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Abstract This paper is concerned with the problem
of stability analysis for neural networks with time-
varying delays. By constructing a newly augmented
Lyapunov functional and some novel techniques,
delay-dependent criteria to guarantee the asymptotic
stability of the concerned networks are derived in
terms of linear matrix inequalities (LMIs). The im-
provement of feasible region of the proposed criteria
comparing with the previous works is shown by two
numerical examples.
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1 Introduction

In the past few decades, neural networks have been
used in many fields due to their extensive applications
such as image and signal processing, pattern recogni-
tion, fixed-point computations, optimization and other
scientific areas [1-8]. Before considering these ap-
plications, it is a prerequisite and essential work to
check whether the equilibrium points of the designed
networks are stable or not since the application of
these networks is heavily dependent on the dynamic
behavior of the equilibrium points. In the applica-
tions of neural networks, it is well recognized that
time delays naturally occur due to the finite switch-
ing speed of amplifies and may cause performance
degradation, oscillation, or even instability of neural
networks. Therefore, many attentions have been paid
to the delay-dependent stability analysis of neural net-
works with time delays [9-30] since delay-dependent
stability analysis is generally less conservative than
delay-independent ones when the sizes of delays are
small.

In delay-dependent stability analysis, the most uti-
lized index for checking the conservatism of stabil-
ity criteria is a maximum delay bound which guar-
antees the asymptotic stability of the concerned net-
works. It is generally used that comparing maximum
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delay bounds with the existing works in other litera-
ture is one of the means of showing the superiority of
delay-dependent stability criteria. It should be noted
that the stability criteria which provide larger delay
bounds means that the feasible region of the stability
criteria is enlarged. Thus, the applicable region such as
state estimation, filtering, synchronization, and other
areas can be increased. The remarkable approaches in
delay-dependent stability analysis are Jensen inequal-
ity [31], model transformation [32, 33], free weight-
ing technique [34], some new Lyapunov—Krasovskii
functional [19, 20, 35, 36], zero equalities [37], recip-
rocally convex optimization [38], and so on. In [29],
a new activation function condition was proposed to
reduce the conservatism of stability criteria for neural
networks with time-varying delays.

Recently, since the delay-partitioning idea which
was firstly proposed by Gu [31], some various meth-
ods to the stability analysis of neural networks with
time delays were proposed in [21-28]. In [21], by di-
viding the delay intervals into two subintervals and
utilizing different free weighting matrices at each
subintervals, improved delay-dependent stability cri-
teria for neural networks with interval time-varying
delays were proposed. In [23], by introducing a tuning
parameter adjusting delay interval, some new delay-
partitioning stability criteria for neural networks with
time-varying delay were introduced. Kwon et al. [26]
proposed some new delay-partitioning method by con-
structing a different Lyapunov—Krasovskii functional
at each delay subintervals. In [28], by utilizing the
methods of [21], exponential stability analysis of neu-
ral networks with interval time-varying delays and
general activation functions was conducted.

Another remarkable approach to reduce the con-
servatism of delay-dependent stability analysis is to
use some new Lyapunov—Krasovskii functional. Thus,
more information of system can be utilized, which can
increase the feasible region of stability criteria. Since
the triple integral form of Lyapunov—Krasovskii func-
tionals were proposed in [35, 36], many researches
(see [27, 28] and [30]) studied the problem of stability
analysis of neural networks by employing the triple
integral terms of Lyapunov—Krasovskii functional.
Very recently, by constructing the quadrable-integral
terms in Lyapunov—Krasovskii functional, new delay-
dependent stability criteria for neural networks with
time-varying delays have been reported in [30] based
on quadratic convex combination. However, the meth-
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ods proposed in [30] have some limitation in increas-
ing maximum delay bounds for guaranteeing asymp-
totic stability of neural networks since system states
and activation functions have not been fully utilized
as augmented vector. Thus, there are rooms for further
improvements in reducing the conservatism of stabil-
ity criteria.

