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Abstract This paper studies the problem of finite-
time optimal formation tracking for planar vehicles
which are considered as rigid bodies, under the con-
dition that the tracking time is given according to task
requirements in advance. By using Pontryagin’s maxi-
mum principle (PMP) on a Lie group, an optimal con-
trol law is designed for vehicles with holonomic dy-
namics to track a desired reference trajectory at the
given tracking time in the manner of rigid formation
which is also specified by task requirements. Simul-
taneously, a corresponding cost function is consid-
ered and guaranteed to be optimal. Then, the above
mentioned result of tracking is extended to the case
of multi-vehicle systems with a directed-tree commu-
nication topology. Furthermore, some conditions are
proposed to ensure the adjoint orbits of vehicles to be
non-holonomic. Finally, the numerical simulations are
provided to illustrate the effectiveness of the theoreti-
cal results.
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1 Introduction

In the past few years, control and coordination of
multiple autonomous vehicles have been considerably
studied for the potential both civilian and military ap-
plications. Compared with the traditional monolithic
systems, vehicle team can perform tasks that are diffi-
cult for one single vehicle, such as, formation flying of
unmanned air vehicles, large area exploration, surveil-
lance, and spacecraft interferometry tasks.

Vehicle formation control has attracted much atten-
tion in multi-vehicle coordination, since vehicles mov-
ing in formation can reduce the system cost, increase
the robustness and efficiency of the system [1]. Gener-
ally, the formation control approaches can be roughly
categorized into three cases [1–3]: leader-follower,
behavior-based, and virtual structure methods. Spe-
cially, for the case of leader-follower formation, one
vehicle is designated as the leader, which tracks prede-
fined trajectories, and the other vehicles are controlled
to follow their respective leaders with given separa-
tions. Formation and coordination control of vehicles
with various dynamics have been well studied in re-
cent research. In many works, the formation and co-
ordination control of vehicles is studied on Euclidean
space. Nevertheless, the configuration space of vehi-
cles is a nonlinear space in many practical applica-
tions. For instance, the attitude of a satellite is defined
on the Lie group SO(3) and planar robots travel on
Lie group SE(2). Differing from solving these prob-
lems on vector space, the approaches developed on Lie
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group make use of the intrinsic geometric properties of
the mechanical control systems, and the obtained re-
sults are independent of the choice of coordinates [4].

Based on the nonlinear space, the control problem
is inherently more difficult than on Euclidean space.
It should be noted that linear operation is no longer ef-
fective in such a nonlinear manifold. Euclidean space
is a linear space and has closure for addition. Thus,
for systems evolving on Euclidean space, the state
space and velocity space are on the same space and
the velocity error can be directly derived by subtrac-
tion. However, for the system evolving on nonlinear
manifold, such as SE(2), the state space and veloc-
ity space are different, and every state has the velocity
space of its own. The velocity error is obtained by us-
ing coordinate transformation from one velocity space
to another, which is provided by the algebraic struc-
ture of Lie group and the symmetry of the vector field
on Lie group. Furthermore, considering that SE(2) is
a matrix Lie group, the ordinary operations, such as
derivation, integral, become complicated. So, the re-
search for vehicles on nonlinear space is significative
and important [5].

Motivated by the above analysis, we focus on the
problem of finite-time optimal formation tracking con-
trol for vehicles with kinematics evolving on Lie
groups SE(2), where vehicles are not modeled as parti-
cles. The translational and rotational formation track-
ing of vehicles are considered simultaneously. Consid-
ering the holonomic systems, an optimal control law
is proposed for vehicles to track a desired reference
trajectory at the given tracking time in the manner of
rigid formation, where the tracking time and the rigid
formation are specified by the task requirements in ad-
vance. Besides, the minimization of the given perfor-
mance index is guaranteed. The tracking control law
is designed based on Pontryagin’s minimum princi-
ple and is given by explicit formulation, instead of by
numerical algorithms. This is crucial for autonomous
control design in practical applications. Furthermore,
this paper extends the optimal control results in [6] to
formation tracking problem. Comparing with [6], the
communication topology is extended from complete
graph to a directed tree and the position of the for-
mation can be specified by the leader vehicle. Finally,
some conditions are proposed to ensure the adjoint or-
bits of vehicles to be non-holonomic.

The remainder of this paper is organized as fol-
lows. The related work and preliminaries are given in

Sects. 2 and 3, respectively. Main theoretical results
are provided in Sect. 4. In Sect. 5, some numerical
simulations are reported to illustrate the theoretical re-
sults. Concluding remarks are finally given in Sect. 6.

2 Related work

Early seminal works for formation and coordina-
tion control of vehicles with integrator-type dynam-
ics have been launched by Olfati-Saber and Mur-
ray [7] and Ren and Beard [8]. However, most actual
multi-vehicle systems have very complex physical dy-
namics. Motivated by this observation, the works by
Tuna [9], Seo, Shim, and Back [10], and Qu, Wang,
and Hull [11] have further extended the dynamics of
vehicles into the linear system and the nonlinear sys-
tem, respectively. Formation and coordination control
of rigid bodies and non-holonomic systems (the uni-
cycle model) have also been extensively studied in
[12–15]. Additionally, authors considered the finite-
time tracking problem of rigid bodies in [16–18],
where results of the finite-time tracking are verified
by theoretical derivations. And, the tracking time is
estimated by the initial conditions, the designed Lya-
punov function and control laws, cannot given by task
requirements in advance. In all above works, a com-
mon feature is to study the formation and coordination
control of vehicles on Euclidean space.

