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Abstract In this paper, a novel adaptive fractional-
order feedback controller is first developed by ex-
tending an adaptive integer-order feedback controller.
Then a simple but practical method to synchronize
almost all familiar fractional-order chaotic systems
has been put forward. Through rigorous theoreti-
cal proof by means of the Lyapunov stability the-
orem and Barbalat lemma, sufficient conditions are
derived to guarantee chaos synchronization. A wide
range of fractional-order chaotic systems, including
the commensurate system and incommensurate case,
autonomous system, and nonautonomous case, is just
the novelty of this technique. The feasibility and va-
lidity of presented scheme have been illustrated by
numerical simulations of the fractional-order Chen
system, fractional-order hyperchaotic Lü system, and
fractional-order Duffing system.

Keywords Fractional-order chaotic system ·
Adaptive fractional-order feedback · Commensurate
and incommensurate system · Barbalat lemma

1 Introduction

The concept of fractional calculus was proposed by
Leibniz more than 300 years ago. For a long time, it
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was unexplored due to its inherent complexity and the
fact that it does not have an acceptable geometrical or
physical interpretation [1–4]. Only in recent years, it
begins to attract more and more attention of physicists
and engineers. This is a result of better understanding
of the fractional calculus revealed by problems such
as viscoelasticity [5, 6], dielectric polarization [7],
electrode-electrolyte polarization [8], electromagnetic
waves [9], quantitative finance [10], and quantum
evolution of complex systems [11]. More recently,
many researchers show growing interest in chaotic be-
havior of fractional-order dynamical systems. Up to
now, it has been shown that some fractional-order dy-
namical systems can display chaotic or hyperchaotic
behaviors, such as the fractional-order Lorenz fam-
ilies system [12–14], fractional-order Rössler sys-
tem [15], fractional-order Liu system [16], fractional-
order Chua’s system [17], fractional-order Duffing
system [18], and so on.

Chaos control and synchronization are two impor-
tant ways to utilize chaos in practice. The synchroniza-
tion of chaotic fractional-order system has attracted
great attention due to its potential application in se-
cure communication. So far, there exist many meth-
ods to realize synchronization for fractional-order
chaotic systems, which include the linear feedback
method [19–22], nonlinear feedback method [23, 24],
unidirectional coupling and bidirectional coupling
[25–28], PC method [25, 26, 29], PAD method [25],
active control [30, 31], sliding mode control [31, 32]
and state observer [27, 30]. However, despite the large
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amount of effort, there are still some problems to be
overcome, which can be summarized as the follow-
ing four points: (1) Firstly, the control methods in
most literatures [19–21, 25–31] just focus on a spe-
cific dynamical system, not giving a general approach
to attain chaos synchronization for fractional-order dy-
namical systems. (2) Secondly, the control approaches
mentioned above can achieve chaos synchronization
successfully. But these methods have some defects
to a certain degree. For example, the linear feed-
back method [19–22] is simple and practical, but it
is difficult to get the suitable feedback coefficient.
Then numerical calculation has to be used, which
lead to this technique can only be applied to partic-
ular models. There is a similar problem for the uni-
directional coupling and bidirectional coupling con-
troller [25–28]. The sliding mode technique [31, 32]
is effective in many cases, however, chattering phe-
nomenon is the inherent vice. PC and PAD tech-
niques [25, 26, 29] have high requirements on system
structure. (3) Thirdly, the control methods in litera-
tures [23, 24, 30, 31] are none of the above problems,
but the structures of controllers are complex. (4) Fi-
nally, most synchronization methods [19–31] are ap-
plied to autonomous fractional-order chaotic systems
but for the nonautonomous case mentioned less. Mo-
tivated by the above discussions, in this paper, we will
try to find a simple, efficient and practical approach to
achieve chaos synchronization for almost all familiar
fractional-order chaotic systems.

