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Abstract This paper is concerned with the stabiliza-
tion problem of uncertain chaotic systems with input
nonlinearity. The slope parameters of this nonlinearity
are unmeasured. A new sliding function is designed,
then an adaptive sliding mode controller is established
such that the trajectory of the system converges to the
sliding surface in a finite time and finite-time reach-
ability is theoretically proved. Using a virtual state
feedback control technique, sufficient condition for
the asymptotic stability of sliding mode dynamics is
derived via linear matrix inequality (LMI). Then the
results can be extended to uncertain chaotic systems
with disturbances and adaptive sliding mode H∞ con-
trollers are designed. Finally, a simulation example is
presented to show the validity and advantage of the
proposed method.

Keywords Chaotic systems · Sliding mode control ·
Adaptive control · Input nonlinearity

1 Introduction

Chaos has been paid much attention by many re-
searchers in the last three decades. In most of the stud-
ies, control of chaotic systems is one of hot points. The
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main aim of chaos control is to suppress chaotic be-
havior and to stabilize the chaotic system. Various ef-
fective techniques and approaches have already been
successfully presented to achieve chaos control [1, 2].

As one of the common methods, sliding mode con-
trol is a very effective approach to control chaos be-
cause of its attractive features such as fast response,
good transient response, and insensitivity to variations
in system parameters and external disturbances [3–8].
On the other hand, in some engineering practices, due
to physical limitation, there do exist nonlinearities in
the control input, input nonlinearities, such as satura-
tion, quantization, backlash, dead-zones, and so on,
naturally originate from actuators in system realiza-
tion and their effects cannot be ignored in analysis of
realization. There are many results about input non-
linearity, see [9–20] and references therein. However,
in general, it is difficult to obtain the information of
the slope parameters (i.e. gain reduction tolerances) of
input nonlinearity in practical applications. An adap-
tive control approach may solve this issue and some
relevant results have been presented [17–20], but the
research is not sufficient for the problem of adaptive
sliding mode control of uncertain chaotic systems with
input nonlinearity containing unknown slope parame-
ters.

Motivated by the above reasons, by incorporating
an adaptive control into sliding mode control, the sta-
bilization problem of uncertain chaotic systems with
input nonlinearity is considered. Because there always
exist disturbances or noises in real chaotic systems that

mailto:liuleipo123@163.com


1858 L. Liu et al.

may cause instability and poor performance [21–26],
then the results can be extended to uncertain chaotic
systems with disturbances and adaptive sliding mode
H∞ controllers are designed. The main contributions
of this paper lie in the following aspects: (1) A new
sliding function is designed to extend the results in
[27, 28]. Compared with these results, this new design
makes the reaching interval eliminated and the chat-
tering is reduced. (2) An adaptive sliding mode con-
trol algorithm is proposed by estimating the unknown
slope parameters of input nonlinearity and finite-time
reachability is theoretically proved. (3) By using a
virtual state feedback control technique, a sufficient
condition for the asymptotic stability of the sliding
mode dynamics is derived via linear matrix inequality
(LMI).

Notations The following notations will be used
throughout this paper. Rn and Rn×m denote, respec-
tively, the n-dimensional Euclidean space and the
space of n × m real matrices. Let ‖·‖ denote the Eu-
clidean norm of a vector and its induced norm of
a matrix. Unless explicitly stated, matrices are as-
sumed to have real entries and compatible dimen-
sions. L2[0,∞) is the space of square-integrable vec-
tor functions over [0,∞). ∗ represents the symmetric
form of a matrix.

2 Problem formulation

Consider the following chaotic system:

ẋ(t) = Ax(t) + B
(
f (x) + �f (x) + φ

(
u(t)

))
(1)

where x(t) ∈ Rn is the state vector, u(t) = [u1, u2,

. . . , um]T ∈ Rm is the control input. φ(u) = [φ1(u1),

φ2(u2), . . . , φm(um)]T , where φi(·) is a continuous
function for i = 1,2, . . . ,m. f (x) is a nonlinear real-
valued function vector. �f (x) represents the uncer-
tainty. A ∈ Rn×n and B ∈ Rn×m are matrices, (A,B)

is controllable. B is of full column rank.
The following assumptions are necessary for fur-

ther study.