With motivation mentioned above, in this paper,
some improved delay-dependent stability criteria for
neural networks with time-varying delays are be-
ing proposed. By constructing a newly augmented
Lyapunov—Krasovskii functional and proposing some
new zero equalities which have not been proposed yet,
a sufficient condition such that the considered neural
networks are asymptotically stable is derived in terms
of LMIs which will be presented in Theorem 1. In
Theorem 2, based on the results of Theorem 1 and
[39, 40], further improved stability criteria will be
proposed by ensuring the positiveness of Lyapunov—
Krasovskii functional. Through two numerical exam-
ples which were utilized in many previous works to
check the conservatism of stability criteria, it will be
shown that the proposed stability criteria can provide
larger delay bounds than the recent existing results.

Notation R" is the n-dimensional Euclidean space,
and R™*" denotes the set of all m x n real matri-
ces. For symmetric matrices X and Y, X > Y (respec-
tively, X > Y) means that the matrix X — Y is pos-
itive definite (respectively, nonnegative). X denotes
a basis for the null-space of X; I,, 0, and 0,,., de-
note n x n identity matrix, n X n and m X n zero ma-
trices, respectively; || - || refers to the Euclidean vec-
tor norm or the induced matrix norm; diag{---} de-
notes the block diagonal matrix. For square matrix S,
Sym{S} means the sum of S and its symmetric matrix
ST, ie., Sym{S} =S + ST. Symbol * represents the
elements below the main diagonal of a symmetric ma-
trix. X[ 7] € R™*" means that the elements of matrix
X[ f(n) include the scalar value of f(z).

2 Problem statement and preliminaries

Consider the following neural networks with discrete
time-varying delays:
() =—Ay(t) + Wog(y())

+Wig(y(r —h(®))+b ey
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where y(t) = [y1(t), ..., y.()]T € R" is the neuron
state vector, n is the number of neurons in a neural
network, g(y(1)) = [g1(y1(1)), ..., ga(ya()]" € R"
is the neuron activation function, g(y(t — h(t))) =
[g1(1t — h@)), ..., gt — RONIT € R,
A = diag{a;} € R™" is a positive diagonal ma-
trix, Wo = (w?j)nx,, € RV and Wi = (w}))nxn €
R™ " are the interconnection matrices répresent—
ing the weight coefficients of the neurons, and b =
[b1, b2, ..., b,]T € R" is a constant input vector.

The delay, A (t), is a time-varying continuous func-
tion satisfying

0<h(t)<hy,  h@t)<hp, )

where hy is a known positive scalar and hp is any
constant one.

The neuron activation functions satisfy the follow-
ing assumption.

Assumption 1 The neuron activation functions g; (-),
i=1,...,n, with g;(0) = 0 are continuous, bounded
and satisfy

k.—fwfkiﬂ u,veR,

! u—v

u#v,i=1,...,n, (3)

where kl.+ and ki_ are constants.

Remark 1 In Assumption 1, ki+ and kl._ can be allowed
to be positive, negative, or zero. As mentioned in [19],
Assumption 1 describes the class of globally Lipschitz
continuous and monotonic nondecreasing activation
when k;” = 0 and ki+ > 0. And the class of globally
Lipschitz continuous and monotonic increasing acti-
vation functions can be described when kl-+ >k, >0.

For simplicity, in stability analysis of the neural
networks (1), the equilibrium point y* = [y}, ..., y,’{]T
whose uniqueness has been reported in [11] is shifted
to the origin by utilizing the transformation x(-) =
y(-) — y*, which leads the system (1) to the follow-
ing form:

2(1) = —Ax(0) + Wo f (x(1)) + Wi f (x(1r = h(1))) W

where x(t) = [x1 (), ..., x,(t)]" € R" is the state vec-
tor of the transformed system, f(x(¢)) = [ f1(x1(2)),
oo SO and G (0) = g (@) + D) —
gj(y.’/‘f) with f;(0)=0(j=1,...,n).