Adaptive feedback control [33–35] is a mature
and effective method to synchronize the integer-order
chaotic system. Compared with the linear feedback
method, one of the advantages of this technique is
that feedback coefficients do not need to know in ad-
vance. Hence, we will design a new adaptive feed-
back controller to realize chaos synchronization for
the fractional-order chaotic system. The remainder
of this paper is organized as follows. In Sect. 2,
some preliminary definitions and numerical compu-
tational methods about fractional-order system are in-
troduced. Section 3 presents a new adaptive fractional-
order feedback control law to synchronize a commen-
surate fractional-order chaotic system. Furthermore,
Sect. 4 provides numerical simulations for some typ-
ical fractional-order chaotic systems. Then the pro-
posed control approach has been generalized for the
incommensurate fractional-order chaotic system in
Sect. 5. Finally, the concluding remarks are stated in
Sect. 6.

2 Preliminaries and notations

2.1 Definitions of fractional derivative

A fractional-order derivative can be considered as a
generalization of an integer-order derivative. There
are several definitions for fractional derivative of or-
der α > 0 [1–4]. The two most commonly used are
Riemann–Liouville and Caputo definitions. Each defi-
nition employs the Riemann–Liouville fractional inte-
gration and derivatives of the whole order. The differ-
ence between two definitions is in the order of evalua-
tion. Since the Riemann–Liouville derivative is a con-
tinuous operator on fractional order α, it can bridge all
the gaps among integer derivatives and integrals [36].
Consequently, we will choose the Riemann–Liouville
derivative through this paper. Hereafter, one will use
the notation Dα to denote the Riemann–Liouville frac-
tional derivative operator.

Definition 1 [1–4] The Riemann–Liouville fractional
integral operator with order α > 0 for a continuous
function f : R+ → R is defined as follows:

Jαf (t) = 1

Γ (α)

∫ t

0
(t − τ)α−1f (τ) dτ, (1)

Definition 2 [1–4] The Riemann–Liouville fractional
derivative operator with order α > 0 for a continuous
function f : R+ → R is defined as follows:

Dαf (t) = DmJm−αf (t)

= 1

Γ (m − α)

dm

dtm

∫ t

0

f (τ)

(t − τ)α−m+1
dτ, (2)

where Γ (·) is the Gamma function, and m is the first
integer greater than α, that is, m − 1 < α < m.

2.2 Approximate calculation method

The numerical calculation of a fractional differential
equation is not simple as that of an ordinary differen-
tial equation. In literatures of the fractional dynamics
research field, two methods have been proposed for
a numerical solution of a fractional-order differential
equation. One is the frequency-domain approach [37],
another is the time-domain approach [38]. The first ap-
proximation method is simple and convenient, which
has been adopted in [13–15, 18, 19]. However, as the
extreme sensitivity to initial conditions of chaotic be-
havior, this technique is not reliable in the study of a
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fractional-order chaotic system, which has been ver-
ified in [39]. This paper will adopt the generalized
Adams–Bashforth–Moulton scheme [40]. It directly
derives the analytic expression of fractional differen-
tial equation then numerically iterates the formula.
Hence, it is superlinearly convergent at least. With
good numerical stability, this method has been used on
the study of chaotic behavior for fractional-order sys-
tems [20, 22, 23, 25, 27–31]. Recently, Deng [41] has
proposed an improved predictor-corrector approach in
which the numerical approximation is more accurate
and the computational cost is largely reduced.

To give the approximate solution of nonlinear
fractional-order differential equations by means of this
algorithm, consider the following differential equa-
tion:

Dαx(t) = f
(
t, x(t)

)
, 0 ≤ t ≤ T (3)

and

x(k)(0) = x
(k)

0 , k = 0, . . . ,m − 1. (4)

It is equivalent to the Volterra integral equation:

x(t) =
m−1∑
k=0

tk

k!x
(k)

0

+ 1

Γ (α)

∫ t

0
(t − s)α−1f

(
s, x(s)

)
ds. (5)

Set h = T/N , tn = nh, n = 0,1, . . . ,N ∈ Z+. Equa-
tion (5) can be discretized as follows:

xh(tn+1) =
m−1∑
k=0

tkn+1

k! x
(k)

0

+ hα

Γ (α + 2)

[
f

(
tn+1, x

p
h (tn+1)

)

+
n∑

j=0

aj,n+1f
(
tj , xh(tj )

)]
, (6)

where predicted value x
p
h (tn+1) is determined by

x
p
h (tn+1) =

m−1∑
k=0

tkn+1

k! x
(k)

