References

1. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley,
Blacksburg (1995)

2. Younis, M.I.: In: MEMS Linear and Nonlinear Statics and
Dynamics, Binghamton, vol. 1, p. 453. Springer, New York
(2010)

3. Azizi, S., et al.: Stabilizing the pull-in instability of an
electro-statically actuated micro-beam using piezoelectric
actuation. Appl. Math. Model. 35(10), 4796–4815 (2011)

4. Younis, M.I., Alsaleem, F.M., Jordy, D.: The response
of clamped-clamped microbeams under mechanical shock.
Non-Linear Mech. 42, 643–657 (2007)

5. Rezazadeh, G., Tahmasebi, A., Zubstov, M.: Application of
piezoelectric layers in electrostatic MEM actuators: con-
trolling of pull-in voltage. Microsyst. Technol. 12(12),
1163–1170 (2006)

6. Najar, F., et al.: Nonlinear analysis of MEMS electrostatic
microactuators: primary and second resonances of the first
mode. J. Vib. Control 16(9), 1321–1349 (2010)

7. Nayfeh, A.H., Younis, M.I.: Dynamics of MEMS res-
onators under superharmonic and subharmonic excitations.
J. Micromech. Microeng. 15, 1840–1847 (2005)

8. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.:
Reduced-order models for MEMS applications. Nonlinear
Dyn. 41, 26 (2005)

9. Nayfeh, A.H., Younis, M.I., Abdel-Rahman, E.M.: Dy-
namic analysis of MEMS resonators under primary-
resonance excitation. In: ASME 2005 International Design
Engineering Technical Conferences & Computers Informa-
tion in Engineering Conference, Long Beach, California,
USA, pp. 397–404 (2005)

10. Nayfeh, A., Younis, M., Abdel-Rahman, E.: Dynamic
pull-in phenomenon in MEMS resonators. Nonlinear Dyn.
48(1), 153–163 (2007)

11. Abdel-Rahman, E.M., Nayfeh, A.H., Younis, M.I.: Dynam-
ics of an electrostatically actuated resonant microsensor.
In: International Conference on MEMS, NANO and Smart
Systems (ICMENS’03). IEEE Press, New York (2003)

12. Abdel-Rahman, E.M., Younis, M.I., Nayfeh, A.H.: A non-
linear reduced order model for electrostatic MEMS. In:
ASME 2003 Design Engineering Technical Conferences
and Computers and Information in Engineering, Chicago,
Illinois, USA (2003)

13. Azizi, S., et al.: Application of piezoelectric actuation
to regularize the chaotic response of an electrostatically
actuated micro-beam. Nonlinear Dyn. 73(1–2), 853–867
(2013)

14. Abdel-Rahman, E.M., Nayfeh, A.H.: Secondary reso-
nances of electrically actuated resonant microsensors. J.
Micromech. Microeng. 13, 491–501 (2003)

15. Younis, M.I., Nayfeh, A.H.: A study of the nonlinear re-
sponse of a resonant microbeam to an electric actuation.
Nonlinear Dyn. 31(1), 91–117 (2003)

16. DeMartini, B.E., et al.: Chaos for a microelectromechanical
oscillator governed by the nonlinear Mathieu equation. J.
Microelectromech. Syst. 16(6), 1314–1323 (2007)

17. Haghighi, S.H., Markazi, A.H.D.: Chaos prediction and
control in MEMS resonators. Commun. Nonlinear Sci. Nu-
mer. Simul. 15(10), 3091 (2010)

18. Francais, O., Dufour, I.: Normalized abacus for the global
behavior of diaphragms: pneumatic, electrostatic, piezo-
electric or electromagnetic actuation. J. Model. Simul. Mi-
crosyst. 1, 149–160 (1999)

19. Tonnesen, T., et al.: Simulation, design and fabrication of
electroplated acceleration switches. J. Micromech. Micro-
eng. 7, 237–245 (1997)

20. Ananthasuresh, G.K., Gupta, R.K., Senturia, S.D.: An ap-
proach to macromodeling of MEMS for nonlinear dynamic
simulation. In: Proceedings of the ASME International
Conference of Mechanical Engineering Congress and Ex-
position (MEMS), Atlanta, GA (1996)

21. Osterberg, P.: Electrostatically Actuated Microelectrome-
chanical Test Structures for Material Property Mea-
surement. Massachusetts Institute of Technology, Boston
(1995)

22. Robinson, C., et al.: Problem encountered in the develop-
ment of the microscale G-switch using three design ap-
proaches. In: Proc. Int. Conf. on Solid-State Sensors and
Actuators, Tokyo, Japan, pp. 410–412 (1987)

23. Frobenius, W.D., et al.: Microminiature ganged threshold
accelerometers compatible with integrated circuit technol-
ogy. IEEE Trans. Electron Devices 19, 37–40 (1972)

24. Taylor, G.L.: The coalescence of closely spaced drops when
they are at different electric potentials. Proc. R. Soc. A,
Math. Phys. Eng. Sci. 306, 423–434 (1968)

25. Nathanson, H.C., et al.: The resonant gate transistor. IEEE
Trans. Electron Devices 14, 117–133 (1967)

26. Alsaleem, F.M., Younis, M.I., Ouakad, H.M.: On the non-
linear resonances and dynamic pull-in of electrostatically
actuated resonators. J. Micromech. Microeng. 19, 045013
(2009)



852 S. Azizi et al.

27. Younis, M.I., Nayfeh, A.H.: A study on the nonlinear re-
sponse of a resonant microbeam to an electric actuation. J.
Nonlinear Dyn. 31, 91–117 (2003)

28. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dy-
namics. Wiley, New York (1995)

29. Younis, M.I., Abdel-Rahman, E.M., Nayfeh, A.H.: A re-
duced order model for electrically actuated microbeam-
based MEMS. J. Microelectromech. Syst. 12(2), 672–680
(2003)

30. Vahdat, A.S., Rezazadeh, G.: Effects of axial and resid-
ual stresses on thermoelastic damping in capacitive micro-
beam resonators. J. Franklin Inst. 348(4), 622–639 (2011)

31. Azizi, S., et al.: Parametric excitation of a piezoelectrically
actuated system near Hopf bifurcation. Appl. Math. Model.
36(4), 1529–1549 (2012)

32. Azizi, S., et al.: Stability analysis of a parametrically ex-
cited functionally graded piezoelectric, MEM system. Cur-
rent Appl. Phys. 12(2), 456–466 (2012)

33. Nayfeh, A.H.: In: Introduction to Perturbation Techniques,
vol. 1, p. 519. Wiley, Blacksburg (1993)


	Tuning the primary resonances of a micro resonator, using piezoelectric actuation
	Abstract
	Introduction
	Modeling
	Numerical solution
	Perturbation analysis
	Results and discussions
	Conclusion
	References