Assumption 1 The uncertainty �f (x) satisfies

∥∥�f (x)
∥∥ ≤ ρ

∥∥x(t)
∥∥

where ρ is a known positive constant.

Assumption 2 The nonlinear function φ(u) satisfies
φ(0) = 0 and

αuT u ≤ uT φ(u) ≤ βuT u,

where the slope parameters α and β are unknown but
bounded positive constants and also called the gain re-
duction tolerances. Moreover, α ≤ ᾱ, ᾱ is a known
positive constant.

Remark 1 Assumption 2 is not a restrictive condition,
since a priori knowledge of the upper bounds of the
slopes seems to be a natural assumption in engineering
practice [19, 20].

The aim is to design an adaptive sliding mode con-
troller to make the state trajectory of the closed-loop
system converge to zero asymptotically, even if the in-
formation of the slope parameters of input nonlinearity
is unknown.

3 Main results

For system (1), firstly, a sliding function is designed.
Then an adaptive sliding mode controller is designed
to drive the state onto the sliding surface in a fi-
nite time. Secondly, a sufficient condition is given,
which guarantees the system (1) on the sliding surface
s(t) = 0 is asymptotically stable.

3.1 Adaptive sliding mode controller design

For system (1), a new sliding function is designed as

s(t) = BT P
[
x(t) − e−λtx(0)

]
, (2)

where P > 0 is a matrix to be chosen later and the
parameter λ > 0.

Usually, the system (1) on the sliding surface
s(t) = 0 is called the sliding mode dynamics of the
system (1).

Remark 2 The design of sliding function is different
from that of the published papers [7, 8], although these
sliding functions satisfy s(0) = 0. The proposed de-
sign does not also include the integral term, which not
only adds the dimension of the system, but also results
in adding the difficulty of systems analysis and design,
such as [7–9, 11, 16].
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Remark 3 The sliding function (2) extends the design
of sliding function s(t) = BT Px(t), which is widely
used in many papers, such as [27, 28]. Compared with
these results, the sliding function (2) makes the state
of system arrive at the sliding surface at the very be-
ginning, then the reaching interval is eliminated.

To achieve the control objective, the input u(t) is
designed as follows:

u(t) =
{

−ψ(x)
(BT PB)−1s(t)

‖(BT PB)−1s(t)‖ , s(t) �= 0

0, s(t) = 0
(3)

with the adaptive law

˙̂α(t) =
{

κα̂3(t)Ω, α̂(0) > 0, s(t) �= 0

0, s(t) = 0
(4)

where ψ(x) = α̂(t)Ω , Ω = ‖(BT PB)−1BT PAx(t)+
f (x)‖+ρ‖x(t)‖+λe−λt‖(BT PB)−1BT Px(0)‖+η,
η > 0, κ > 0.

Theorem 1 If the adaptive controller u(t) is taken as
(3) and (4), then the trajectory of the system (1) con-
verges to the sliding surface s(t) = 0 in a finite time T .

Furthermore, T ≤ α̂−2(0)+ᾱ2

2η
.

Proof Consider a Lyapunov function candidate as fol-
lows:

V (t) = ∥∥(
BT PB

)−1
s(t)

∥∥ + 1

2κ
α̃2(t), (5)

where α̃(t) = α̂−1(t) − α.
Calculating the time derivative of V (t) along the

trajectory of system (1), if ‖s(t)‖ �= 0, then we have

V̇ (t) = sT (t)(BT PB)−2

‖(BT PB)−1s(t)‖
[
BT PAx(t)

+ BT PB
(
f (x) + �f (x)

) + BT PBφ(u)

+ λe−λtBT Px(0)
] − α̃(t) ·

˙̂α(t)

κα̂2(t)

≤ ∥∥(
BT PB

)−1
BT PAx(t) + f (x)

∥∥

+ λe−λt
∥∥(

BT PB
)−1

BT Px(0)
∥∥

+ ρ
∥∥x(t)

∥∥ + sT (t)(BT PB)−1φ(u)

‖(BT PB)−1s(t)‖

− α̃(t) ·
˙̂α(t)

κα̂2(t)
. (6)

Using (3) and Assumption 2, we have

uT φ(u) = −ψ(x)
sT (t)(BT PB)−1φ(u)

‖(BT PB)−1s(t)‖ ≥ αψ2(x).