0

+ 1

Γ (α)

n∑
j=0

bj,n+1f
(
tj , xh(tj )

)
, (7)

in which

aj,n+1

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nα+1 − (n − α)(n + 1)α, j = 0,

(n − j + 2)α+1 + (n − j)α+1

− 2(n − j + 1)α+1, 1 ≤ j ≤ n,

1, j = n + 1,

(8)

bj,n+1 = hα

α

(
(n − j + 1)α − (n − j)α

)
. (9)

Therefore, the estimation error of this approximation
is

max
j=0,1,...,N

∣∣x(tj ) − xh(tj )
∣∣ = O

(
hα

)
,

p = min(2,1 + α).
(10)

Remark 1 ‖ · ‖∞,‖ · ‖1, and ‖ · ‖2, respectively, denote
the ∞-norm, 1-norm, and 2-norm of the vector, which
is defined as follows:

‖x‖∞ = max
1≤i≤n

|xi |, ‖x‖1 =
n∑

i=1

|xi |,

‖x‖2 =
(

n∑
i=1

x2
i

)1/2

, ∀x ∈ Rn.

(11)

3 Adaptive synchronization scheme for a
commensurate fractional-order chaotic system

Consider a commensurate fractional-order system
with a general form, which is usually called a drive
system

Dαx(t) = f (x, t), (12)

and a controlled system named response system

Dαy(t) = f (y, t) + U(x,y), (13)

where 0 < α < 1. x ∈ Rn, y ∈ Rn are state vectors
and Ω is a domain containing the origin. The function
f (·, t) : Ω ⊂ Rn × R+ → Rn is a nonlinear chaotic
vector function and U(x,y) is an unknown vector con-
troller. To study the chaos synchronization, one can
define the error signal as e(t) = y(t)− x(t), then error
system can be obtained as follows:

Dαe(t) = f (y, t) − f (x, t) + U(x,y). (14)

Assumption 1 For any x = (x1, . . . , xn), y = (y1,

. . . , yn), nonlinear function f (·, t) satisfies the follow-
ing inequality:
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∣∣fi(x, t) − fi(y, t)
∣∣

≤ l max
1≤j≤n

|xj − yj |, i = 1,2, . . . , n,

∀(x, y) ∈ Ω, (15)

where l > 0 is a constant.

Remark 2 Such condition may be called local Lips-
chitz condition, which can ensure the existence and
uniqueness of fractional-order dynamical system [42].
Most fractional-order chaotic systems [12–18] satisfy
the above condition.

Theorem 1 For the drive system (12) and response
system (13), if the controller is given by

ui(t) = kiei = ki(yi − xi), (16)

and adaptive control parameters update according to
the following laws:

Dαki(t) = −γie
2
i = −γi(yi − xi)

2, (17)

where γi > 0, (i = 1, . . . , n) are arbitrary constants.
Then the chaos synchronization for two commensurate
fractional-order chaotic systems can be achieved.

Assumption 2 Suppose that vector function k(e, t)

meets the following condition:

mi ≤ ki(e, t) ≤ Mi, i = 1,2, . . . , n. (18)

Remark 3 As the state variables of chaotic system are
bounded, the assumption is reasonable.

Lemma 1 (Barbalat lemma [43]) If ω(t) : R → R+
is a uniformly positive function for t ≥ 0and if the
integral limt→∞

∫ t

0 ω(τ)dτ exists and is finite, then
limt→∞ ω(t) = 0.

Proof Applying the controller (16) to error system
(14) results in the following new system:

Dαei = Dαyi − Dαxi = fi(y, t) − fi(x, t) + kiei,

(19)

Now, we introduce the following Lyapunov function:

V (t, e) = 1

2

n∑
i=1

(
J 1−α

0 ei

)2 + L1

2

n∑
i=1

1

γi

(
J 1−α

0 ki

)2
,

(20)

where L1 >
(M+l)n

m
,M = max1≤i≤n{|Mi |},m =

min1≤i≤n{|mi |}. The derivative of V along the trajec-
tories of error dynamic (19) is

