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Abstract Based on three-dimensional (3D) Lü cha-
otic system, we introduce a four-dimensional (4D)
nonlinear system with infinitely many equilibrium
points. The Lyapunov-exponent spectrum is obtained
for the 4D chaotic system. A hyperchaotic attractor
and a chaotic attractor are emerged in this 4D non-
linear system. Furthermore, to verify the existence of
hyperchaos, the chaotic dynamics of this 4D nonlinear
system is also studied by means of topological horse-
shoe theory and numerical computation.

Keywords Chaotic system · An infinite number of
equilibrium points · Lyapunov-exponent spectrum ·
Hyperchaos · Topological horseshoes

1 Introduction

The first chaotic attractor in a 3D autonomous sys-
tem was discovered in 1963 and was called the Lorenz
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chaotic system [1]. The Rössler chaotic system [2] and
the Rössler hyperchaotic system [3] were reported in
1976 and 1979, respectively. In 1999, Chen and Ueta
[4] reported a 3D chaotic system that was not topo-
logically equivalent to the Lorenz chaotic system and
was called the Chen chaotic system. Lü and Chen con-
structed a 3D chaotic system in 2002 that was not
equivalent to the Lorenz and Chen chaotic systems and
was called the Lü chaotic system [5]. Up to now, many
chaotic and hyperchaotic systems have been proposed
in the past decades [6–18].

In chaos theory, the equilibria of an autonomous
dynamical system are significant for understanding its
nonlinear dynamics, especially for the Šil’nikov type
of chaos [19]. Most known chaotic and hyperchaotic
systems have one to three equilibrium points, such
as the systems mentioned above. Some chaotic and
hyperchaotic systems have more than three equilibria
[7, 8]. Some chaotic and hyperchaotic systems have no
equilibrium points [10, 11]. Up to now, most chaotic
and hyperchaotic systems reported previously have
just a limited number or a countable number of iso-
lated equilibria. Thus, a natural and interesting ques-
tion is: does a chaotic or hyperchaotic system possess
an infinite uncountable number of equilibria? Clearly,
the answer to this question is of both academic signif-
icance and practical importance. A positive answer to
this question is given in this paper. A thorough study
of such kind of chaotic systems may be helpful to un-
derstand the complicated mechanisms of chaos and
hyperchaos. For chaotic systems with infinitely many
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equilibria, there seems to be no study on chaotic en-
cryption or decryption, so it may be more security.

Motivated by the above discussions, we report a 4D
chaotic system with infinitely many equilibrium points
based on the 3D Lü chaotic system in this paper. The
dynamical behavior of this chaotic system is obtained.
The periodic orbit, chaotic, and hyperchaotic attrac-
tors are emerged in this 4D chaotic system. Moreover,
horseshoe and entropy in this 4D chaotic system are
also discussed by means of topological horseshoe the-
ory and numerical computation.

The organization of this paper is as follows. In
Sect. 2, a 4D chaotic system with infinitely many equi-
libria is introduced, and the dynamical behavior of this
chaotic system is discussed. The horseshoe and en-
tropy for the 4D chaotic system are investigated in
Sect. 3. The conclusion is given in Sect. 4.

2 A 4D chaotic system with infinitely many
equilibria

Lü and Chen reported a 3D chaotic system in 2002,
which is not diffeomorphic to the Lorenz and Chen
chaotic systems and is defined as

⎧
⎪⎨

⎪⎩

ẋ1 = a(x2 − x1),

ẋ2 = cx2 − x1x3,

ẋ3 = −bx3 + x1x2.

(1)

When the parameters a = 36, b = 3, and c = 20, the
chaotic attractor of system (1) is shown in Fig. 1.

Fig. 1 The chaotic attractor of system (1) for a = 36, b = 3,
and c = 20

Based on the Lü chaotic system (1), we construct a
4D nonlinear system, which is described as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = 36(x2 − x1) + x4,

ẋ2 = cx2 − x1x3,

ẋ3 = −3x3 + x1x2,

ẋ4 = 18x1 − 0.5x4,

(2)

where 4 ≤ c ≤ 33.
In the Lü system (1), c is a typical parameter, which

has been studied extensively in many papers and is
most familiar to the readers. So, in our system (2),
we choose this parameter in our discussion so that the
readers could compare our results with the classical Lü
system.

Obviously, system (2) is invariant under the trans-
formation

(x1, x2, x3, x4) ↔ (−x1,−x2, x3,−x4).

In the following, we will show that system (2) is
dissipative and there exists an attractor in system (2).

Calculating the variation of the small element vol-
ume V (t) in the state space, we have

∇V (t) =
4∑

i=1

∂ẋi

∂xi

= −39.5 + c < 0.

