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Abstract In this paper, motion control and robust
path tracking were extended to nonsquare MIMO
(Multi-Input Multi-Output) systems having more out-
puts than inputs. A path-tracking design based on
fractional prefilter approach has been developed and
extended to control nonsquare MIMO systems. The
nonsquare relative gain array (NRG) is used to as-
sess the performance of nonsquare control systems
based on steady-state information. The CRONE con-
trol approach developed for multivariable plants based
on third-generation SISO CRONE methodology is
combined with MIMO-QFT (Quantitative Feedback
Theory) robust design methodology, taking into ac-
count the plant uncertainties. After the determination
of CRONE controller, the parameter of prefilter has
been optimized considering physical constraints of ac-
tuators and the tracking performance specifications.
The proposed design is applied to an example.
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1 Introduction

Various researches have been proposed in robust gen-
eration and path-tracking design. In order to reduce
overshoots, a prefilter is used since it is easy to be
implemented and adapted in industrial path-tracking
designs. As presented by Davidson and Cole [2],
the Davidson–Cole (DC) fractional-order prefilter is
a useful prefilter whose main property is eliminating
overshoots on the plant output. Using this type of pre-
filter, one can limit the resonance of the feedback con-
trol loop by a continuous variation of its two constitu-
tive parameters, time constant τ and real order n.

Multivariable systems were the most interesting
problem in industry because most of complex indus-
trial processes are always Multi-Input Multi-Output
(MIMO) systems [1, 3]. MIMO systems are more dif-
ficult to control due to the existence of interactions
among input and output variables. The general prob-
lem in the QFT Two-Degree-Of-Freedom (TDOF)
system is how to generate the feedback controller and
the prefilter [4]. Specifications of most QFT problems
are to put the responses of a closed-loop system into
lower and upper bounds [4, 5]. QFT design techniques
have been developed for highly uncertain linear time-
invariant square MIMO systems [6–8]. The QFT ap-
proach can be combined with different controller types
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like the H∞ design [9, 10] and the CRONE control ap-
proach [11].A MIMO-QFT robust synthesis approach
has been used by Melchior [3], who applied it to a
square MIMO system. The purpose of this work is ex-
tending [3, 11] to nonsquare MIMO systems.

The CRONE control-system design was initially
developed by Oustaloup [12–14, 16, 19, 27, 28]. This
methodology is based on fractional-order differenti-
ation [15]. Fractional Calculus is a section of math-
ematics based on integrals and derivatives of real
or complex order of an arbitrary function [17]. The
CRONE control is a frequency domain design to pro-
vide robust controllers for perturbed plants using the
common unity feedback configuration. For the nomi-
nal state of the plant, this approach consists in deter-
mining the open-loop transfer function that guarantees
the desired specifications like accuracy, overshoot, and
rapidity and that ensures the smallest variation of the
stability degree for other states of the plant. The con-
troller can be obtained from the ratio of the open-loop
transfer function to the nominal plant transfer func-
tion taking into account the plant right half-plane ze-
ros and poles. There are three CRONE control gen-
erations. Only the principle of the third generation is
given in this paper.

As the fractional-order differentiation allows us to
describe the open-loop transfer function with few pa-
rameters, the optimal transfer function to meet the
specifications is easier to obtain. Furthermore, the
CRONE control design takes into account the plant
genuine structured uncertainty domains and is able
to provide high-performance robust controllers. The
CRONE control design has already been applied to
multivariable systems [18, 20, 29, 32, 33].

In industry process, a square MIMO system is usu-
ally used. This type system has an equal number of
inputs and outputs. Yet, when one of actuators is dys-
functional, then the studied system becomes having
more outputs than inputs. This paper deals with the
problem of a nonsquare MIMO system that has more
outputs than inputs in path-tracking design.

A path-tracking design using the Davidson–Cole
prefilter applied to square multivariable systems has
been developed [21], so this paper is its extension to
nonsquare MIMO systems. A combined CRONE con-
trol and MIMO-QFT structure have been used to ver-
ify the utility of using a fractional prefilter. The non-
square relative gain array (NRG) [22] is a useful tool
to analyze nonsquare multivariable systems. NRG is

used to determine the interaction measurements. This
approach can facilitate to square down the nonsquare
multivariable systems.