V̇ =
n∑

i=1

(
J 1−α

0 ei

)(
Dα

0 ei

) + L1

n∑
i=1

1

γi

(
J 1−α

0 ki

)(
Dα

0 ki

)

= 1

Γ (1 − α)

{
n∑

i=1

(∫ t

0
(t − τ)−αei(τ ) dτ

)

× (
fi(y) − fi(x) + kiei

)

− L1

n∑
i=1

(∫ t

0
(t − τ)−αki(τ ) dτ

)
e2
i

}

≤ 1

Γ (1 − α)

{
n∑

i=1

(∫ t

0
(t − τ)−α

∣∣ei(τ )
∣∣dτ

)

× ∣∣(fi(y) − fi(x)
) + kiei

∣∣

− L1

n∑
i=1

(∫ t

0
(t − τ)−αki(τ ) dτ

)
e2
i

}

≤ 1

Γ (1 − α)

{
n∑

i=1

‖e‖∞
(∫ t

0
(t − τ)−α dτ

)

× ∣∣(fi(y) − fi(x)
) + kiei

∣∣

− L1

n∑
i=1

mi

(∫ t

0
(t − τ)−α dτ

)
e2
i

}

≤ t1−α

Γ (2 − α)

[
n∑

i=1

‖e‖∞
∣∣fi(y) − fi(x)

∣∣

+
n∑

i=1

‖e‖∞|kiei | − L1

n∑
i=1

mie
2
i

]

≤ t1−α

Γ (2 − α)

[
l‖e‖∞

n∑
i=1

max
1≤j≤n

|yj − xj |

+ M‖e‖∞
n∑

i=1

|ei | − L1m

n∑
i=1

e2
i

]

= t1−α

Γ (2 − α)

[
nl‖e‖2∞ + M‖e‖∞‖e‖1 − L1m‖e‖2

2

]

≤ t1−α

Γ (2 − α)

[
nl‖e‖2∞ + Mn‖e‖2∞ − L1m‖e‖2∞

]

= t1−α

Γ (2 − α)

[
(M + l)n − L1m

]‖e‖2∞ ≤ 0,

≤ t1−α

Γ (2 − α)

[
(M + l)n − L1m

]‖e‖2
2

= −eT P (t)e = −ω(t) ≤ 0, (21)
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where P(t) = t1−α

Γ (2−α)
[L1m− (M + l)n]I is a positive

definite matrix. Now integrating (21) from zero to t

yields

V (t) +
∫ t

0
ω(τ)dτ = V (0) (22)

and the above equation means that∫ t

0
ω(τ)dτ ≤ V (0) (23)

since V ≥ 0. As t approach to infinite, the above
integral is always less than or equal to V (0), so
limt→∞

∫ t

0 ω(τ)dτ exists and is finite. Based on
Lemma 1, one has

lim
t→∞ω(t) = lim

t→∞ eT P (t)e = 0 ⇔ lim
t→∞ e(t) = 0.

(24)

Then the state trajectories of error system (19) will
converge to zero point. That is, the chaos synchroniza-
tion between drive system (12) and response system
(13) has been realized. �

4 Numerical simulations

In this section, the performance of the above pro-
posed scheme will be studied through three typical
fractional-order chaotic systems. As mentioned in
Sect. 2.2, one has implemented the improved Adams–
Bashforth–Moulton algorithm for numerical simula-
tion in FORTRAN, in which the step-size is fixed as
h = 0.01.

4.1 Fractional-order Chen system

The fractional-order Chen system [26] is described by

dαx1

dtα
= a(x2 − x1),

dαx2

dtα
= (c − a)x1 + cx2 − x1x3,

dαx3

dtα
= −bx3 + x1x2,

(25)

where system parameters a, b, c > 0. Set a = 35,
b = 3, c = 28, α = 0.96 fractional-order Chen sys-
tem (25) has a chaotic attractor as depicted in Fig. 1,
where final time is t = 100 s. The initial values of the
drive system, response system, and adaptive control
parameters are selected as (−1,5,2,6,−4,7,1,2,3)
and γi = −1, (i = 1,2,3). The synchronization er-
rors between the drive system and response system
are displayed in Fig. 2, which show the error vector
(e1, e2, e3) converges to zero quickly with the control
law (16).

