
Nonlinear Dyn (2014) 76:509–517
DOI 10.1007/s11071-013-1144-9

O R I G I NA L PA P E R

Parameter estimation of chaotic systems by an oppositional
seeker optimization algorithm

Jian Lin · Chang Chen

Received: 14 August 2013 / Accepted: 5 November 2013 / Published online: 12 December 2013
© Springer Science+Business Media Dordrecht 2013

Abstract The parameter estimation can be formu-
lated as a multi-dimensional optimization problem.
By combining the seeker optimization algorithm with
the opposition-based learning method, an opposi-
tional seeker optimization algorithm is proposed in
this work, and is applied to the parameter estima-
tion of chaotic systems. The seeker optimization al-
gorithm provides a new alternative for population-
based heuristic search. By considering an estimate
and its opposite of current solutions at the same time,
the opposition-based learning method is employed for
population initialization and also for generation jump-
ing in seeker optimization algorithm. Numerical simu-
lations on two typical chaotic systems are conducted to
show the effectiveness and robustness of the proposed
scheme.
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1 Introduction

As an interesting complex nonlinear phenomenon,
chaos is characterized by a bounded unstable dynamic
behavior that exhibits sensitive dependence on the
initial state values. In scientific and engineering re-
searches, many nonlinear systems have exhibited phe-
nomenon of chaos. Control and synchronization of
chaotic systems have been investigated intensely in a
variety of fields during recent years [1–4]. Many meth-
ods have been developed to control and synchronize
chaotic system, with a condition that parameters of the
chaotic system are known in advance. Therefore, the
parameter estimation of chaotic systems is important,
and many approaches have been proposed for the pa-
rameter estimation of chaotic systems [5–10].

Recently, by formulating the parameter estimation
of chaotic systems as a multi-dimensional optimiza-
tion problem, many intelligent optimization schemes
have been proposed for such estimation problem. Typ-
ically, particle swarm optimization (PSO) in Ref. [11],
differential evolution (DE) algorithm in Ref. [12],
biogeography-based optimization (BBO) algorithm in
Refs. [13, 14]. Among them, DE is with less control
parameters and good at exploring global searching, but
weak in exploitation and is easy to be trapped in local
optima [15]. As a popular evolutionary optimization
technique, PSO exhibits significant performance in the
initial period of evolution, but might encounter prob-
lems in reaching optimum solutions efficiently, and
thus the accuracy the algorithm can achieve is limited
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[16]. In BBO, poor solutions accept a lot of new fea-
tures from good ones which helps to improve the qual-
ity of those solutions.

Seeker optimization algorithm (SOA) [17] is a
newly proposed method concerning searching behav-
iors of human intelligence. SOA has demonstrated
good performance when compared with other evolu-
tionary algorithms (EAs) [18–20]. However, as men-
tioned by Dai, the author of SOA, this algorithm can
be further improved by increasing the diversity of
distributed population [21]. In order to enhance the
exploration and the exploitation abilities, an opposi-
tional seeker optimization algorithm (OSOA) is de-
vised by combining SOA with opposition-based learn-
ing (OBL) [22]. Especially, the diversity of initial
population is increased via the uniformly distributed
population generating mechanism in OBL. Moreover,
new populations during the evolutionary process are
also generated with OBL method. By simultaneously
considering an estimate and its corresponding oppo-
site estimate, OBL provides a higher chance of find-
ing solutions which are closer to the global optimum.
The OSOA is further employed to estimate the pa-
rameters of the chaotic system. On the other hand,
although the parameter estimations are extensively
studied in chaotic systems, few studies [13, 14, 23]
have addressed the noise in the systems. Noise will
affect the output of the chaotic system and bias the
estimation of the original parameters. Based on this
consideration, the impact of the additional noise on
the parameter-estimation performance of the proposed
scheme is analyzed in this study. Simulations on two
typical chaotic systems show that the proposed scheme
provides a promising candidate for parameter estima-
tion of chaotic systems.

The rest of this paper is organized as follows.
In Sect. 2, the problem of parameter estimation for
chaotic system is formulated from the view of op-
timization. In Sect. 3, the OSOA is proposed after
briefly introducing SOA and OBL methods. Numer-
ical simulations and conclusions are given in Sects. 4
and 5, respectively.