Section 2 briefly presents the MIMO-QFT tech-
nique. A method to control structure selection of
a nonsquare multivariable system is summarized in
Sect. 3. Section 4 outlines the CRONE CSD method-
ology for multivariable plants. A fractional prefilter
optimization is given in Sect. 5. Finally, an example
is employed to illustrate the effectiveness of the pro-
posed methodology to control a nonsquare multivari-
able system in Sect. 6.

2 MIMO-QFT structure

MIMO-QFT structure is given by Fig. 1.
P = [pij ]m×m is a given m×m plant transfer func-

tion matrix. The linear time-invariant P represents the
uncertain plant to be controlled. P should be square
and minimum-phase. The controller G(s) = diag[gii]
reduces the uncertainty effects, and the prefilter matrix
F(s) = diag[fii] leaves the response into the desired
region.

The transfer matrix is presented by (see Fig. 1)

T = [I + PG]−1PGF. (1)

The plant transfer function matrix P must be non-
singular, so

[
P −1 + G

]
T = GF. (2)

The inverse matrix P −1 is decomposed to the form

P −1 = Λ + B, (3)

where Λ is the diagonal part, and B is the anti-
diagonal part of P −1.

Equation (2) can be transformed to this form using
(3):

T = [Λ + G]−1[GF − BT ]. (4)

For a square MIMO system, a 2 × 2 system is
equivalent to 4 subsystems (MISO structure), which
is proved by Horowitz [7, 25] (see Fig. 2).

The elements of the matrix Q are expressed by

qij = det(P )

adj(Pij )
. (5)
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Fig. 1
Two-degrees-of-freedom
control system: MIMO
structure

Fig. 2 Equivalent diagram
for 2 × 2 MIMO system

The elements of the transfer matrix T have the fol-
lowing form:

tij = ωii(νij + dij )

= trij + tdij
, (6)

where

ωii = qii

1 + giqii

,

νij = gifij

and

dij = −
m∑

k �=i

[
tkj

qik

]
, k = 1,2, . . . ,m.

When dij appears as a “disturbance” [3], the MISO
system design becomes a SISO-QFT design. The pur-
pose of this methodology is to permit each loop track
its desired input while minimizing the outputs caused
by disturbance inputs [3].

To eliminate disturbances, there is a given limit to
the responses tdij

[26]. Let a small real positive func-
tion σij (ω) be such that

∣
∣∣∣

1

1 + qii(jω)gi(jω)

∣
∣∣∣ ≤

∣
∣∣∣

σij (ω)

−qii(jω)/qij (jω)

∣
∣∣∣,

i �= j, j = 1,2, . . . ,m. (7)

3 Control structure for nonsquare multivariable
systems

3.1 Nonsquare relative gain array (NRG)

Let P1 an m × n transfer function matrix,

P1(s) =

⎛

⎜
⎜
⎝

p11 p12 . . . p1n

. .

. .

pm1 . . . pmn

⎞

⎟
⎟
⎠ , (8)

where P1 is an m × n process with m ≥ n.
The nonsquare relative gain array is a way to mea-

sure interaction between inputs and outputs. The non-
square relative gain array can be evaluated:

ΛN(s) = P1 ⊗ (
P ∗

1

)T
, (9)

where the operator ⊗ is the Hadamard product, and P ∗
1

represents the Moore–Penrose pseudo-inverse transfer
matrix of P1.

ΛN =

⎛

⎜⎜
⎝

λN
11 λN

12 . . . λN
1n

. .

. .