4.2 Fractional-order hyperchaotic Lü system

The fractional-order hyperchaotic Lü system [44] is
described by

dαx1

dtα
= a(x2 − x1) + x4,

dαx2

dtα
= −x1x3 + bx2, (26)

Fig. 1 Chaotic attractor of
the commensurate
fractional-order Chen
system with order α = 0.96
and a = 35, b = 3, c = 28
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Fig. 2 Time history of
synchronization error for
the commensurate
fractional-order chaotic
Chen system with order
α = 0.96

dαx3

dtα
= x1x2 − cx3,

dαx4

dtα
= x1x3 − dx2,

where system parameters a, b, c, d > 0. Set a = 36,
b = 20, c = 3, d = 1, α = 0.95, fractional-order Lü
system (26) has a hyperchaotic attractor as depicted in
Fig. 3, where final time is t = 60 s. The initial values
of the drive system, response system, and adaptive pa-
rameters are selected as (−15,−18,9,10,−13,−21,

14,18,−5,7,−6,2) and γi = −1, (i = 1, . . . ,4). The
synchronization errors between drive system and re-
sponse system are displayed in Fig. 4, which show
the error vector (e1, e2, e3, e4) converge to zero rapidly
with the control law (16).

4.3 Fractional-order Duffing system

The fractional-order Duffing system [45] is described
by

dαx1

dtα
= x2,

dαx2

dtα
= x1 − βx3

1 − δx2 + f cos(ωt),

(27)

where system parameters β, δ, f,ω > 0. Set β = 1,
δ = 0.15, f = 0.3, ω = 1.0, α = 0.97, fractional-order
Duffing system (27) has a chaotic attractor as depicted

in Fig. 5, where final time is t = 300 s. The initial val-
ues of drive system, response system and adaptive pa-
rameters are selected as (0.5,−0.5,−2,3.5,2.5,−4)
and γi = −1, (i = 1,2). The synchronization errors
between drive system and response system are dis-
played in Fig. 6, which show the error vector (e1, e2)
converge to zero fleetly with the control law (16).

5 Adaptive synchronization scheme for
incommensurate fractional-order chaotic
system

Since modeling the actual dynamical system with in-
commensurate fractional-order system is more rea-
sonable than the commensurate case, we will dis-
cuss chaos synchronization for the incommensurate
fractional-order chaotic system in this section.

Consider the incommensurate fractional-order sys-
tem with a general form, which is called a drive system

Dᾱx(t) = f (x, t), (28)

and a controlled system named the response system

Dᾱy(t) = f (y, t) + U(x,y), (29)

where ᾱ = [α1, α2, . . . , αn], 0 < αi < 1(i = 1, . . . , n).

Theorem 2 For the drive system (28) and response
system (29), if the controller is given by

ui = kiei = ki(yi − xi), (30)
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Fig. 3 Hyper-chaotic
attractor of the
commensurate
fractional-order Lü system
in different projection
coordinate surface with
order α = 0.95 and a = 36,
b = 20, c = 3, d = 1.
(a) x1 − x2 − x3;
(b) x1 − x3 − x4

and adaptive control parameters update according to
the following laws:

Dαi ki(t) = −γie
2
i = −γi(yi − xi)

2, (31)

where γi > 0 (i = 1, . . . , n) are arbitrary constants.
Then the chaos synchronization for two incommensu-
rate fractional-order chaotic systems can be achieved.

Similarly, we introduce the following Lyapunov
function:

V (t, e) = 1

2

n∑
i=1

(
J

1−αi

0 ei

)2 + L1

2

n∑
i=1

1

γi

(
J

1−αi

0 ki

)2
,

(32)

where L1,M,m are the same as in Sect. 3. Taking the
time derivative of V , one has

V̇ =
n∑

i=1

(
J

1−αi

0 ei

)(
D

αi

0 ei

)

+ L1

n∑
i=1

1

γi

(
J

1−αi

0 ki

)(
D

αi

0 ki

)

=
n∑

i=1

1

Γ (1 − αi)

∫ t

0
(t − τ)−αi ei(τ ) dτ

× (
fi(y) − fi(x) + kiei

)