It should be noted that the activation functions f;(-)
@ =1,...,n) with f;(0) = 0 satisfy the following
condition [4]:

< fi(u) — fi(v) <kt

; = ;o u,veER,
u#tv,i=1,...,n. 5)
If v =01in (5), then we have
kffﬁ(u)fk,-*, Vu#£0,i=1,...,n, ©6)
u

which is equivalent to

[fi ) =k u][ fi(w) — ktu] <0,

The objective of this paper is to investigate the delay-
dependent stability analysis of system (4) which will
be conducted in Sect. 3 via some newly augmented
Lyapunov—Krasovskii functionals.

Before deriving our main results, the following
lemmas will be utilized in deriving the main results.

i=1,....,n. (7)

Lemma 1 [41] For a positive matrix M, scalars hy >
hy > 0 such that the following integrations are well
defined, it holds that

(a)
t—hy
—(hy —hyr) xT(s)Mx(s)ds
t—hy
t—hy, T t—hy,
5—(/ x(s)ds) M(/ x(s)ds),
o e ®)
(b)
t—hr t
—((h%, —hi)/Z)/ / xT()Mx W) duds
t—h K
t—hp pt ' T
S—(/ / x(u)duds)
t—hy s
t—hy pt
XM</ / x(u)duds), O]
t—hy s
(©)

=((ngy = h2)/6)

t—hy pt pt
x/ f f xT(v)Mx(v)dvduds
t—hy s u
t—hy, t t
5—(/ f/x(v)dvduds)
t—hy Js Jv
t—hr t t
XM(/ / / x(v)dvduds). (10)
t—hy Js Ju
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Lemma 2 [42] Let ¢ € R", @ = &7 ¢ R™", and
B € R™ " such that rank(B) < n. Then, the follow-
ing statements are equivalent:

(1) ¢"@¢ <0, Be =0,¢ #0;
(2) (BHT®B+ <0, where B is a right orthogonal
complement of B.

Lemma 3 [39] For the symmetric appropriately di-
mensional matrices 2 > 0, E, and matrix A, the fol-
lowing two statements are equivalent:

(1) E—-ATQRA<0;

(2) There exists a matrix of appropriate dimension ¥
such that

= T T T
[u+A v+ola @ }<0. (11

'4 -2

3 Main results

In this section, we propose new stability criteria for
system (4). For the sake of simplicity of matrix and
vector representation, ¢; (i =1,2,...,16) € RI6nxn
which will be used in Theorems 1 and 2 are de-
fined as block entry matrices. (For example, e3 =

[0,,, 0y, I,,, 0, ..., 0,17.) The other notation for some
———

13
vectors and matrices is defined as:

@) = [XT(I),xT(t —h(@®)), x"(t —hy),

t
@), #7 (@t — hy), xT(s)ds,
t—h(t)

t—h(t) t t
/ xT(s)ds,f fxT(u)duds,
t—hy t—h@t) Js
t—h(t) pt
/ / xT(u)duds,fT(x(t)),
t—hy s

fT(x(t =), 1 (xt = hy)),
t t—h(t)
/ S (X(S))dsf T (x())ds
t—h(t) —
/ /f x(u) duds
t—h(t)
—h(1) T
/t /fT(x(u))duds] ,
t—hy s
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ot(t)—[x (), x (t—hy)/ X (s)ds

/ /x (u)duds/ fT(x(s))ds
t—hy Js hy
T
f / fT(x(u))dudsi| ,
t—hy Jt—hy

B0y =[xT ). 5T @), T (x®)]"
t
y(t,s)= [xT(s),fT(x(s)),/ %7 (u) du,

t t T
/xT(u)du,/ fT(x(u))du] ,

= [_Aaonaona _In,onaonaonaonaona WOa Wla
On’On:On,OnvOn]v

P; P 0, Py P 0,
Pi=|P 0, 0], Pr=| P 0, 0y,
L 0n 0, O, _ | 0n 0, Oy _
i P30y ] [ 0, Py 0, ]
Pi=| P 0, 0], Pa=| Py 0, 0y,
L 0n 0, O, _ | 0n 0, Oy _
T0, h(t)l, 0, 0, (hy —haN, 0,7"
0, —I, 0, Oy 0y On
On On On On =1 n On
A[h(l)] = In On On On On On
0w 0, Oy I On On
0n 0Oy I, Oy On On
L0z 0n 0y Oy On I |