2 Problem formulation

Considering the following n-dimension chaotic sys-
tem:

Ẋ = F(X,X0, θ), (1)

Fig. 1 The principle of parameter estimation for chaotic system

where X = (x1, x2, . . . , xn)
T ∈ Rn denotes the state

vector and X0 denotes the initial state. θ = (θ1, θ2, . . . ,

θD)T is a set of original parameters. If the structure of
system (1) is known, then the estimated system can be
written as

Ẏ = F(Y ,X0, θ̂), (2)

where Y = (y1, y2, . . . , yn)
T ∈ Rn is the state vector

of the estimated system, θ̂ = (θ̂1, θ̂2, . . . , θ̂D)T is a set
of estimated parameters. To cope with the problem of
parameter estimation, the following objective function
is defined:

minJ = 1

M

M∑

k=1

‖Xk − Y k + ζ k‖2, (3)

where k = 1,2, . . . ,M is the sampling time point and
M denotes the length of data used for parameter esti-
mation; ζ k denotes the additional noise added to the
system; Xk and Y k denote the state vector of the orig-
inal and the estimated system at time k, respectively.

Clearly, parameter estimation for chaotic system is
a multi-dimensional continuous optimization problem,
where the decision vector is θ̂ , and the optimization
goal is to minimize J . The principle of parameter esti-
mation for chaotic system in the view of optimization
can be illustrated with Fig. 1.

Obviously, it is difficult to estimate parameters of
a chaotic system using traditional optimization meth-
ods, one reason being that the chaotic system exhibits
dynamic instability and the other that there are mul-
tiple local optima in the objective functions. In this
paper, an effective oppositional seeker optimization
algorithm is designed to find the parameters of sys-
tem (1). In addition, two indices, as formulated in
Eqs. (4) and (5) respectively, are introduced to better
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evaluate the performance of the proposed scheme:

RNSR =
[

M∑

k=1

‖ζ k‖2
/ M∑

k=1

‖Xk‖2

]1/2

× 100 %, (4)

FEEF =
∥∥∥∥
θ̂ − θ

θ

∥∥∥∥
2
× 100 %, (5)

where RNSR is the noise-to-signal value defined as the
ratio of noise intensity to the signal intensity in the
noise-free system, and FEEF is the error evaluator fac-
tor employed to measure the accuracy of the estimated
results.

3 Oppositional seeker optimization

An overview of the original seeker optimization algo-
rithm (SOA) is presented in Sect. 3.1, while a brief in-
troduction to the opposition-based learning scheme in
Sect. 3.2. The proposed oppositional seeker optimiza-
tion algorithm is presented in Sect. 3.3.

3.1 Seeker optimization algorithm

SOA [17, 24] is a relatively new population-based
heuristic search algorithm. It is based on simulating
the act of human search for finding an optimal solution
by a seeker population. The whole population is ran-
domly divided into three subpopulations. These sub-
populations search over several different domains of
the search space. All seekers in the same subpopula-
tion constitute a neighborhood, which represents the
social component for social sharing of information.

(1) Implementation of SOA. In SOA, for each seeker
i, the position update on each variable j is given by the
following equation:

xij (t + 1) = xij (t) + αij (t) × dij (t), (6)

where xij (t +1) and xij (t) are the positions of seeker i

on the variable j at time steps t +1 and t , respectively;
dij (t) and αij (t) are search direction and step length
of seeker i on the variable j at time step t , where
αij (t) ≥ 0 and dij (t) ∈ {−1,0,1}. Here, i represents
the population number and j the variable number to
be optimized.

Moreover, seekers in the same subpopulation are
searching for the optimal solution using their own in-
formation. In order to avoid the convergence of sub-
populations trapping into local optima, the position of

the worst seeker of each subpopulation is combined
with the best one in each of the other subpopulations
using the binomial crossover operator as follows:

xknj,worst =
{

xlj,best if rand(0,1) ≤ 0.5,

xknj,worst else,
(7)

where rand(0,1) is a uniformly random real number
within [0,1], xknj,worst is denoted as the j th variable of
the nth worst position in the kth subpopulation, xlj,best

is the j th variable of the best position in the lth sub-
population. Here, n, k, l = 1,2, . . . ,K − 1 and k �= l.
Thus, the diversity of population is increased by shar-
ing good information among subpopulations.