λN
m1 . . . λN

mn

⎞

⎟⎟
⎠ . (10)

The sum of all elements in each row and each column
is defined as

RS =
[

n∑

j=1

λN
1j ,

n∑

j=1

λN
2j , . . . ,

n∑

j=1

λN
mj

]T

(11)

= [
rs(1), rs(2), . . . , rs(m)

]T
, (12)
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where rs(i) is the sum of the ith row of the NRG, and

CS =
[

m∑

i=1

λN
i1,

m∑

i=1

λN
i2, . . . ,

m∑

i=1

λN
in

]

(13)

= [
cs(1), cs(2), . . . , cs(n)

]
. (14)

Some properties of a nonsquare multivariable gain ar-
ray (NRG) have been described by Chang [22].

– The sum of elements in each column of the NRG is
equal to unity:

cs(j) = 1 ∀j

– The sum of elements in each row of the NRG is be-
tween zero and unity:

0 ≤ rs(i) ≤ 1 ∀i.

– The NRG is invariant under input scaling and vari-
ant under output scaling.

– Any permutation of rows and columns in the trans-
fer function matrix P1 results in the same permuta-
tion in the NRG.

– For an m×1 system, P1 = [p11,p21, . . . , pm1]T , so
the NRG is described as follows:

ΛN = [λ11, λ11, . . . , λm1]T

with

ΛN
i1 = p2

i1∑m
k=1 p2

k1

.

– The elements of the NRG approach infinity as the
nonsquare system matrix P1 becomes nearly singu-
lar.

3.2 Control structure selection

An approach to designing a control system for a non-
square process has been developed by Chang [22].
This approach support the nonsquare system. Con-
sider a nonsquare plant, P1. It can be partitioned into
a square subsystem Ps and a complementary (remain-
ing) subsystem Pr . The control object is to minimize
the sum of square error (SSE) of uncontrolled outputs
when the square subsystem is under perfect control.
The row sum of the NRG (Nonsquare Relative Gain
array) provides some information in this regard.

Fig. 3 Control structure for TDOF MIMO system

For an m × n process with m > n, if we choose n

outputs for control, the system can be partitioned as
shown in Fig. 3.

Then
⎡

⎣
ys

−
yr

⎤

⎦

=
⎡

⎣
Ps

−
Pr

⎤

⎦

× u =

⎡

⎢⎢⎢⎢
⎣

P11 P12 . P1n

. . . .

Pn1 Pn2 . Pnn

− − − − − − − − − − − −
Pm1 Pm2 . Pmn

⎤

⎥⎥⎥⎥
⎦

× u, (15)

where ys is an n × 1 output vector for the controlled
outputs, and yr is an (m − n) × 1 output vector for the
remaining outputs. The aim is to minimize the Sum of
Square Error (SSE) of the uncontrolled outputs for any
variation in the controlled outputs.

The closed-loop square subsystem gains are given
by

ũ = P −1
s ỹset

s . (16)

For all outputs, the steady-state error is

ẽ = (
Im×n − PP −1

s

)
ỹset
s . (17)

Choosing a particular square subsystem, Ps , the
SSE is defined as

SSE =
n∑

i=1

‖ẽ(i)‖2
2 =

n∑

i=1

‖(Im×n − PP −1
s

)
ỹset
s,i‖2

2.

(18)

The row sum of NRG provides an optimal solution to
the problem for two special cases, namely, the case of
n = 1 and the case of m = n + 1, and a suboptimal
solution of other cases [22].
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Case of m = n + 1 A square subsystem is chosen;
the sum of square error is given by

SSE(j) = rs(n + 2 − j)

1 − rs(n + 2 − j)
, (19)

where j means the sum of square error when the j th
subset is chosen to form a square subsystem.

Since the value of the row sum is between zero and
one, a small row sum gives a small SSE in the corre-
sponding square subsystem. The small row sum of the
NRG in the complementary system indicates a small
SSE in the square subsystem. Then, the criterion for
the selection of a square subsystem is to remove the
controlled variable with the smallest row sum in the
NRG. Other cases are well described by Chang [22].