x [e1, e6. €7, €8, €9, €15, €16]" ,
Tiney) = Sym{h(t)ei (Gzes + Gase] + Gaselp)}
Dojney = e1 (huh(t) Py + hy (hy — h(t)) Py)e]
Z1 =Sym{[e1, 3, e6 + €7, €5 + €9,
e13 e, e15 +e16lR
X [es, e5,€1 — €3, hyer — eq — e7, €10 — €12,
hyeio —e13 —eis]” },

85 =le1, es, e10lN ey, es, e10]”

T
— [e3, e5, e12] N e3, e5, e12]

—i—Sym{eloEeZ —eleEeZ—i—eleAeZ
—eler4T},
- Gi1 G2 T
Ey=leq,e ep, e
3= [e1, e10] [Gsz G221|[ 1, €10]

— (1 —hp)lez, er1,e1 — ez, €6, €13]

T
x Glez, e11,e1 — €2, e, €13]
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+ Sym{es(Gi3e; + Guae] + Gisefy)
+ 613(G23e1 + G24e]T + G25e]T0)
+ (—e6)(G33e] + Gaae] + Gaselp)
+e3(Glses + Gasel + Gusel)
+e15(Gised +Gise] + Gssely)]
84 =hilel, es, e10]1Qiler, eq, e10]”
—les, e1 —e2, €13, €7, €2 — €3, €14]
y [Ql -1;7’1 Si ]
S Q1+ P2
X [eg, e1 — €2, €13, €7, €2 — €3, e14]",
Es = ((h%//2)2)[€1, e4, e101Qaler. es. e10]”
= ((8/6))es 03¢l — [ /2)er — s —eo]
x 03[(h}/2)er —es —eo]
E7=ei(hy Pr)e] —ex(hy P)e3 +ex(hy Pr)es
—es(hy Py)el,
3
O =Y {-2e;KnH;Kpel
i=1
+Sym{e; (K + Kp)Hied,;} —2e91iHied,;},
2
2= Z{Sym{[€9+i —e10+i — (ei — €ix1) K|
i=1

()

T
X Hiy3[eoyi —e104i — (ei —eiy)Kp] 1},
7
iy = Z Ei + N + Vomney + O + £2,
i=1
T
Piien = (1) T
T
+Sym{(I')" Al ¥ -
(12)

Now, we have the following theorem.

Theorem 1 For given scalars hy > 0, hp, and di-
agonal matrices K, = diag{k{", ..., k;} and K,, =
diaglk, , ...,k }, system (4) is asymptotically sta-
ble for 0 < h(t) < hy and fl(t) < hp, if there ex-
ist positive diagonal matrices ¥ = diag{oy, ..., oy},
A = diag{éy,...,8,}, H; = diag{hy;,...,hp} (@ =
1,...,5), positive definite matrices R € [ROnx6n
N€R3”X3n, g — [Gij] e RSnxSn’ Ql e R3n><3n’
Q, e R¥*31 03 € R™™  any matrices Sy € R3*3",
Sy e R3mx3n ¢ ROWX1I5n g any symmetric matri-
ces P, e RV (i =1,...,4), satisfying the following
LMIs:

[ Dpiy=0) o gT < ]
2+(4/hy)P3 2
| ¥ B [ sy Qz+<4/hm7>4]
<0, (13)
[ Piny=hy] w’
W _ [Qz+(4/hU)P3 S ]
| ST Qo+(@/hy)Ps
<0, (14)
[ Q1 + Py Si
>0, 15
ST+ Pz] = {13)
[ Qo+ 4/ hy)Ps S
>0, 16
T 0+ @/hppy ) = 1O

where @1y, Pi (i=1,...,4), ® and I' are defined
in (12), and I'* is the right orthogonal complement
of I'.