(7)

Since ψ(x) > 0, we get

sT (t)(BT PB)−1φ(u)

‖(BT PB)−1s(t)‖ ≤ −αψ(x). (8)

Substituting (4) and (8) into (6) yields

V̇ (t) ≤ ∥
∥(

BT PB
)−1

BT PAx(t) + f (x)
∥
∥

+ λe−λt
∥∥(

BT PB
)−1

BT Px(0)
∥∥

+ ρ
∥∥x(t)

∥∥ − αα̂(t)Ω − α̃(t)α̂(t)Ω. (9)

Noting that αα̂(t) + α̃(t)α̂(t) = 1, we have

V̇ (t) ≤ ∥∥(
BT PB

)−1
BT PAx(t) + f (x)

∥∥

+ λe−λt
∥∥(

BT PB
)−1

BT Px(0)
∥∥

+ ρ
∥∥x(t)

∥∥ − Ω. (10)

Therefore, we obtain

V̇ (t) ≤ −η < 0. (11)

Integrating the above from 0 to T and let V (T ) = 0,
we obtain

T ≤ V (0)

η
. (12)

Since s(0) = 0, then V (0) = 1
2 (α̂−1(0) − α)2 ≤

1
2 (α̂−2(0) + ᾱ2), so the reachability in a finite time
can be guaranteed.

Thus, the proof is completed. �

Remark 4 From α̃(t) = α̂−1(t)−α, α̂(t) does not nec-
essarily converge to the nominal value α, but the main
aim is to make the state reach the sliding surface in a
finite time, this problem does not affect the results of
this paper.

It is seen that the parameter ρ is required to syn-
thesize the sliding mode controller (3). When it is an
unknown positive constant, we have the following the-
orem.
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Theorem 2 If the adaptive controller u(t) is taken as

u(t) =
{

−ψ(x)
(BT PB)−1s(t)

‖(BT PB)−1s(t)‖ , s(t) �= 0

0, s(t) = 0
(13)

with the adaptive laws

˙̂α(t) =
{

κ1α̂
3(t)Ω, α̂(0) > 0, s(t) �= 0

0, s(t) = 0
(14)

˙̂ρ(t) =
{

κ2‖x(t)‖, ρ̂(0) > 0, s(t) �= 0

0, s(t) = 0
(15)

then the trajectory of the system (1) will tend to the
sliding surface s(t) = 0 and remain there, where
ψ(x) = α̂(t)Ω , Ω = ‖(BT PB)−1BT PAx(t) +
f (x)‖+λe−λt‖(BT PB)−1BT Px(0)‖+ ρ̂(t)‖x(t)‖+
η, η > 0, κ1 > 0, κ2 > 0.

Proof Consider a Lyapunov function candidate as fol-
lows:

V (t) = ∥∥(
BT PB

)−1
s(t)

∥∥ + 1

2κ1
α̃2(t) + 1

2κ2
ρ̃2(t),

(16)

where α̃(t) = α̂−1(t) − α and ρ̃(t) = ρ̂(t) − ρ.
Calculating the time derivative of V (t) along the

trajectory of system (1), if ‖s(t)‖ �= 0, then we have

V̇ (t) = sT (t)(BT PB)−2

‖(BT PB)−1s(t)‖
[
BT PAx(t)

+ BT PB
(
f (x) + �f (x)

) + BT PBφ(u)

+ λe−λtBT Px(0)
] − α̃(t) ·

˙̂α(t)

κ1α̂2(t)

+ 1

κ2
ρ̃(t) ˙̂ρ(t)

≤ ∥∥(
BT PB

)−1
BT PAx(t) + f (x)

∥∥

+ λe−λt
∥∥(

BT PB
)−1

BT Px(0)
∥∥

+ ρ
∥∥x(t)

∥∥ + sT (t)(BT PB)−1φ(u)

‖(BT PB)−1s(t)‖

− α̃(t) ·
˙̂α(t)

κ1α̂2(t)
+ 1

κ2
ρ̃(t) ˙̂ρ(t). (17)

Similar to the proof in Theorem 1, we have

sT (t)(BT PB)−1φ(u)

‖(BT PB)−1s(t)‖ ≤ −αψ(x). (18)

Substituting (14) and (18) into (17) yields

V̇ (t) ≤ ∥∥(
BT PB

)−1
BT PAx(t) + f (x)

∥∥

+ λe−λt
∥∥(

BT PB
)−1

BT Px(0)
∥∥

+ ρ
∥∥x(t)

∥∥ − αα̂(t)Ω − α̃(t)α̂(t)Ω

+ 1

κ2
ρ̃(t) ˙̂ρ(t). (19)

Noting that αα̂(t) + α̃(t)α̂(t) = 1 and (15), we have

V̇ (t) ≤ −η < 0. (20)

Then the trajectory of the system (1) will tend to the
sliding surface s(t) = 0 and remain there.