4 3 G CRONE control

The CRONE control approach is a frequency-domain
approach based on fractional-order differentiation.
The objective of this method is how to design a con-
troller which allows robustness of stability degree.
There are three generations describing the control de-
sign approach. Because of various types of the plant
frequency response uncertainties, in this paper we will
deal with the third-generation CRONE control. The
third-generation CRONE control can manage the ro-
bustness/performance tradeoff. For multivariable plant
(MIMO), two methods have been developed multivari-
able [30] and multi-SISO approaches. The open-loop
transfer functions β0i

are used to satisfy some objec-
tives:

– accuracy specifications at low frequencies,
– required nominal stability margins of the closed-

loops,
– specifications on the control efforts at high frequen-

cies.

The third generation of CRONE control system de-
sign (CSD) uses complex noninteger-order integration
over an optimized frequency range [ωA ωB ]. After a
nonlinear optimization method, which permits the ex-
traction of the independent parameters of each open-
loop transfer function, frequency-domain system iden-
tification is used to approximate the fractional con-
troller. All objectives cited above are satisfied by the
open-loop transfer functions. For more detailed infor-
mation about the design of a CRONE controller, we
refer to [31].

The open-loop transfer function is based on

β0i
(s) = Csign(b)

(
1 + s/ωh

1 + s/ωl

)a

×
(

Re/i

{(
Cg

1 + s/ωh

1 + s/ωl

)ib})−q sign(b)

(20)

with

C = ch

[
b

(
arctan

(
ωcg

ωl

− ωcg

ωh

))]
, (21)

Cg =
(1 + (

ωcg
ωl

)2

1 + (
ωcg
ωh

)2

)1/2

(22)

The corner frequencies are placed such that

ωl < ωA < ωcg < ωB < ωh. (23)

When the plant is stable and minimum phase, the
open-loop transfer function that takes into account
(20) is given by

β0ii
(s) = βli (s)β0i

(s)βhi
(s), (24)

where

βli (s) = Cli

(
ωli

s
+ 1

)nli

(25)

and

βhi
(s) = Chi

( s
ωhi

+ 1)nhi
. (26)

The accuracy of each closed-loop is fixed by the
order nli , and the order nhi

allows the elements of the
controller to be proper.

5 Davidson–Cole prefilter optimization

The Davidson–Cole (DC) filter is described by the fol-
lowing transfer function:

F(s) = 1

(1 + τs)η
= 1

(1 + s
ω
)η

, (27)

where η is real and no longer restricted to being an
integer.
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Fig. 4 Unity feedback control loop with prefilter

As an analog or the digital filter, it can be used to
reduce overshoots in position control [33]. It is also
very useful to limit the control effort sensitivity.

Considering Fig. 4, the reference to control the ef-
fort sensitivity transfer function Sref between control u

and input r is given by

Sref(s) = F(s)G(s)

1 + G(s)Q(s)
. (28)

In order to keep the control signal under its maxi-
mum value, the frequency-domain constraint is

∀ω > 0, τ > 0,
∣
∣Sref(jω)

∣
∣ ≤ γ, (29)

where γ = umax
emax

with umax the maximum static con-
straint value on the control signal and emax a constant
signal to apply on the prefilter input.

The desired range of the closed-loop transfer func-
tion is described by two bounds in frequency domain,
which are detailed bellow:

∀ω > 0, τ > 0,
∣
∣TRL(jω)

∣
∣ ≤ ∣

∣trii (jω)
∣
∣ ≤ ∣

∣TRU(jω)
∣
∣.

(30)

These bounds become

∀ω > 0, τ > 0,
∣∣TRL(jω)

∣∣ ≤ ∣∣trii (jω)
∣∣
min, (31)

∣∣trii (jω)
∣∣
max ≤ ∣∣TRU(jω)

∣∣, (32)

with the closed-loop transfer function

trii (jω) = fii(jω)gi(jω)qii(jω)

1 + gi(jω)qii(jω)
. (33)

By considering the integral gap criterion [3] we can
obtain the optimized parameters of the Davidson–Cole
filter. The integral gap analytic expression for step re-
sponse is

Ie ≤ nτ. (34)

For m × m MIMO systems, the integral gap crite-
rion is calculated as a MISO sub-system [3], so in the

case of F = diag[fii], Eq. (34) becomes

Ie ≤ n1τ1 + n2τ2 + · · · + nmτm. (35)

We can find the optimal parameters of (n, τ ) using
the optimization toolbox of MATLAB.