(2) Search direction. In SOA, each seeker selects
his search direction based on several empirical direc-
tions by comparing the current or historical positions
of himself or his neighbors. For seeker i, the empirical
directions involved are:

d i,ego(t) = sign
(
pi,best(t) − xi (t)

)
, (8)

d i,alt1(t) = sign
(
gbest(t) − xi (t)

)
, (9)

d i,alt2(t) = sign
(
lbest(t) − xi (t)

)
, (10)

where d i,ego(t) is egotistic direction, d i,alt1(t) and
d i,alt2(t) are altruistic directions, pi,best(t), gbest(t)

and lbest(t) represent personal historical best position
and neighbors’ historical and current best positions,
respectively, the function sign(·) being a signum func-
tion on each variable of the input vector. In addition,
each seeker i, as an agent, enjoys the properties of pro-
activeness and exhibits goal-directed behavior [25],
which means he may change his search direction in
advance according to his past behavior. This behav-
ior is modeled as an empirical direction called pro-
activeness direction as given in Eq. (11):

d i,pro(t) = sign
(
xi (t1) − xi (t2)

)
, (11)

where t1, t2 ∈ {t, t − 1, t − 2} and xi (t1) is better than
xi (t2).

Every variable j of d i (t) is selected applying the
following proportional selection rule as in Eq. (12):

dij =

⎧
⎪⎨

⎪⎩

0, if rj < p
(0)
j ,

+1, if p
(0)
j ≤ rj ≤ p

(0)
j + p

(+1)
j ,

−1, if p
(0)
j + p

(+1)
j < rj ≤ 1,

(12)

where rj is a uniform random number in [0,1], p
(m)
j

(m ∈ {0,+1,−1}) is the percent of the numbers of
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m from the set {dij,ego, dij,alt1, dij,alt2, dij,pro} on each
variable j of all the four empirical directions, i.e.,
p

(m)
j = (the number of m)/4.

(3) Step length. In SOA, fuzzy system is adopted to
represent the understanding and linguistic behavioral
pattern of human searching tendency. The fitness val-
ues of all the seekers are sorted in descending manner
and turned into the sequence numbers from 1 to S as
the inputs of fuzzy reasoning, where S is the size of
population. This design renders a fuzzy system to be
applicable to a wide range of optimization problems.
The calculation expression of step length is presented
as

μi = μmax − S − Ii

S − 1
(μmax − μmin), (13)

where Ii is the sequence number of xi (t) after sort-
ing the fitness values, μmax is the maximum member-
ship degree value which is equal to or a little less than
1. Bell membership function μ(x) = e−x2/2δ2

is well
utilized in the action part of fuzzy reasoning, and the
parameter δ in the function is determined as follows:

δ = ω × abs(xbest − xrand), (14)

where the symbol abs(·) produces an absolute value
in response to input vector, ω is used to decrease the
step length with time step increasing so as to gradu-
ally improve the search precision. The xbest and xrand

are the best seeker and a randomly selected seeker, re-
spectively, from the same subpopulation to which the
ith seeker belongs, and xrand is different from xbest.
The step length αij (t) for every variable j is given as

αij (t) = δj

√
− ln

(
rand(μi,1)

)
, (15)

where rand(μi,1) returns a uniformly random real
number within [μi,1].

3.2 Opposition-based learning

Opposition-based learning (OBL) has been used by
EAs to improve the convergence [22, 26–28]. The
main idea of OBL is to consider an estimate as well as
its corresponding opposite estimate to achieve a better
approximation of the current candidate solutions.

We assume that X = (x1, x2, . . . , xn) is a point
in an n-dimensional space, where xj ∈ R and xj ∈
[aj , bj ] ∀j ∈ {1,2, . . . , n}; then the opposite point

X′ = (x′
1, x

′
2, . . . , x

′
n) is denoted by its elements as

x′
j = aj + bj − xj .

Now, by employing the opposite point denotation,
the OBL can be used in optimization as:

• Generate a point X = (x1, x2, . . . , xn) and its oppo-
site point X′ = (x′

1, x
′
2, . . . , x

′
n) in an n-dimensional

search space.
• Evaluate the fitness of both points f (X) and f (X′).
• If f (X′) ≤ f (X) (for minimization problem, vice

versa), then replace X with X′; otherwise, continue
with X.

Thus, we see that the point and its opposite point
are evaluated simultaneously in order to obtain the fit-
ter one.

3.3 OSOA approach

As an extension of the original SOA approach, an op-
positional seeker optimization algorithm (OSOA) is
proposed in this paper. The OBL idea is embedded in
SOA to improve its performance. On the one hand, the
OBL approach is utilized to increase the diversity of
initial population. On the other hand, new populations
are also generated during the evolutionary process to
accelerate its convergence speed. By fusing the opera-
tors in SOA with OBL technique, the exploration and
exploitation capability may be enhanced and well bal-
anced, and thus result in a more effective algorithm for
global optimization. The main procedure of the OSOA
is described in Table 1 and can be described as follows.