As mentioned in above section, in many practical
applications, the configuration space of vehicles is a
nonlinear space. For vehicles evolving on nonlinear
space, the formation and coordination control of ve-
hicles have been studied in many literatures such as
Justh and Krishnaprasad [19], Nair and Leonard [20],
Sarlette [21], Sarlette, Bonnabel, and Sepulchre [22],
Dong and Geng [5]. In these papers, the authors took
into account the geometry structure of the nonlin-
ear space, i.e. symmetries. Considering the kinemat-
ics model for vehicles evolving on SE(3), the authors
presented a Lie group setting for the formation prob-
lem in [19], and achieved the formation for the two-
agent case by stabilizing relative equilibria, which is
determined by the kinematics model under considera-
tion. In [22], the authors gave a general problem for-
mulation, analyzed ensuing conditions and proposed
the control laws for the coordinated motion. However,
the derived result guarantees that the relative config-
uration between vehicles are constants, which are de-
termined by initial conditions and cannot specified by
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task requirements in advance. Furthermore, a forma-
tion algorithm is proposed in [5], which can apply
to arbitrary formation requirements. For the dynamics
model with multiple agents, the stable synchronization
on Lie groups is considered in [20]. The asymptotical
control laws are proposed to stabilize the desired rel-
ative equilibrium. Besides, the tracking problem for
vehicles has been considered in [4, 23–25], where
the exponential tracking control was designed and the
obtained results were coordinate-free. Obviously, the
aforementioned methods can only achieve asymptotic
formation or tracking. In many practical applications,
the formation algorithms that achieve the formation
in finite time are more desirable, especially when the
multiple maneuvers are needed and a high precision
control is required. The problem of finite-time for-
mation for systems evolving on nonlinear space has
been studied in [6], where the desired formation is
achieved in finite time, but the position of the forma-
tion cannot been specified. In this paper, the optimal
control results in [6] are extended to formation track-
ing problem and the formation position can be deter-
mined by the leader. Besides, Pontryagin’s minimum
principle is also used to derive the optimal control for
system evolving on nonlinear space in [26–28], where
the control laws are given by numerical algorithms.
By contrast, the control law is given by explicit formu-
lation in this paper, which is crucial for autonomous
control design in practical applications.

3 Preliminaries

This section introduces the elements used to formulate
the optimal formation tracking control of vehicles.

3.1 Lie group SE(2)

For vehicles such as aerial and underwater autonomous
vehicles, robotics, and spacecraft, one of the distinct
feature is that their motions include translation and
rotation, which are represented by changes in posi-
tion and attitude, i.e., the changes in configuration.
For a rigid body, the configuration is described by
the position of center of mass, and the body-fixed
frame of its own, respectively. The orthogonal ma-
trices are used to describe the basis vectors of the
body-fixed frame. Therefore, the rotation of vehicle
is represented by a matrix R ∈ SO(3), where the spe-
cial orthogonal group SO(3) is the matrix Lie group of

3×3 orthogonal matrices with determinant of one, i.e.,
SO(3) = {R ∈ R

3×3|RT R = I,detR = 1}. Together
with the position vector of center of mass, the config-
uration of the vehicle is denoted by a matrix

g =
[

R d

01×3 1

]
,

where d ∈ R
3 is the position vector. All the configura-

tions constitute the matrix Lie group SE(3), i.e.,

SE(3) =
{[

R d

01×3 1

]
∈ R

4×4
∣∣R ∈ SO(3), d ∈R

3
}

.

Similarly, for vehicle in horizontal plane, we have
the matrix Lie group SE(2) and SO(2). The element of
SE(2) is denoted by

g =
[

R d

01×2 1

]
=

⎡
⎣cos θ − sin θ x

sin θ cos θ y

0 0 1

⎤
⎦ ,

where d ∈ R
2 is the position vector, and θ is the

attitude angle. Let g−1 denote the group inverse of
g ∈ SE(2). TgSE(2) is the tangent space to SE(2) at
the base element g, and for g = I (identity element),
define the following Lie bracket in TI SE(2):

[X̂, Ŷ ] = X̂Ŷ − Ŷ X̂, X̂, Ŷ ∈ TI SE(2).

Then, TI SE(2) is denoted by se(2) and is called Lie
algebra of the Lie group SE(2). We identify se(2)

with R
3 by the following isomorphic mapping ∧:

R
3 → se(2):

∧ :
⎛
⎝vx

vy

ω

⎞
⎠ −→

⎛
⎝ 0 −ω vx

ω 0 vy

0 0 0

⎞
⎠

According to the isomorphic mapping, the basis of
se(2) are given by

î1 =
⎡
⎣0 0 1

0 0 0
0 0 0

⎤
⎦ , î2 =

⎡
⎣0 0 0

0 0 1
0 0 0

⎤
⎦ ,

î3 =
⎡
⎣0 −1 0

1 0 0
0 0 0

⎤
⎦ .

For the formation tracking of vehicles, it is in-
evitable to compare the velocities of different vehi-
cles, which cannot be considered locally in a neighbor-
hood. Every configuration have its own velocity space,
i.e. the tangent space of the corresponding configura-
tion. Thus, for the velocity comparison between dif-
ferent vehicles, the coordinate transformations from
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one tangent space to another are essential. The al-
gebraic structure of Lie group and the symmetry of
the vector field on Lie group provide such coordinate
transformations. For the control of vehicles, especially
for attitude control, most of prior work is based on
three-parameter representation, such as Euler angle,
modified Rodriguez parameters, or unit quaternions
(four-parameter). Parameterization methods convert
the configuration space from nonlinear space to nor-
mal Euclidean space by identifying the different veloc-
ities as the same Euclidean space essentially. For the
stability problems or tracking problems in a neighbor-
hood, these methods are good approximations. How-
ever, for the systems with rigid bodies which cannot
be considered locally in a neighborhood, first, this can
present difficulties for different vehicles to keep rigid
formation when the nonlinear trajectory tracking prob-
lem is considered. For example, when the relative po-
sitions and velocity of center of mass for two vehicles
are equal, it is impossible to keep the rigid rotation for
these two vehicles. As we all know, keeping the rigid
rotation is important for the problem of multiple ve-
hicle formation. Second, these parameterization meth-
ods cause singularities or ambiguities. In addition, the
control inputs of vehicle should be represented in the
own body-fixed frame. The coordinate transformations
are also needed for the control input comparison of
different vehicles. So, ignoring the Lie group structure
for vehicles is equivalent to putting the control inputs
of different vehicles in same coordinate frame, obvi-
ously which does not agree with reality. Thus, in this
paper, we consider the tracking problem of vehicles in
the Lie group frame.