−
n∑

i=1

L1e
2
i

Γ (1 − αi)

∫ t

0
(t − τ)−αi ki(τ ) dτ
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Fig. 4 Time history of
synchronization error for
the commensurate
fractional-order
hyperchaotic Lü system
with order α = 0.95

Fig. 5 Chaotic attractor of
the commensurate
fractional-order Duffing
system with order α = 0.97
and β = 1.0, δ = 0.15,
f = 0.3, ω = 1.0

≤
n∑

i=1

1

Γ (1 − αi)

∫ t

0
(t − τ)−αi

∣∣ei(τ )
∣∣dτ

× ∣∣(fi(y) − fi(x)
) + kiei

∣∣

−
n∑

i=1

L1e
2
i

Γ (1 − αi)

∫ t

0
(t − τ)−αi ki(τ ) dτ

≤
n∑

i=1

‖e‖∞
Γ (1 − αi)

∫ t

0
(t − τ)−αi dτ

× ∣∣(fi(y) − fi(x)
) + kiei

∣∣

− L1

n∑
i=1

mie
2
i

Γ (1 − αi)

∫ t

0
(t − τ)−αi dτ

=
n∑

i=1

t1−αi ‖e‖∞
Γ (2 − αi)

∣∣(fi(y) − fi(x)
) + kiei

∣∣

− L1

n∑
i=1

mit
1−αi

Γ (1 − αi)
e2
i . (33)
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Fig. 6 Time history of
synchronization error for
the commensurate
fractional-order chaotic
Duffing system with order
α = 0.97

Fig. 7 Chaotic attractor of
the incommensurate
fractional-order Chen
system with order
(α1, α2, α3) = (0.8,1.0,0.9)

and (a, b, c) = (35,3,28)

For sufficiently large t , t1−αi

Γ (2−αi)
≤ t1−α

Γ (2−ᾱ)
, where α =

min1≤i≤n{αi}, ᾱ = max1≤i≤n{αi}. Thus, the following
inequality can be obtained:

V̇ ≤ t1−α

Γ (2 − ᾱ)

[
(M + l)n − L1m

]‖e‖2∞ ≤ 0. (34)

Then, by derivation resembling in Sect. 3, we can
deduce that the state trajectories of the error system
will converge to the zero point. That is, chaos synchro-
nization between the drive system (28) and response
system (29) has been realized. Below the incommen-
surate fractional-order Chen system will be taken as
an example to show the effectiveness of the proposed
method.

Consider the incommensurate fractional-order Chen
system [46] as follows:

dα1x1

dtα1
= a(x2 − x1),

dα2x2

dtα2
= (c − a)x1 + cx2 − x1x3,

dα3x3

dtα3
= −bx3 + x1x2,

(35)

where system parameters values are the same as
Sect. 4.1. and (α1, α2, α3) = (0.8,1.0,0.9), then the
incommensurate fractional-order Chen system (35)
also has a chaotic attractor, which is depicted in Fig. 7,
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Fig. 8 Time history of
synchronization error for
the incommensurate
fractional-order chaotic
Chen system with order
(α1, α2, α3) = (0.8,1.0,0.9)

in which final time is t = 100 s. And the synchro-
nization errors between the drive system and response
system are displayed in Fig. 8, which show the error
vector (e1, e2, e3) also can converge to zero quickly
with the control law (30).

6 Conclusions

This work is concerned with chaos synchronization
of two fractional-order chaotic systems. According to
the Lyapunov stability theorem and Barbalat lemma, a
novel adaptive fractional-order feedback control law is
given to achieve chaos synchronization. In comparison
with existing methods, the proposed scheme supplies
a simple and uniform controller to synchronize al-
most all familiar fractional-order chaotic systems with
a very loose condition. Three groups of numerical ex-
amples are provided to show the effectiveness of de-
veloped methods. The technique is easy to implement
in practice, so we have reason to believe that such a
simple synchronization method will be very beneficial
for applications of chaos synchronization. In the fu-
ture, this new approach will be extended to achieve
other types of chaos synchronization for a fractional-
order chaotic system, such as projective synchroniza-
tion, lag synchronization, antisynchronization, and so
on.
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