So, system (2) is dissipative, and there exists an at-
tractor in system (2).

Solving the following algebraic equations, we can
obtain the real equilibria of system (2):
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

36(x2 − x1) + x4 = 0,

cx2 − x1x3 = 0,

−3x3 + x1x2 = 0,

18x1 − 0.5x4 = 0.

Obviously, the real equilibria of system (2) are
(x1, x2, x3, x4) = (x1,0,0,36x1), where x1 is a real
number. So, system (2) has an infinite number of real
equilibria. Moreover, the real equilibria are the coor-
dinate axis x1 of the subspace (x1, x2, x3), the coor-
dinate axis x4 of the subspace (x2, x3, x4), and the
straight line (x4 = 36x1) in the subspace (x1, x2, x4)

or subspace (x1, x3, x4). So, system (2) is different
from all the previous chaotic and hyperchaotic sys-
tems, which implies that a new 4D system with in-
finitely many equilibria has been obtained.
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The Jacobian J at all equilibrium points is

J =

⎛

⎜
⎜
⎝

−36 36 0 1
0 c −x1 0
0 x1 −3 0
18 0 0 −0.5

⎞

⎟
⎟
⎠ ,

and its eigenvalues are λ1 = 0, λ2 = −36.5, and λ± =
0.5(c − 3)± 0.5

√

(c − 3)2 − 4(x2
1 − 3c), respectively.

Since c − 3 > 0, we can derive the following con-
clusions:

(1) if (c − 3)2 − 4(x2
1 − 3c) ≤ 0, then Re(λ±) > 0.

(2) if 0 < (c − 3)2 − 4(x2
1 − 3c) ≤ (c − 3)2, then

Re(λ±) > 0.
(3) if (c − 3)2 − 4(x2

1 − 3c) > (c − 3)2, then
Re(λ+) > 0.

Therefore, all equilibrium points in system (2) are
unstable.

The dynamical behavior of system (2) can be char-
acterized by its Lyapunov-exponent spectrum. The
Lyapunov-exponent spectrum of system (2) is increas-
ing with respect to parameter c, which is shown in
Fig. 2. According to Fig. 2, we can yield:

(1) The hyperchaotic attractor is emerged in sys-
tem (2) for 13 < c ≤ 16.75, where λ1 > λ2 > 0,
λ3 = 0, λ4 < 0, and λ1 + λ2 + λ4 < 0. Setting

Fig. 2 Diagram of the Lyapunov exponent spectrum as param-
eter c varies

the parameter c = 14, the Lyapunov exponents
of system (2) are λ1 = 0.24014, λ2 = 0.08613,
λ3 = 0, and λ4 = −25.826, respectively. The Lya-
punov dimension of system (2) is DL = 3 + (λ1 +
λ2)/|λ4| = 3.0126, so system (2) is fractal. The
hyperchaotic attractor for the parameter c = 14 is
shown in Fig. 3.

(2) The chaotic attractor is emerged in system (2)
for 16.75 < c ≤ 21.2 and 21.5 < c ≤ 27.5, where
λ1 > 0, λ2 = 0, λ3 < 0, λ4 < 0, and λ1 + λ3 +
λ4 < 0. Setting the parameter c = 25, the Lya-
punov exponents of system (2) are λ1 = 1.5919,
λ2 = 0, λ3 = −0.34582, and λ4 = −15.747, re-
spectively. The Lyapunov dimension of system (2)
is DL = 3 + λ1/|λ3 + λ4| = 3.0989, so system
(2) is fractal. The chaotic attractor for parameter
c = 25 is shown in Fig. 4.

(3) The periodic orbit is emerged in system (2) for
4 ≤ c ≤ 13, 21.2 < c ≤ 21.5, and 27.52 < c ≤ 33,
where λ1 = 0, λ2 < 0, λ3 < 0, and λ4 < 0. Set-
ting the parameter c = 5, the Lyapunov exponents
of system (2) are λ1 = 0, λ2 = −0.47057, λ3 =
−0.47057, and λ4 = −33.556, respectively. The
periodic orbit for the parameter c = 5 is shown in
Fig. 5.

According to the above mentioned, we obtained a
4D nonlinear system with infinitely many equilibria.
The hyperchaos and chaotic are emerged in this 4D

Fig. 3 The hyperchaotic attractor of system (2) with system
parameter c = 14
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Fig. 4 The chaotic attractor of system (2) with system parame-
ter c = 25

Fig. 5 The periodic orbit of system (2) with system parameter
c = 5

nonlinear system. We obtained the exact range of the
parameter c, which guarantees the existence of hyper-
chaos, so that the reader may change this parameter to
control the hyperchaos.