Remark 1 For parameterization methods, it is well
known that any three-parameter representations are
defined only locally, and they exhibit singularities for
larger angle rotational maneuvers. Quaternions do not
have singularities, but they have ambiguities in rep-
resenting an attitude, as the three-sphere S3 double
covers SO(3). Thus, the tracking problems of vehicles
on Lie group defined globally, without singularities or
ambiguities, is very significative.

3.2 Model of vehicles

In this paper, vehicles are considered to evolve on Lie
group SE(2). Suppose that the model of a vehicle in
horizontal plane is given by

ġ = gξ̂ = gî1vx + gî2vy + gî3ω, (1)

where ξ̂ ∈ se(2) is called a twist which can be writ-
ten as a linear combination of the basis of se(2), i.e.
îk (k = 1,2,3), and ξ = [vx, vy,ω]T ∈ R

3 is consid-
ered as the control input. For the case that the num-
ber of independent control inputs is equal to the di-
mension of SE(2), the system is called a holonomic
system. More challenges arise when dealing with non-
holonomic systems. In this paper, the following non-
holomic model is considered:

ġ = gξ̂ = gî1vx + gî3ω, (2)

that is to say, the vehicle cannot move laterally. Gen-
erally, this model is used to describe the kinematic
model of aircraft and underwater vehicles on SE(2).
Controllability of the systems given by (2) is con-
firmed using the Lie brackets and the sufficiency con-
dition provided by [29].

3.3 Linear functionals on TgSE(2) and se(2)

In order to deal with the optimal control problem on
SE(2), we give the definitions of linear functionals on
TgSE(2) and se(2). The linear functionals are defined
by inner products on linear space TgSE(2) and se(2).
More details of inner products and linear functionals
are given in [6].

Definition 1 For the given p̂ ∈ se(2), the linear func-
tional p̂∗ : se(2) −→ R is defined as

p̂∗(X̂) � 〈p̂, X̂〉I , X̂ ∈ se(2),

where 〈· , ·〉I is the inner product on se(2) and given
by

〈X̂, Ŷ 〉I = tr

(
diag

(
1

2
,

1

2
,1

)
X̂T Ŷ

)
, X̂, Ŷ ∈ se(2).

Let

X̂ =
3∑

k=1

îkXk, Ŷ =
3∑

k=1

îkYk.

One can obtain

〈X̂, Ŷ 〉I = 〈X,Y 〉,
where 〈· , ·〉 represents the inner product on R

3.
Similarly, the following definition of linear func-

tionals on TgSE(2) is given.
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Definition 2 For the given Pg ∈ TgSE(2), the linear
functional P ∗

g : TgSE(2) −→R is defined as

P ∗
g (Xg) � 〈Pg,Xg〉g, Xg ∈ TgSE(2),

where 〈· , ·〉g is the inner product on TgSE(2) and is
given by

〈Xg,Yg〉g = tr

(
diag

(
1

2
,

1

2
,1

)
XT

g Yg

)
,

Xg,Yg ∈ TgSE(2).

All the linear functionals constitute the cotangent
space T∗

gSE(2), which is dual to TgSE(2). Similarly,
we have the dual space se∗(2) to se(2). The dual basis
of se∗(2) to se(2) are denoted by î∗j (j = 1,2,3) such
that

î∗j (îk) = δjk (j, k = 1,2,3), (3)

where δjk is the Kronecker delta.
For any g ∈ SE(2), TI Lgîk = gîk (k = 1,2,3) con-

stitute the basis of TgSE(2), where Lg(·) denotes the
left group action, and TI Lg : se(2) → TgSE(2) is the
tangent mapping between se(2) and TgSE(2). It fol-
lows from (3) that

î∗j (îk) = î∗j
(
g−1gîk

) = (
g−1)∗

î∗j (gîk)

= (
(TI Lg−1)

∗ î∗j
)(

(TI Lg)îk
)

= δjk, (j, k = 1,2,3).

Therefore, (g−1)∗ î∗j ∈ T∗
gSE(2) (j = 1,2,3) are the

dual basis of T∗
gSE(2) to TgSE(2). Further, any P ∗

g ∈
T∗

gSE(2) can be written as the linear combination of

the basis (g−1)∗ î∗j (j = 1,2,3):

P ∗
g =

3∑
j=1

(
g−1)∗

î∗j pj = (
g−1)∗ 3∑

j=1

î∗j pj = (
g−1)∗

p̂∗.

(4)

For the adjoint operator Adg : se(2) → se(2), it fol-
lows from (3) that

î∗j (îk) = î∗j (Adg−1Adgîk) = Ad∗
g−1 î

∗
j (Adgîk) = δjk.

Thus,

Ad∗
g−1 : se∗(2) → se

∗(2).

For p̂ ∈ se(2),

p̂ =
3∑

k=1

pkîk, Adgp̂ =
3∑

k=1

pkAdgîk.