(1) Population initialization. In OSOA, initial pop-
ulation is generated via OBL. A population of 2S po-
sitions is initialized by using uniform random distribu-
tion and their quasi-opposite solutions, which is shown
as

xij ← aj + (bj − aj ) × rand(0,1), (16)

x(S+i)j ← aj + bj − xij , (17)

where aj and bj are the lower and upper bounds of j th
variable, respectively; xij and x(S+i)j are the positions
of seeker i and S + i on the j th variable, out of which
S best positions are selected.

(2) Generation jumping. Unlike OBL-based ini-
tialization, generation jumping during the evolution-
ary process calculates the opposite population dynam-
ically. Instead of using variables’ predefined interval
boundaries [ai, bi ], generation jumping calculates the
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Table 1 The main procedure of OSOA

The time step t ← 0;

Generating S positions in the search space using OBL method by Eqs. (16) and (17);

Computing the objective function value for these S positions;

Saving the historical best fitness value and its position;

Randomly divided the whole population into three subpopulations;

While the termination condition is not satisfied do

Updating the time step t ← t + 1;

For each seeker

Computing the direction d i (t) by Eqs. (8)–(12);

Computing the step length αi (t) by Eqs. (13)–(15);

Updating each seeker’s position by Eq (6);

Re-computing the fitness value for each seeker;

Next for

Updating the historical best position among the populations;

Generation jumping in the dynamical search space using OBL method by Eq. (18);

End while

opposite of each variable based on minimum and max-
imum values of that variable in the current population:

x(S+i)j ← xP
min(j) + xP

max(j) − xij , (18)

where xP
min(j) and xP

max(j) are the minimum and max-
imum values of the j th variable in current population
P , respectively.

4 Simulations and comparisons

To verify the effectiveness of the proposed scheme,
two typical chaotic systems are employed as testbeds
in this section. The simulation was done using MAT-
LAB 7.1 on Core 2 Duo processor, 2.26 GHz with 2
GB RAM. The parameters used in SOAs are set as
follows: population size S is 40, the maximum value
μmax and minimum value μmin of membership degree
are set to 0.99 and 0.0111, respectively.

4.1 On the Lorenz system

As a typical chaotic system, Lorenz system is em-
ployed as the first example, which can be described
as:
⎧
⎨

⎩

ẋ = δ(y − x),

ẏ = γ x − xz − y,

ż = xy − bz,

(19)

where δ = 10, γ = 28 and b = 8/3 is the original set-
ting for the system parameters.

The system is initialized as state X0, which is ran-
domly selected from its evolution process. The length
of the sampled data M is set as 300. Moreover, the
proposed scheme is compared with original SOA, PSO
[11] and HBBO [13]. For a fair comparison, the max-
imum number of generations is set to 100, as used
for PSO and HBBO in the literature [11, 13]. Table 2
lists the statistical results of the best, the mean and
the worst estimated parameters for Lorenz system over
20 independent runs. It can be seen that the best fit-
ness values obtained by OSOA are better than those by
SOA, PSO and HBBO, and the same is for the mean
and worst values in the table. Even the worst results by
OSOA still outperform the best ones of the other three
algorithms. The averaged result of the evolving pro-
cess of the estimated parameters and the fitness values
by SOA and OSOA are shown in Fig. 2. From the fig-
ure it can be seen that OSOA converges to the optimal
solution rapidly, and has faster convergence speed than
the SOA. Therefore, OSOA demonstrates better effec-
tiveness and robustness than SOA, PSO and HBBO for
parameter estimation of the well-known Lorenz sys-
tem.

To better simulate the real world, white Gaussian
noise is added to each state variable, and the running
parameters are kept unchanged. The averaged results
by OSOA over 20 independent runs are given in Ta-
ble 3. It is obvious that OSOA still can achieve good
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Table 2 Statistical results of different methods for Lorenz system