3 Computer-assisted verification of hyperchaos

From the analysis in Sect. 2 we found out that sys-
tem (2) is hyperchaotic for the parameter c = 14, and
two positive Lyapunov exponents are λ1 = 0.24014
and λ2 = 0.08613, respectively. However, the numeri-
cal errors during the computation are unavoidable, and
the second Lyapunov exponent is not large enough to
tolerate such errors. So, the readers may ask whether
it is indeed positive or not.

Generally, the existence of chaos and hyperchaos
can be studied by Shil’nikov’s theorems, which guar-
antee the existence of infinitely many Smale horse-
shoes. This method has been applied to a multitude
of 4D dynamical systems, such as real quadratic dy-
namics in the context of competitive modes [20], the
Shil’nikov chaos in the 4D Lorenz–Stenflo system
[21], and so on. In our case, we will propose a rigor-
ous proof of the existence of hyperchaos in system (2)
by directly finding topological horseshoes with two-
directional expansion in the phase space of its corre-
sponding Poincaré map.

First, we review some theoretical criteria of topo-
logical horseshoes and then present our main result.

Let X be a metric space, B a compact subset of X,
and let there exist m mutually disjoint compact subsets
B1,B2, . . . ,Bm of B . For each Bi , let B1

i and B2
i be

its two fixed disjointed connected nonempty compact
subsets contained in the boundary ∂Bi , and let the map
f be continuous on each Bi .

Definition 1 [22] A connected subset Γ of Bi is said
to be a separation of B1

i and B2
i , denoted by Γ � (B1

i ,

B2
i ), if for any connected subset L ∈ Bi with L∩B1

i �=
Φ and L ∩ B2

i �= Φ , we have L ∩ Γ �= Φ .

Definition 2 [22] We say that f (Γ ) separates Bi , de-
noted by f (Γ ) 	→ Bj , if there exists a compact subset
Γ ′ of Γ such that f (Γ ′) � (B1

j ,B2
j ).

Definition 3 [23] We say that f : Bi 	→ Bj is a

codimension-one crossing with respect to two pairs
(B1

i ,B2
i ) and (B1

j ,B2
j ) if for each compact subset Γ ⊂

Bi that satisfies Γ � (B1
i ,B2

i ), we have f (Γ ) 	→ Bj .

Theorem 1 [23] If the codimension-one crossing re-
lation f : Bi 	→ Bj , holds for 1 ≤ i, j ≤ m, then there
exists a compact invariant set K ⊂ B such that f |K
is semi-conjugate to the m-shift mapping. Then the en-
tropy of f satisfies ent(f ) ≥ logm.
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Since the condition of this theorem is too conserva-
tive, it is hard to find a horseshoe of this kind in prac-
tical systems. So we use the following practical corol-
lary, which has been successfully applied in a number
of chaotic and hyperchaotic systems [8, 24, 25].

Corollary 1 [22] Suppose that the map f : B → X

satisfies the following assumptions:

(1) There exist two mutually disjoint compact subsets
B1 and B2 of B , and f m|B1 and f n|B2 are differ-
ential homeomorphisms, where m,n ∈ Z+.

(2) f m(B1) 	→B1, f m(B1) 	→B2, and f n(B2) 	→B1.

Then there exists a compact invariant set K ⊂ B such
that f 2m+n|K is semi-conjugate to 2-shift dynamics
and the topological entropy of f satisfies ent(f ) ≥

1
2m+n

log 2.

Since f in the above horseshoe corollary is a home-
omorphism, we are going to study a Poincaré map of
system (2). By taking the hyperplane

Π = {
x = (x1, x2, x3, x4)|x4 = 0, ẋ4 < 0

}

as a Poincaré cross-section, the corresponding Poin-
caré map P : Π → Π can be defined as follows: for
each x ∈ Π , P(x) is taken to be the first return point
in P under the flow of the dynamical system with the
initial condition x.

Unlike many other studies on topological horse-
shoes for two-dimensional chaotic maps [6, 26–28],
generally, due to the high dimensionality, it is very
difficult to find a topological horseshoe directly. For-
tunately, Li and Tang [29] proposed a remarkable
method to detect a horseshoe with two-directional ex-
pansions effectively by deducting the dimension along
the direction of contraction.

According to the algorithm, we find a horseshoe by
three steps.

(1) Since the attractor of the Poincaré map is very
close to a curved surface whose equation x1 =
s(x2, x3) can be easily fitted in MATLAB, we ob-
tain the following two-dimensional projective sys-
tem:
(

x2

x3

)

n+1
= ϕ

((
x2

x3

)

n

)

=
(

0 1 0
0 0 1

)

P

⎛

⎝

⎛

⎝
s(x2, x3)

x2

x3

⎞

⎠

n

⎞

⎠ .