Let p̂∗ = ∑3
k=1 pkî∗k . We call p̂ and p̂∗ mutually dual.

Therefore, for

Ad∗
g−1 p̂

∗ =
3∑

k=1

pkAd∗
g−1 î

∗
k ,

Adgp̂ and Ad∗
g−1 p̂

∗ are dual. Similarly, Adg−1 p̂ and

Ad∗
gp̂

∗ are dual. Then, it is easy to obtain

Ad∗
g−1 p̂

∗ = (
g−1)∗

p̂∗g∗, Ad∗
gp̂

∗ = g∗p̂∗(g−1)∗
.

Definition 3 [22] The relative configuration on SE(2)

of vehicle j with respect to vehicle k is gjk = g−1
k gj .

Remark 2 In the present paper, the left-invariant rela-
tive configuration gjk = g−1

k gj , i.e., the relative con-
figuration which is invariant under the same left action
on the individual configurations, respectively, is con-
sidered. However, the proposed design methods can
also be applied in the case of the right-invariant rela-
tive configuration ρjk = gjg

−1
k , which is invariant un-

der the same right action on the individual configura-
tions, respectively.

4 Main results

In this section, the formation tracking problem for ve-
hicles evolving on SE(2) is addressed. We begin with
the problem formulation.

4.1 Problem formulation

The problem of optimal formation tracking control
for vehicles in horizontal plane is studied. Consider
a group of n identical vehicles evolving on Lie group
SE(2). The holonomic model of vehicle k is described
by

ġk = gkξ̂k = gî1vxk
+ gî2vyk

+ gî3ωk, k = 1, . . . , n.

(5)

And the non-holonomic models are given by

ġk = gkξ̂k = gkî1vxk
+ gkî3ωk, k = 1, . . . , n. (6)

The reference trajectory gd ∈ SE(2) is given by the
configuration of system:

ġd = gd ξ̂d . (7)

Throughout this article, it is assumed that the control
law of reference trajectory is known.
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Let ek = gd
−1gk denote the relative configuration

of vehicle k with respect to the reference trajectory.
Take the derivative of relative configuration ek with
respect to time. One has

ėk = d

dt

(
gd

−1)gk + gd
−1ġk

= −gd
−1gd ξ̂dgd

−1gk + gd
−1gkξ̂k

= ek(ξ̂k − Adek
−1 ξ̂d ).

Let ξ̂ek
= ξ̂k − Adek

−1 ξ̂d be the relative control input,
and it is derived that

ėk = ekξ̂ek
, k = 1, . . . , n. (8)

Thus, the tracking problem concerned is converted
into the planning problem for the above systems (8).

Suppose that the cost function is given by

J = 1

2

∫ tf

t0

n∑
k=1

(
ξT
ek

(t)ξek
(t)

)
dt, (9)

where t0 and tf are the initial time and terminal time
of the maneuvering, respectively, and they are given in
advance according to task requirements. In practice,
the minimization of the above cost function is to min-
imize the length of geodesics or the control energy.

Let e∗
k denote the desired relative configuration of

vehicle k with respect to the reference trajectory at the
terminal time tf , and it is specified by task require-
ments. For the case that e∗

k equals the identity matrix,
i.e. e∗

k = I , the corresponding problem is called the
configuration consensus tracking problem. Otherwise,
it is the formation tracking problem.

In this paper, our objective is to design control laws
for systems (5) to formation track the reference tra-
jectory at the given terminal time tf , and minimize
the cost function (9) simultaneously. Then, the non-
holonomic conditions are proposed to guarantee that
the adjoint orbits of vehicles after terminal time tf is
non-holonomic.

Remark 3 For systems (5), the familiar performance
index is given by

J̃ = 1

2

∫ tf

t0

n∑
k=1

(
ξT
k (t)ξk(t)

)
dt.

However, when the tracking problem is considered,
the designed tracking control includes the control
information of leader, which cannot be optimized.
Therefore, it is meaningful and practical to optimize
the performance index (9).

4.2 The finite-time optimal formation tracking
control for holonomic models on SE(2)

As mentioned above, the problem concerned has been
converted into the planning problem of systems (8).
Thus, we begin by studying the planning problem con-
cerned for (8) and the corresponding cost function (9)
is considered. For simplicity, the model and the cost
function to be optimized are given by

ġk = gkξ̂k, k = 1, . . . , n, (10)

J = 1

2

∫ tf

t0

n∑
k=1

(
ξT
k (t)ξk(t)

)
dt, (11)

where t0 and tf are the initial time and terminal time of
the planning problem, respectively, and ξk ∈ R

3 is the
control input. The following task is to design the con-
trol law ξk ∈ R

3 that steers the system (10) to the ter-
minal configuration gk(tf ) at the given terminal time
tf , and the cost function (11) is minimized.

The Hamiltonian function is written as

H = −1

2

n∑
k=1

(
ξT
k (t)ξk(t)

) +
n∑

k=1

P ∗
gk

(gkξ̂k), (12)

where P ∗
gk

∈ T∗
gk

SE(2). Using Definition 2 gives

H = −1

2

n∑
k=1

(
ξT
k (t)ξk(t)

)

+
n∑

k=1

tr

(
diag

(
1

2
,

1

2
,1

)
P T

gk
gkξ̂k

)
.

Let P̃gk
= Pgk

diag( 1
2 , 1

2 ,1), and P̃gk
represents the

costate. Then, one has

H = −1

2

n∑
k=1

(
ξT
k (t)ξk(t)

) +
n∑

k=1

tr
(
P̃ T

gk
gkξ̂k

)
.