The proof is completed. �

3.2 Stability of the sliding mode dynamics

The following theorem provides a sufficient condition
for the sliding mode dynamics to be stabilized.

Theorem 3 Consider the system (1) and a given con-
stant σ > 0. If there exist matrices X > 0 and Y such
that the following linear matrix inequality (LMI) is
true:

AX + XAT + BY + YT BT + σX < 0, (21)

then the sliding mode dynamics of the system (1)
is asymptotically stable. Furthermore, P = X−1 and
K = YX−1.

Proof Consider the following Lyapunov functional
candidate:

V (t) = xT (t)P x(t). (22)

The time derivative of V (t) along the trajectories of
system (1) is given by

V̇ (t) = xT (t)
[
P(A + BK) + (A + BK)T P

]
x(t)

+ 2xT (t)PB
[
φ
(
u(t)

) − Kx + f (x)

+ �f (x)
]

(23)

where K is an arbitrary matrix.
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On the sliding surface s(t) = 0, from (2), we have

2xT (t)PB = 2e−λtxT (0)PB. (24)

Pre- and post-multiplying the matrix (21) by P , and
using P = X−1 and Y = KX, we get

P(A + BK) + (A + BK)T P < −σP. (25)

Since x(t) is bounded, then u(t) is bounded from
(3) or (13). Furthermore, φ(u(t)) is bounded. So the
term 2xT (0)PB[φ(u(t)) − Kx + f (x) + �f (x)] is
bounded. Assume that ‖2xT (0)PB[φ(u(t)) − Kx +
f (x) + �f (x)]‖ ≤ δ, where δ is a positive constant.

Substituting (24) and (25) into (23), we have

V̇ (t) < −σV (t) + δe−λt . (26)

Solving (26), we obtain

V (t) < e−σ tV (0) + δe−σ t

∫ t

0
e(σ−λ)τ dτ

=
{

e−σ tV (0) + δe−σ t t, σ = λ

e−σ tV (0) + δ e−λt−e−σ t

σ−λ
, σ �= λ.

(27)

As we know,

lim
t→∞ e−σ t = 0, lim

t→∞ e−σ t t = 0, lim
t→∞ e−λt = 0.

We easily get

lim
t→∞V (t) = 0. (28)

From the above, we get

lim
t→∞x(t) = 0. (29)

The proof is completed. �

Remark 5 In (23), the term Kx is called virtual state
feedback control, which is used to reduce the conser-
vatism of sliding surface design.

4 Extending to sliding mode H∞ control

In fact, there always exist disturbances or noises in
real chaotic systems that may cause instability and
poor performance. In this section, we focus on slid-
ing mode H∞ control problem to study the uncertain
chaotic systems with disturbances.

Consider the system (1) with disturbances as fol-
lows:
⎧
⎪⎨

⎪⎩

ẋ(t) = Ax(t) + B(f (x) + �f (x) + φ(u(t)))

+ Dw(t)

z(t) = Cx(t) + Ew(t)

(30)

where D, C and E are matrices with compatible di-
mensions, w(t) is a bounded disturbance, z(t) ∈ Rm is
the output.

The sliding function is also chosen as (2). The fol-
lowing definition is necessary to our further discus-
sion.

Definition 1 The sliding mode dynamics of system
(30) is said to be asymptotically stable with distur-
bance attenuation level γ , if the following conditions
are satisfied:

(a) The sliding mode dynamics of system (30) is
asymptotically stable when w(t) = 0.

(b) Under the zero-initial conditions, the controlled
output z(t) satisfies
∫ ∞

0
zT (s)z(s)ds < γ 2

∫ ∞

0
wT (s)w(s)ds

for all nonzero w(t) ∈ L2[0,∞), where γ > 0 is a
prescribed level of disturbance attenuation.