6 Application

Consider a 3×2 MIMO uncertain system. The transfer
function matrix P1(s) is

P1(s) =
⎛

⎝
p11 p12

p21 p22

p31 p32

⎞

⎠ , (36)

pij (s) = kij

1 + Aij s
. (37)

12 cases of plant are given in Table 1.

6.1 Pairing rules

From one to four plant conditions (Table 1), P1(0) is

P1(0) =
⎛

⎝
1 0.5
1 2

0.7 5

⎞

⎠ . (38)

So, the NRG matrix ΛN is described by

ΛN =
⎛

⎝
0.7127 −0.0645
0.4683 −0.0554

−0.1810 1.1199

⎞

⎠ . (39)

The sum of elements of each row of ΛN is

RS = [0.6482 0.4129 0.9389]T . (40)

Observing the RS array (Eq. (40)), it is clear that
the second output, which corresponds to the minimum
value of RS, is the variable to be eliminated. Then, the
rest of ΛN becomes ΛN ′

:

ΛN ′ =
( [0.7127] −0.0645

−0.1810 [1.1199]
)

. (41)

According to the NRG matrix ΛN ′
, the paired vari-

ables are {u1/y1, u2/y3}. The same technique is used
for all other plants. From five to eight plant cases, the
controller structure becomes {u1/y1, u2/y3}, and for
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the remaining plant cases, the variables are paired ac-
cording to the form {u1/y1, u2/y2}.

A multiloop controller is now to be found to control
the square subsystem.

6.2 Controller design

First, as proposed by the MIMO QFT methodology,
the qii (5) elements of the equivalent matrix Q are
computed. Then G11 and G22 of a decentralized con-
troller G are designed by using the SISO CRONE con-
trol design tool.

The twelfth plant is considered as the nominal case.
Some specification must be satisfied for all squared
plants:

– For both outputs, zero steady-state error;
– Settling time as short as possible;
– Robustness according to disturbances and paramet-

ric variations;
– A first overshoot less than 5 %.

Considering these specifications, some elements of
the open-loop transfer matrix can be initialized.

With all these specifications, the initial values for
the parameters of the first fractional open-loop transfer
function are [23, 24]

– ωcg = 6.69 rad/s,
– ωl = 0.51 rad/s ,
– ωh = 7.32 rad/s,
– ‖β01(jω)‖ω=ωr = 0.51 dB,
– nl = 1,
– nh = 2,

and, for the second,

– ωcg = 15 rad/s,
– ωl = 3 rad/s,
– ωh = 75 rad/s,
– ‖β02(jω)‖ω=ωr = 2 dB,
– nl = 1,
– nh = 2.

So, the optimization deals with the open-loop trans-
fer function matrix β0(p):

β0(s) =
(

β01(s) 0
0 β02(s)

)
. (42)

Taking into account all specifications, the optimal
values for the various parameters of the open-loop
transfer function matrix are the following:

– For the first loop, Ch1 · Cl1 = 8.1, a = 0.54, b =
0.24, q = 1, and C = 9.7.

– For the second loop, Ch2 · Cl2 = 7.3, a = 1.2, b =
−0.56, q = 1, and C = 5.

Since

β0(s) =
(

q110(s) 0
0 q220(s)

)
G(s)

with

G(s) =
(

G11(s) 0
0 G22(s)

)
, (43)

the two diagonal elements of G(s) are determined by
the frequency domain:

G11(s) = 516.568(s + 1.38)(s + 0.476)

s(s + 8.24)(s + 2.9)
, (44)

G22(s) = 576.7369(s + 121)(s + 14.1)(s + 2.4)(s + 0.526)

s(s + 95.8)(s + 32.7)(s + 12)(s + 3.58)
.