It follows from Pontryagin’s maximum principle
(PMP) on a Lie group [30] that the necessary con-
ditions of optimality are written as

ġk = ∂H

∂P̃gk

= gkξ̂k, (13)

·̃
Pgk

= −∂H

∂gk

= −P̃gk
ξ̂k

T . (14)

To solve the Hamiltonian equations (13) and (14),
we need to integrate Eq. (14). For this purpose, the
following lemma is given.

Lemma 1 P̃gk
(t)gT

k (t) is a constant.
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Proof From (13), the twist is written as

ξ̂k = g−1
k ġk.

Substituting the above equality into (14), one obtains
·̃

Pgk
= −P̃gk

(
g−1

k ġk

)T = −P̃gk
ġT

k

(
gT

k

)−1
.

Then,
·̃

Pgk
gT

k + P̃gk
ġT

k = 0,
d

dt

(
P̃gk

gT
k

) = 0.

Consequently, P̃gk
gT

k is a constant.

Using the definition of inner product on se(2), we
find that for any ζ̂ ∈ se(2),

tr
((

P̃gk
gT

k

)T
ζ̂
) = tr

(
diag

(
1

2
,

1

2
,1

)
P T

gk
ζ̂ gk

)

= 〈Pgk
, ζ̂ gk〉gk

= P ∗
gk

(TI Rgk
ζ̂ )

= (
(TI Rgk

)∗P ∗
gk

)
(ζ̂ ) = (

P ∗
gk

gk
∗)(ζ̂ ),

(15)

where Rgk
(·) denotes the right group action, and

TI Rgk
: se(2) −→ Tgk

SE(2) is the tangent map of the
right group action at identity element I . It follows
from (15) that P ∗

gk
gk

∗ ∈ se∗(2) is invariant with re-
spect to time t . Thus, it can be assumed that

P ∗
gk

gk
∗ = ĉ∗

k , k = 1, . . . , n, (16)

where ĉ∗
k is an unknown constant. Considering that

P ∗
gk

= (
g−1

k

)∗
p̂∗

k ,

one gets(
g−1

k (t)
)∗

p̂∗
k (t)g

∗
k (t) = ĉ∗

k ,

p̂∗
k (t) = g∗

k (t)ĉ∗
k

(
g∗

k (t)
)−1

.

According to the duality relation, one has

p̂k(t) = Adgk
−1(t)ĉk, k = 1, . . . , n. (17)

In a similar manner to [31], the Hamiltonian
equation (12) is a function on the cotangent bundle
T∗SE(2), which can be identified with SE(2)×se∗(2).
Therefore, the appropriate Hamiltonian is a function
on se∗(2). Equation (12) can be pulled back by the left
transformation and written as

H = −1

2

n∑
k=1

〈ξk, ξk〉 +
n∑

k=1

〈pk, ξk〉.

Considering the new Hamiltonian, we get the follow-
ing lemma for the optimal planning problem consid-
ered.

Lemma 2 For systems (10), the control laws

ξ̂
op
k (t) = 1

tf − t0
Adgk(t)

−1 log
(
gk(tf )g−1

k (t0)
)
,

k = 1, . . . , n (18)

steer the systems from the initial configurations gk(t0)

to the terminal configurations gk(tf ) at the given ter-
minal time tf , and the cost function (11) is minimized.

Proof It follows from the PMP [32] that the optimal
control laws are determined from the following condi-
tion:

∂H

∂ξk

= −ξk + pk = 0.

Thus

ξ
op
k = pk.

Using (17), we have

ξ̂
op
k (t) = p̂k(t) = Ad

g−1
k (t)

ĉk,

where ĉk ∈ se(2) is a constant, which is determined by
the boundary conditions. Substituting the above equa-
tion into the system (10) and integrating the system
from t0 to tf , one obtains

gk(tf ) = eĉk(tf −t0)gk(t0).

Then,

ĉk = 1

tf − t0
log

(
gk(tf )g−1

k (t0)
)
.

Therefore, the control is given by

ξ̂
op
k (t) = 1

tf − t0
Adgk(t)

−1 log
(
gk(tf )g−1(t0)

)
.

Remark 4 During the derivation of control laws (18),
integrating the system from t to tf gives the following
real-time feedback control law:

ξ̂
op
k (t) = 1

tf − t
Adgk(t)

−1 log
(
gk(tf )gk

−1(t)
)
,

which depends on the current states instead of the
initial states. Thus, it can achieve the desired termi-
nal configuration even if disturbance exists in the ini-
tial conditions and/or control inputs. When there is no
disturbance, the above new control law is equivalent
to (18).
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Based on the above derivations, the optimal plan-
ning control laws for systems (8) are given as follows:

ξ̂
op
ek

(t) = 1

tf − t0
Adek(t)

−1 log
(
e∗
ke

−1
k (t0)

)
,

k = 1, . . . , n, (19)

which steer systems (8) to the desired terminal config-
urations e∗

k (k = 1, . . . , n) at the given terminal time
tf , and the cost function (9) can be minimized. Then,
go back to the original tracking problem for system
(5). Considering that

ξ̂ek
= ξ̂k − Adek

−1 ξ̂d ,

the following theorem is proposed.

Theorem 1 Consider the multi-vehicle systems (5)
and the desired trajectory gd(t). Then, for the given
formation tracking time tf and desired formation con-
figurations e∗

k (k = 1, . . . , n), the control laws

ξ̂
op
k = Ad

e−1
k (t)

(
ξ̂d (t) + 1

tf − t0

× log
(
e∗
kg

−1
k (t0)gd(t0)

))
, (20)

ek(t) = g−1
d (t)gk(t), k = 1, . . . , n,

make sure the vehicles to formation track the desired
trajectory gd at the given terminal time tf , and the
corresponding cost function (9) is minimized.