Similar to the above sections, we give Theorems 4,
5, and 6. Theorems 4 and 5 show the adaptive slid-
ing mode controller designs of the system (30), for the
both cases with the known parameter ρ and the un-
known one, respectively. The proofs can be easily ob-
tained similar to the arguments in Theorems 1 and 2,
the details are omitted. In Theorem 6, a sufficient con-
dition is given, which guarantees the sliding mode dy-
namics of the system (30) (that is, the system (30) on
the sliding surface s(t) = 0) is asymptotically stable
with disturbance attenuation level γ .

Theorem 4 If the adaptive controller u(t) is taken as

u(t) =
{

−ψ(x)
(BT PB)−1s(t)

‖(BT PB)−1s(t)‖ , s(t) �= 0

0, s(t) = 0
(31)

with the adaptive law

˙̂α(t) =
{

κα̂3(t)Ω, α̂(0) > 0, s(t) �= 0

0, s(t) = 0
(32)
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then the trajectory of the system (30) converges
to the sliding surface s(t) = 0 in a finite time T ,

T ≤ α̂−2(0)+ᾱ2

2η
. In (31) and (32), ψ(x) = α̂(t)Ω ,

Ω = ‖(BT PB)−1BT PAx(t) + f (x)‖ + ρ‖x(t)‖ +
‖(BT PB)−1BT PD‖ · ‖w(t)‖+λe−λt‖(BT PB)−1 ×
BT Px(0)‖ + η, η > 0, κ > 0.

Theorem 5 If the adaptive controller u(t) is taken as

u(t) =
{

−ψ(x)
(BT PB)−1s(t)

‖(BT PB)−1s(t)‖ , s(t) �= 0

0, s(t) = 0
(33)

with the adaptive laws

˙̂α(t) =
{

κ1α̂
3(t)Ω, α̂(0) > 0, s(t) �= 0

0, s(t) = 0
(34)

˙̂ρ(t) =
{

κ2‖x(t)‖, ρ̂(0) > 0, s(t) �= 0

0, s(t) = 0
(35)

then the trajectory of the system (30) will tend to
the sliding surface s(t) = 0 and remain there, where
ψ = α̂(t)Ω , Ω = ‖(BT PB)−1BT PAx(t) + f (x)‖ +
λe−λt‖(BT PB)−1BT Px(0)‖+‖(BT PB)−1BT PD‖·
‖w(t)‖ + ρ̂(t)‖x(t)‖ + η, η > 0, κ1 > 0, κ2 > 0.

Theorem 6 For two given positive constants σ and γ ,
the sliding mode dynamics of the system (30) is asymp-
totically stable with disturbance attenuation level γ , if
there exist matrices X > 0 and Y such that the follow-
ing linear matrix inequality (LMI) is true:
⎡

⎣
Ω D XCT

∗ −γ 2I ET

∗ ∗ −I

⎤

⎦ < 0 (36)

where Ω = AX + XAT + BY + YT BT + σX. Fur-
thermore, P = X−1 and K = YX−1.

Proof From (36), we easily obtain

AX + XAT + BY + YT BT + σX < 0. (37)

Then, by Theorem 3, the sliding mode dynamics of the
system (30) is asymptotically stable when w(t) = 0.

Next, we shall show that (36) holds for all nonzero
w(t) ∈ L2[0,∞).

Consider the following Lyapunov functional candi-
date:

V (t) = xT (t)P x(t). (38)

The time derivative of V (t) along the trajectories of
system (30) is given by

V̇ (t) = xT (t)
[
P(A + BK) + (A + BK)T P

]
x(t)

+ 2xT (t)PB
[
φ
(
u(t)

) − Kx + f (x)

+ �f (x)
] + 2xT (t)PDw(t) (39)

where K is an arbitrary matrix.
On the sliding surface s(t) = 0, from (2), we have

2xT (t)PB = 2e−λtxT (0)PB. (40)

Under the zero-initial conditions, we have

2xT (t)PB = 2e−λtxT (0)PB = 0. (41)

From (39), we have

V̇ (t) + zT (t)z(t) − γ 2wT (t)w(t)