(3)

(2) By several attempts we find a horseshoe with two
directional expansions of the above projective sys-
tem by choosing two quadrilaterals in the x2ox3

plane. The four vertices of the first quadrilateral
in terms of (x2, x3) are as follows:

[−6.211927593,19.187952363]T ,

[−6.194265221,18.681381786]T ,

[−4.436859217,19.070264249]T ,

[−4.763613097,19.459146712]T .

The four vertices of the second one are as follows:

[−4.163092452,19.187952363]T ,

[−4.516339890,18.875823108]T ,

[−3.854000944,18.696732410]T ,

[−3.562571807,18.906524265]T .

(3) We construct the three-dimensional horseshoe of
the map P utilizing the projective horseshoe by
projecting the planar horseshoe back to the three-
dimensional space.

For clarity, we rotate the coordinates via the follow-
ing Householder transform:

y = [y1, y2, y3]T = H[x1, x2, x3]T ,

where

H =
⎡

⎢
⎣

0.598888177 0.365362777 −0.712631034

0.365362777 0.667200138 0.649117875

−0.712631034 0.649117875 −0.266088315

⎤

⎥
⎦,

so that the direction of contraction is parallel to the
y3-axis. Finally, we have two blocks B1 and B2 in
the phase space of the Poincaré map P , as shown in
Figs. 6(a) and 7(a). It is not hard to get the following
theorem.

Theorem 2 For the Poincaré map P : Π → Π , there
exists a closed invariant set Λ ⊂ B1 ∪ B2 on which
P 6|Λ is semiconjugate to the 2-shift, and ent(P ) ≥
1
6 log 2.

Proof According to Corollary 1, we only need to show
that B1, B2 and their images under P 2 and P 3, re-
spectively, satisfy the following relationships about the
codimension-one crossing:
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Fig. 6 P 2(B1) separates B1 and B2 under system (2) at c = 14 Fig. 7 P 3(B2) separates B1 under system (2) at c = 14
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P 2(B1) 	→ B2, P 2(B1) 	→ B2, and

P 3(B2) 	→ B1.

The geometrical relations of B1, B2, and P 2(B1)

is shown in Fig. 6. Figure 6(a) is a 3D view, which
suggests that P 2(B1) expands in two directions and
transversely intersects both blocks B1 and B2. Fig-
ure 6(b) is a side view, which shows that the inter-
section happens between their top and bottom sur-
faces, i.e., (Bt

1,B
b
1 ) and (Bt

2,B
b
2 ). Figure 6(c) is a top

view, which shows that the side surfaces of B1 are
mapped outside B1 and B2. In this way, for each sep-
aration S of (Bt

1,B
b
1 ), f (S) ∩ B1 must be a separation

of (Bt
1,B

b
1 ), and f (S) ∩ B2 must be a separation of

(Bt
2,B

b
2 ). Then we have

P 2(B1) 	→ B1, P 2(B1) 	→ B2,

according to Definitions 2 and 3. Similarly, we can
have the codimension-one crossing about P 3(B2) 	→
B1 from Fig. 7.

Since system (2) is smooth, i.e., the system has a
unique solution from each initial condition, Figs. 6
and 7 also show that P 2|B1 and P 3|B2 are both con-
tinuous, so they must be homeomorphisms. Then, it
follows from the corollary that there exists a compact
invariant set Λ ⊂ B1 ∪ B2 such that P 6|Λ is semicon-
jugate to the 2-shift, and the topological entropy of P

is not less than ent(P ) ≥ 1
6 log 2.

Since P 2|B1 and P 3|B2 both expands in two direc-
tions, the expansions along each trajectory in Λ are
also in two directions, so there must exist two positive
Lyapunov exponents. Therefore, the system is hyper-
chaotic. �

4 Conclusion

A 4D chaotic system with infinitely many equilibria is
reported in this paper. The Lyapunov-exponent spec-
trum is yielded. The periodic orbit, chaotic, and hy-
perchaotic attractor can been found in this nonlinear
system. By means of topological horseshoe theory and
numerical computation, a topological horseshoe with
two-directional expansions is also obtained, which en-
sures that system (2) is a hyperchaos system for a suit-
able system parameter c.

Although chaos and hyperchaos have been found
in many 4D systems with limit number of isolated

equilibria, our chaotic system has infinitely many non-
isolated equilibria, which is a significant difference.
So our work may be useful for better understanding
of the chaotic mechanism. On the other hand, our
system can generate hyperchaos, which may be also
useful in chaos engineering, e.g., in chaos encryp-
tion, chaos communications, etc. Synchronization of
a chaotic system with infinitely many equilibria is also
an interesting topic.
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