Similarly, one can get the following real-time track-
ing feedback control laws:

ξ̂
op
k = Ad

e−1
k (t)

(
ξ̂d (t) + 1

tf − t
log

(
e∗
kg

−1
k (t)gd(t)

))
,

k = 1, . . . , n. (21)

It can achieve the desired formation tracking even if
disturbance exists in the initial conditions and/or con-
trol inputs.

For the formation tracking problem, it is desir-
able to keep the formation tracking after the termi-
nal time tf . Thus, the following stabilization prob-
lem is studied. Likewise, we begin by considering the
problem of asymptotically stabilizing for system (8).
For the desired relative configuration e∗

k , we have(
ė∗−1
k ek

) = (
e∗−1
k ek

)
ξ̂ek

.

The asymptotic tracking problem concerned can be
converted into designing ξ̂ek

for the above system such

that e∗−1
k ek → I . For a fixed value α > 0, it follows

from [33] that

ξ̂ek
= −α log

(
e∗−1
k ek

) = αAd
e−1
k (t)

log
(
e∗
kek

−1),
which converges asymptotically to the identity ma-
trix I . Therefore, we get the following asymptotic for-
mation tracking control laws for systems (5):

ξ̂k
op = Ad

e−1
k (t)

(
ξ̂d (t) + α log

(
e∗
kg

−1
k (t)gd(t)

))
,

k = 1, . . . , n. (22)

In practical applications, the switching control laws
are proposed as follows:

ξ̂k(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ad
e−1
k (t)

(ξ̂d (t) + 1
tf −t

log(e∗
kg

−1
k (t)gd(t))),

0 ≤ t < tf

Ad
e−1
k (t)

(ξ̂d (t) + α log(e∗
kg

−1
k (t)gd(t))),

t ≥ tf

,

(23)

which achieve formation tracking at the given termi-
nal time tf , and then switch to the general asymptotic
control laws (22) to keep formation tracking.

Note that the switching control laws are discontinu-
ous at time tf . Theoretically, the switching represents
that the control input is infinite. For the low speed ve-
hicles, the implementation of this control law can be
approximated by a jump of the twist with a finite slope.
However, for the high speed vehicles, this approxima-
tion will be badly limited by the ability of the magni-
tude of the control input. Therefore, we consider the
following suboptimal strategy:

ξ̂k(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ad
e−1
k (t)

(ξ̂d (t) + 1
tf +τ−t

× log(e∗
kg

−1
k (t)gd(t))), 0 ≤ t < tf

Ad
e−1
k (t)

(ξ̂d (t) + 1
τ

log(e∗
kg

−1
k (t)gd(t))),

t ≥ tf

,

(24)

where 0 < τ < tf . Actually, the suboptimal strategy
is to design the optimal control law for the terminal
time tf + τ during 0 ≤ t < tf , and then switch to the
asymptotic control law for t ≥ tf . This control law
guarantees the continuity of switching control strat-
egy aforementioned. Besides, τ represents the ability
of dynamic implementation. When τ goes to zero, (24)
will be a discontinuous optimal control.
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Note that the argument of Theorem 1 dose not rely
on the information-exchange topology among the ve-
hicles. The control laws (20) solve the formation track-
ing problem under condition that each vehicle has ac-
cess to gd . This argument is rather restricted in sense
that each vehicle must have access to the desired refer-
ence trajectory. Therefore, we assume that only a por-
tion of the vehicles have access to gd and the topol-
ogy corresponds to an information-exchange graph is
a directed tree. Let e∗

kj denote the desired relative con-
figuration of vehicle k with respect to vehicle j at the
terminal time tf . Then, the following algorithms are
proposed:

ξ̂
op
k =

n∑
j=1

akj Ad
e−1
kj (t)

(
ξ̂j (t)

+ 1

tf − t0
log

(
e∗
kj g

−1
k (t0)gj (t0)

))

+ ak(n+1)Ad
e−1
k (t)

(
ξ̂d (t)

+ 1

tf − t0
log

(
e∗
kg

−1
k (t0)gd(t0)

))
,

k = 1, . . . , n, (25)

where ekj (t) = g−1
j (t)gk(t), ek(t) = g−1

d (t)gk(t),

akk � 0 and akj is 1 if information flows from vehi-
cle j to vehicle k and 0 otherwise, ∀k, j ∈ 1, . . . , n,
and ak(n+1) is 1 if vehicle k has access to gd and 0
otherwise.

We have the following theorem for finite-time for-
mation tracking of multi-vehicle system using algo-
rithm (25).

Theorem 2 Consider the multi-vehicle system (5). Let
the communication graph be a directed tree with the
root node (7). The algorithms (25) solve the formation
tracking problem in finite time.

Proof Let S1 denote the set of the nodes that receive
information directly from the root node (7). Assume
k ∈ S1. Thus, akj = 0, ∀j ∈ {1, . . . , n} and ak(n+1) =
1. Rewrite Eq. (25) as

ξ̂
op
k = Ad

e−1
k (t)

(
ξ̂d (t)

+ 1

tf − t0
log

(
e∗
kg

−1
k (t0)gd(t0)

))
. (26)

It follows from Theorem 1 that the desired relative
configuration e∗

k is achieved at the terminal time tf .

If vehicle k does not have access to gd , ak(n+1) = 0,
then there is only one vehicle j such that akj = 1. So,
Eq. (25) is rewritten as

ξ̂
op
k = Ad

e−1
kj (t)

(
ξ̂j (t)

+ 1

tf − t0
log

(
e∗
kj g

−1
k (t0)gj (t0)

))
. (27)

Similarly, the desired relative configuration e∗
kj of ve-

hicle k with respect to vehicle j is achieved at the ter-
minal time tf .