= xT (t)
[
P(A + BK) + (A + BK)T P

]
x(t)

+ 2xT (t)PDw(t) + zT (t)z(t) − γ 2wT (t)w(t)

=
[

x(t)

w(t)

]T [
� PD + CT E

∗ −γ 2I + ET E

][
x(t)

w(t)

]
(42)

where � = P(A + BK) + (A + BK)T P + CT C.
Pre- and post-multiplying the matrix (36) by

diag{P, I, I }, and using P = X−1 and Y = KX, by
Schur’s complement Lemma, we get

[
� + αP PD + CT E

∗ −γ 2I + ET E

]
< 0 (43)

From (42) and (43), we have

V̇ (t) + zT (t)z(t) − γ 2wT (t)w(t) < −σV (t) < 0.

(44)

Integrating (44) from 0 to ∞ and noting that x(0) = 0,
we obtain

0 ≤ V (∞) <

∫ ∞

0

[
γ 2wT (t)w(t)−zT (t)z(t)

]
dt. (45)

We easily get

∫ ∞

0
zT (t)z(t)dt < γ 2

∫ ∞

0
wT (t)w(t)dt. (46)

The proof is completed. �
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5 Example

In this section, Genesio’s chaotic system is given to
show the effectiveness of the method. Without loss
of generality, we only consider the simulation of un-
certain Genesio’s system without disturbances, be-
cause the simulation process of Genesio’s system with
bounded disturbances is similar to that, so the process
is omitted.

Genesio’s system with nonlinear input is as fol-
lows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

ẋ3(t) = −6x1(t) − 2.92x2(t) − 1.2x3(t) + x2
1(t)

+ 0.1 sin(x2(t)) + φ(u)

(47)

where A =
[

0 1 0
0 0 1

−6 −2.92 −1.2

]
, B =

[
0
0
1

]
, f (x) = x2

1(t),

�f (x) = 0.1 sin(x2(t)), φ(u) = (0.6 + 0.3 sin(u))u.

Let σ = 0.5, solving LMI (21) yields

X =
⎡

⎣
70.4366 −32.2307 −11.6215

−32.2307 39.8151 −25.7379
−11.6215 −25.7379 91.8093

⎤

⎦ .

Then we have

P = X−1 =
⎡

⎣
0.0330 0.0359 0.0142
0.0359 0.0697 0.0241
0.0142 0.0241 0.0194

⎤

⎦ .

The initial value is x(0) = [−1 0 1]T . Then sliding
function is designed as

s(t) = 0.0142x1(t) + 0.0241x2(t) + 0.0194x3(t)

− 0.0052e−2t .

From Assumption 1, we have ρ = 0.1. Using the
controllers (3) and (4) in Theorem 1 and the parame-
ters κ = 0.01 and η = 0.0001, the simulation results
are as shown in Figs. 1–5.

Fig. 1 State x(t) of the
closed-loop system (47)

Fig. 2 The control input
u(t)
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Fig. 3 The sliding function
s(t)

Fig. 4 Adaptive law α̂(t)

Fig. 5 The sliding function
s(t) in [27, 28]

Figures 1–4 show the time responses of the state,
control input, sliding function and adaptive law, re-
spectively. It is concluded that the proposed method
is effective. To present the advantages of the method
proposed in this paper, we would like to give a compar-
ison. Figures 3 and 5 give the sliding function s(t) for
these designs. It is obvious that the design of sliding
function in this paper eliminates the reaching interval,
the chattering is reduced.

6 Conclusion and discussion

In this paper, the stabilization problem of uncertain
chaotic systems with input nonlinearity is investigated.
A new sliding function is proposed, which not only
makes the reaching interval eliminated, but also re-
duces the difficulty of systems analysis and design. An
adaptive sliding mode controller is designed to make
the state of system reach the sliding surface in a fi-
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nite time and finite-time reachability is theoretically
proved. Then the results can be extended to uncer-
tain chaotic systems with disturbances and adaptive
sliding mode H∞ controllers are designed. Finally,
the simulation shows the effectiveness of the proposed
method.

It is worth noting that there are some interesting yet
challenging issues worth further research, like the syn-
chronization problem of the uncertain chaotic systems,
such as [21–26]. If the error system model satisfies
the model (30), then the H∞ synchronization problem
may be solved by using the proposed method.
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