Algorithm OSOA SOA PSO HBBO

Best δ 10.0000 10.0000 9.99533 10.0000

γ 28.0000 28.0000 28.0071 28.0000

b 2.66667 2.66667 2.66701 2.66667

J 0 3.91e−22 4.86e−2 2.08e−10

Mean δ 10.0000 10.0000 10.0184 10.0013

γ 28.0000 28.0000 27.9939 28.0000

b 2.66667 2.66667 2.66628 2.66669

J 7.69e−30 1.31e−19 4.18e+0 9.48e−5

Worst δ 10.0000 10.0000 10.6082 9.92285

γ 28.0000 28.0000 27.7044 28.0141

b 2.66667 2.66667 2.65723 2.66473

J 4.09e−29 1.03e−18 3.94e+1 9.71e−4

Fig. 2 Evolving process of parameter estimation for Lorenz system by SOA and OSOA: (a) searching process for δ, (b) searching
process for γ , (c) searching process for b, (d) convergence trajectories of fitness value

Table 3 Statistical results
obtained by OSOA for
Lorenz system with
different noise

RNSR 1 % 10 % 25 % 50 %

δ 9.90991 9.94954 10.4190 10.0306

γ 2.66520 2.63934 2.69398 2.86334

b 28.0113 28.0451 27.7936 24.7042

FEEF 0.90 % 1.15 % 4.38 % 13.89 %

results when the noise is concerned; in particular, if the
value of RNSR is small enough, say, 1 %, an ideal out-
come may be obtained with FEEF = 0.9 %. In addition,
if RNSR is substantially less than 25 %, an overall sat-
isfactory outcome, with FEEF < 5 %, can be obtained.
However, the obtained result is relatively poor, with
FEEF = 13.89 %, under the noise of RNSR = 50 %.

4.2 On the Chen systems

To further evaluate the proposed scheme, the Chen’s
chaotic system is adopted, which is described as
⎧
⎨

⎩

ẋ = δ(y − x),

ẏ = (b − δ)x − xz + by,

ż = xy − γ z,

(20)
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Table 4 Statistical results of different methods for Chen system

Algorithm OSOA SOA DEA

Best δ 35.0000 35.0000 34.9312

γ 3.00000 3.00000 3.06700

b 28.0000 28.0000 27.9338

J 1.29e−21 1.06e−11 6.03e−3

Mean δ 35.0000 35.0000 36.1181

γ 3.00000 3.00004 3.05838

b 28.0000 28.0000 28.5292

J 1.53e−20 8.55e−11 8.98e−1

Worst δ 35.0000 35.0000 37.9664

γ 3.00000 3.00016 3.12150

b 28.0000 28.0000 29.3849

J 4.32e−20 3.53e−10 3.27e+0

Fig. 3 Evolving process of parameter estimation for the Chen system by SOA and OSOA: (a) searching process for δ, (b) searching
process for γ , (c) searching process for b, (d) convergence trajectories of fitness value

with δ = 35, γ = 3 and b = 28 as the original parame-
ter setting.

The statistical results of the estimated parameters of
the Chen system are summarized in Table 4, where the
results of DEA given in Ref. [29] are used for compar-
ison. To make a fair comparison, the maximum gen-
eration number is set to 45. In addition, totally 5 runs
are made for each algorithm and the length of sam-
pled data M is set to 100. From Table 4 it can be seen
that OSOA have more accurate results than SOA and
DEA. Figure 3 depicts the convergence profile of the
estimated parameters and fitness values of OSOA and
SOA; obviously, OSOA converges to the optimal so-
lution more rapidly than SOA. Table 5 presents the re-
sults under the influence of noise with different RNSR

values. It can be observed that the results are satisfac-
tory in the cases with RNSR value smaller than 10 %,
especially a fairly good outcome can be obtained if the
RNSR value reaches 1 %.

It can be concluded that OSOA is significantly bet-
ter and statistically more robust than all the other listed
algorithms in terms of search performance.

5 Conclusions

In this paper, parameter estimation of chaotic system is
formulated as a multi-dimensional optimization prob-
lem from the viewpoint of optimization. An OSOA
scheme is proposed based on OBL method and ap-
plied to solve this optimization problem. Numerical
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Table 5 Statistical results
of OSOA for the Chen
system with different noise

RNSR 1 % 10 % 25 % 50 %

δ 34.9904 35.0705 33.5226 35.8658

γ 2.96413 3.25937 2.42803 3.92678

b 28.0087 28.0248 28.1566 28.2010

FEEF 1.20 % 8.65 % 19.54 % 31.00 %

simulations based on Lorenz and Chen chaotic sys-
tems and comparisons with some typical existing ap-
proaches demonstrated the effectiveness and robust-
ness of the proposed scheme. The future research is
to apply this scheme to some other systems, such
as high-dimensional, dynamical and uncertain chaotic
systems.
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