Remark 5 In this section, the derived results are also
available to the finite-time optimal formation tracking
control for multi-vehicle systems on SE(3). There is
no essential difference.

4.3 The finite-time optimal formation tracking
control for non-holonomic models on SE(2)

Compared with the holonomic case, more challenges
arise when dealing with the non-holonomic mod-
els. Before considering the optimal formation track-
ing problem, we study the controllability of the non-
holonomic models (6). Thus, the following lemma is
given.

Lemma 3 The non-holonomic system (6) is control-
lable on the Lie group SE(2).

Proof Note that

[î3, î1] = î3 î1 − î1 î3 = î2.

Therefore, the controllability rank condition is satis-
fied. It follows from the Group Test Theorem (see [30])
that the system (6) is controllable.

Although the non-holonomic system (6) is control-
lable, it is difficult and complex to directly design the
tracking control law for system (6). In this paper, we
mainly focus on the non-holonomic tracking control
for the adjoint orbit. The formation tracking control of
vehicles from the initial time to the terminal time is
under study.

Considering the control law (21), it reduces to
Ad

e−1
k (tf )

ξ̂d (t) when the desired relative configuration

is achieved. Ade−1(tf )ξ̂d (t) is called the adjoint orbit
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control. It is assumed that the control law for the ref-
erence trajectory is given by

ξ̂d =
⎡
⎣ 0 −ω vx

ω 0 vy

0 0 0

⎤
⎦ , (28)

where vx and vy are the velocities in the X-direction
and Y-direction, respectively. In this paper, for the case
with vy = 0, we say that the above control law satis-
fies the non-holonomic condition. For non-holonomic
vehicles, this condition indicates that vehicles cannot
move laterally, which is common in practice. Based
on the optimal formation tracking control of vehicles
with holonomic dynamics, we consider how to design
the non-holonomic adjoint orbit control for vehicles
or derive the requirements for vehicles to satisfy the
non-holonomic conditions. The following theorem is
derived.

Theorem 3 Assume that the desired relative configu-
rations are given by

e∗
k =

⎡
⎣cos θ∗

k − sin θ∗
k x∗

k

sin θ∗
k cos θ∗

k y∗
k

0 0 1

⎤
⎦ =

[
R∗

k p∗
k

01×2 1

]
,

k = 1, . . . , n. (29)

The adjoint orbit control satisfies the non-holonomic
condition if and only if

Φ
ξ̂d

(
x∗
k , y∗

k , θ∗
k

) = (
vy + ωx∗

k

)
cos θ∗

k

− (
vx − ωy∗

k

)
sin θ∗

k = 0. (30)

Proof

Ad
e−1
k (tf )

ξ̂d (t) = e−1
k (tf )ξ̂d (t)ek(tf )

=
[
(R∗

k )T −(R∗
k )T p∗

k

0 1

]

×
⎡
⎣ 0 −ω vx

ω 0 vy

0 0 0

⎤
⎦[

R∗
k p∗

k

0 1

]

=
[
(R∗

k )T ω̂R∗
k Λk

0 0

]
,

where Λk = (R∗
k )T (ω̂p∗

k + [ vx

vy
]).

On further computations, we obtain

Λk =
[
(vx − ωy∗

k ) cos θ∗
k + (vy + ωx∗

k ) sin θ∗
k

(vy + ωx∗
k ) cos θ∗

k − (vx − ωy∗
k ) sin θ∗

k

]
.

Therefore, the adjoint orbit control satisfies the non-
holonomic condition if and only if

Φ
ξ̂d

(
x∗
k , y∗

k , θ∗
k

) = (
vy + ωx∗

k

)
cos θ∗

k

− (
vx − ωy∗

k

)
sin θ∗

k = 0.

The proof is completed.

Obviously, for arbitrary independent (x∗
k , y∗

k , θ∗
k ),

the above non-holonomic condition is not satisfied.
In general, in order to keep the specified relative posi-
tion (x∗

k , y∗
k ), the attitude angle θ∗

k is not independent
and is decided by

θ∗
k = arctan

(
vy + ωx∗

k

vx − ωy∗
k

)
, k = 1, . . . , n.

Considering the formation tracking problem for the
case with non-holonomic reference trajectory, i.e.
vy = 0, we get the corollary below.

Corollary 1 For the desired relative configurations
(29) and non-holonomic reference trajectory, the ad-
joint orbit control satisfies the non-holonomic condi-
tion if and only if

Φ
ξ̂d

(
x∗
k , y∗

k , θ∗
k

) = ωx∗
k cos θ∗

k − (
vx − ωy∗

k

)
sin θ∗

k

= 0, k = 1, . . . , n. (31)

For the case with (x∗
k = 0, y∗

k = 0, θ∗
k = 0), the

adjoint orbit and the desired reference trajectory
coincide. Thus, the adjoint orbit satisfies the non-
holonomic condition. For the case with (x∗

k = 0,

θ∗
k = 0), the vehicle k has the same attitude with the

reference trajectory. Similarly, in order to keep the
specified relative position, attitude angles are given
as follows:

θ∗
k = arctan

(
ωx∗

k

vx − ωy∗
k

)
, k = 1, . . . , n.

We refer to (30) and (31) as the non-holonomic condi-
tions of adjoint orbit.