(45)

6.3 Prefilter synthesis

The tracking closed-loop transfer function is enforced
to be under the following upper and lower bounds:

TRUii
(s) = 0.08s2 + 3s + 25

0.002s3 + 1.015s2 + 7.55s + 25
, (46)

TRLii
(s) = 192

s4 + 19.5s3 + 123s2 + 272s + 192
. (47)

The first step consists of selecting the maximum and
minimum plants. The plants number one and eleven
are respectively the minimum and maximum plants.
Secondly, the ratio umax

emax
= 1 is appointed. The opti-

mized parameters are obtained by minimizing the inte-
gral gap criterion (Eq. (35)) with m = 2 while respect-
ing the frequency bound inequality (Eq. (29)) and the
performance specification (Eq. (30)):

η1 = 1.8, τ1 = 0.2, (48)

η2 = 1.4069, τ2 = 0.202. (49)

Using the CRONE Toolbox [23, 24, 31], the integer-
order approximation of these prefilters is determined:

F(s) =
(

F1DC(s) 0
0 F2DC(s)

)
, (50)
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Fig. 5 (a, b) Closed-loop
tracking response with
classical (1) and fractional
prefilters (2), tracking
references (3)

where

F1DC(s) = 95.6862(s + 497)(s + 47)

(s + 889.1)(s + 75.19)(s + 7.196)(s + 4.646)
,

(51)

F2DC(s) = 0.41778(s + 889.5)(s + 177.1)(s + 44.29)

(s + 362.2)(s + 118.9)(s + 18.81)(s + 3.6)
. (52)

Under all twelve operating conditions, the time do-
main closed-loop tracking responses are illustrated us-
ing fractional- and integer-order prefilters Fcl in Fig. 6.
The classical prefilter is described by the following ex-
pression:

Fcl(s) =
(

Fcl1(s) 0
0 Fcl2(s)

)
, (53)
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Fig. 6 Disturbance step
responses for all plant cases
considering fractional
prefilter

Table 1 Different conditions of uncertain MIMO systems

NO k11 k22 k12 k21 k31 k32 A11 A22 A12 A21 A31 A32

1 1 2 0.5 1 0.7 5 2 2 4 4.5 2 2

2 1 2 0.5 1 0.7 5 0.5 1 1 3 3 2

3 1 2 0.5 1 0.7 5 0.2 0.4 0.5 2 1.5 2

4 1 2 0.5 1 0.7 5 0.7 0.8 0.3 1 2 2

5 4 5 1 2 3 6 1 2 2 4 4.5 2

6 4 5 1 2 3 6 0.5 1 1 3 3 2

7 4 5 1 2 3 6 0.2 0.4 0.5 2 1.5 3

8 4 5 1 2 3 6 0.7 0.8 0.3 1 2 3

9 10 8 2 4 1 7 1 2 2 4 4.5 3

10 10 8 2 4 1 7 0.5 1 1 3 3 3

11 10 8 2 4 1 7 0.2 0.4 0.5 2 1.5 3

12 10 8 2 4 1 7 0.7 0.8 0.3 1 2 3

where

Fcl1(s) = 2.5

s + 2.5
, Fcl2(s) = 2

s + 2
.

From Fig. 5, the closed-loop tracking specifications
are respected, and no overshoots happened. All plant
cases are under upper and lower bounds. The compari-
son between the two types of prefilters shows the ben-
efit of using fractional prefilters like settling time re-
duction.

It is seen from Fig. 6 that disturbances are attenu-
ated, so the specification of disturbance rejection has
been successfully proved.

7 Conclusion

Motion control by fractional prefilter was extended
to nonsquare MIMO systems, which is based on the
MIMO-QFT robust control design combined with the
CRONE control methodology. In terms of control
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structure selection, the NRG method has been used.
After selection of the square subsystem, the CRONE
control methodology is used to find the robust con-
troller. Both parameters of the fractional Davidson–
Cole prefilter are optimized on the multiple SISO sys-
tems taking into account the tracking specifications.
Validation of this method is applied on a 3 × 2 MIMO
system example. Future works will concern the appli-
cation of this study to a MIMO real system and to ex-
tend this method to a general MIMO system with time
delay.
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