5 Simulation examples

In this section, some numerical simulation examples
of finite-time formation tracking for system (5) are
given to illustrate the theoretical results. For simplic-
ity, the initial time is given by t0 = 0.
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Fig. 1 Finite-time optimal
formation tracking for
vehicles in plane and tf = 5

Example 1 Consider the system with two vehicles,
and select the initial configurations and the desired rel-
ative configurations as follows:

g1(0) =
⎡
⎣1 0 −4

0 1 4
0 0 1

⎤
⎦ , g2(0) =

⎡
⎣0 −1 5

1 0 −5
0 0 1

⎤
⎦ ,

e∗
1 =

⎡
⎣1 0 −1

0 1 2
0 0 1

⎤
⎦ , e∗

2 =
⎡
⎣1 0 −1

0 1 −2
0 0 1

⎤
⎦ .

The initial configuration and external input of the de-
sired reference trajectory are given by

gd(0) =

⎡
⎢⎢⎣

1
2 −

√
3

2 0
√

3
2

1
2 0

0 0 1

⎤
⎥⎥⎦ ,

ξ̂d =
⎡
⎣ 0 0.15 1

−0.15 0 0
0 0 0

⎤
⎦ ,

i.e. the reference trajectory is a circular starting from
origin of coordinate produced by a non-holonomic ve-
hicle. Here we assume that each vehicle has access to
the desired reference trajectory. The tracking time is 5.
For the control laws (23), select α = 0.6.

Figures 1 and 2 show the simulation results with
the real-time feedback control laws (23). The two ve-

hicles and the reference trajectory are denoted by fol-
lower 1, follower 2 and leader, respectively. Figure 1
describes the plane movement trajectories with atti-
tude for vehicles. The curves in Fig. 2 present the con-
trol inputs, configurations, and relative configurations,
respectively. It can be seen that the control laws (23)
make sure vehicles to achieve the desired formation
tracking at the given terminal time tf = 5 and then
follow the leader in a manner of given formation.

Example 2 Consider the system in Example 1. For that
two planar vehicles and the reference trajectory, select
the same initial conditions and external input, respec-
tively. In order to keep the desired relative position
(−1,2) and (−1,−2), respectively, for the two vehi-
cles, the attitude angles obtained by Corollary 1 are
given by

θ1 = 0.1149, θ2 = 0.2111.

Thus, the relative configurations are

e∗
1 =

⎡
⎣cos(0.1149) − sin(0.1149) −1

sin(0.1149) cos(0.1149) 2
0 0 1

⎤
⎦ ,

e∗
2 =

⎡
⎣cos(0.2111) − sin(0.2111) −1

sin(0.2111) cos(0.2111) −2
0 0 1

⎤
⎦ .
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Fig. 2 From top to bottom:
control input, configuration
and relative configuration
(with respect to the
reference trajectory); from
left to right: with respect to
the x and y coordinate and
the attitude θ

Fig. 3 Finite-time optimal
formation tracking for
vehicles with
non-holonomic dynamics
and tf = 5

Figures 3 and 4 show the formation tracking results
for vehicles, where the desired relative configurations
satisfy the non-holonomic conditions (31). It can be
seen from Fig. 4 that the relative configurations are
obtained and the vehicles go into the non-holonomic
adjoint orbits at the given terminal tf = 5. Afterwards,
the two followers have no motion in the Y-direction,
which is shown in Fig. 3. This is in marked contrast
to the situation in Fig. 1, which has no non-holonomic
condition.

Example 3 Now, let us consider the example of finite-
time formation tracking control for four vehicles when
the communication topology is modeled as a directed
tree which is shown in Fig. 5. The initial configura-
tions are given as follows:

g1(0) =
⎡
⎣1 0 1

0 1 −6
0 0 1

⎤
⎦ ,
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Fig. 4 From top to bottom:
control input, configuration
and relative configuration
(with respect to the
reference trajectory); from
left to right: with respect to
the x and y coordinate and
the attitude θ

Fig. 5 The directed-tree communication topology

g2(0) =
⎡
⎣ 0 1 −2

−1 0 15
0 0 1

⎤
⎦ ,

g3(0) =

⎡
⎢⎢⎣

1
2 −

√
3

2 −10
√

3
2

1
2 8

0 0 1

⎤
⎥⎥⎦ ,

g4(0) =

⎡
⎢⎢⎣

√
3

2 − 1
2 −15

1
2

√
3

2 0

0 0 1

⎤
⎥⎥⎦ .

For simplicity, let desired relative configurations be
e∗

1 = e∗
21 = e∗

31 = e∗
43 = I , that is, all vehicles track the

desired reference trajectory gd at the terminal time tf .
The result of tracking control is shown in Figs. 6 and 7,
and the vehicles consensus track the desired reference
trajectory in finite time.

6 Conclusions

In this paper, we have studied the problem of finite-
time optimal formation tracking for vehicles on Lie
group SE(2). We first develop an optimal controllers
for vehicles with holonomic dynamic to achieve the
desired formation tracking at the given terminal time,
which is given in advance according to the task re-
quirements. And during the tracking, the given inte-
gral performance index is guaranteed to be optimal.
Then, the finite-time formation tracking controllers are
designed for multi-vehicle systems under a directed-
tree communication topology. Furthermore, some suf-
ficiency conditions are proposed for vehicles to guar-
antee the non-holonomic tracking after the formation
time.

Nevertheless, there are still some problems remain-
ing to be solved, such as finite-time optimal formation
tracking control for vehicles with non-holonomic dy-
namic during formation tracking part, finite-time op-
timal tracking control for multiple vehicles with other
network topologies. The solutions of these problems
could be important both for theoretical research and
for practical applications.

Acknowledgements This work is supported by National Na-
ture Science Foundation of China under Grants 61374033,
11072002.
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Fig. 6 Finite-time optimal
formation tracking for
multi-vehicle system with a
directed-tree
communication topology
and tf = 5

Fig. 7 From top to bottom:
control input, configuration
and relative configuration
(with respect to the
reference trajectory); from
left to right: with respect to
the x and y coordinate and
the attitude θ
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