Proof Let us consider the following candidate for the
appropriate Lyapunov—Krasovskii functional:

6
V()= Vi), 17

i=1

where
Vi(t) = o (HDRa(t),

t
Va(t) = / BT ()N B(s)ds

t—hy

n xi (1)
+22<0,'/ (f,-(s)—kl._s)ds
i=1 0
xi (1)
+5,~/ (kfs—fi(s))ds)
0

t
v3<t)=/ v, )Gy, s),
t—h(r)

t

t
Vi) = (hyy) / B ()1 ) du ds,

t—hy Js
t t t
=052 [ [ [ 0pwdvduds
t—hy Js Ju
and

Ve(2)
= (hy/6)

t t t t
x / f / / T (W) 03x(W) drdvduds.
t—hy Js Ju Jv

It should be noted that
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B x(1) 7 x(t)
x(t —hy) x(t —hy)
Sy x(s)ds Sn XY ds + [0 x(5) ds
«O=\ g x@duds | T S [ x@yduds + [500 7 x () duds
oy FG())ds S Fa@)Yds + [0 fx())ds
Ly S f @) duds | S [ F ) duds + ft’_*hh;” J! fe@) duds |
=Te1,e3, €6+ €7, 5 + €9, €13 + e1a, €15 + e161” (1), (18)
and
i %(1) 1T x(t) ]
Xt —hy) x(t —hy)
co x(t) —x(t —hy) _ x(t) —x(t — hy)
a() = hyx(t) — ftl_hu x(s)ds - hyx(t) — j;t_h(t) x(s)ds — ftt:hhf)x(s) ds
Fx@®) — fx@ —hy)) f&x@) = f&x@ —hy))
L hu f@@) = [, fODds | |y fa@) = [y fa)ds — [0 fx(s)ds
= [es, e5, €1 — €3, hye) — eq — e7,e10 — e12, hyelo — e13 — e1al” £(2). (19)
From (18) and (19), Vi (t) can be represented as
Vi) =2a" (ORa(t) =¢" (1) E1¢(). (20)
Also, from the following equation,
B(1) = { } = [e1., es, e10]” ¢ (1), @21
f
the time-derivative of V,(¢) can be calculated as follows:
Vo) =BT (ONB(t) — BT (t — hy) N B(t — hy)
+2[f (x(0) = Knx ()] Zi(0) + 2[Kpx (1) — f(x(0))]" Ak ()
=T E®). (22)

Calculation of V3(¢) leads to

V(t)—d
ST

@ Springer

x(s) x(s)
fx(s)) fx(s))

' "X (u)du "X (u)du
s g K ds
t—h(t)

J!x(u)du ! x(u) du
S f @) du ! f @) du

T

x(s) x(s)
f(x(s) f(x(s))
f;)'c(u) du G f;)'c(u)du x it(t)
[l x(u)du Jix(u)du
S f(x(w)) du Sy Fe@)ydu ]l _,
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x(s) T x(s)
Sfx(s) f(x(s))
B fst;'c(u)du G fsfx(u) du x i(l _ h(t))
fstx(u) du f;x(u) du dt
fy fx@)du S fa@ydudl
x(s) r x(s)
. fx(s)) fx(s))
+/ d f;)'c(u) du G f;)'c(u) du ds
=) dt fstx(u) du f;x(u) du
JifGe))du JifGe))du
0 17 T x0 x—hwy " x(t = h(t)
fx@) fx@) J(x@—h())) S (x(@ —h(1)))
< 0 g 0 —(I—=hp) | X@®) —x@—h@) | G| x@)—x(@—h())
0, 0, ftih(t)x(s) ds f,l,h(,)x(s) ds
0, 0, Jne F () ds Jp F () ds
) 1 o,
, fGx(s) 0,
+/ 2| Lxwdu | gl i@y | ds
t—h(®) [ x(u)du x(1)
J!f (e (u)) du S (x()

G G
=" {ler. ero] [Gi G;ﬂ le1, er0]”

—(1- hD)[ez e, e1 — ez, €6, e131Gler, e11, e1 — 2, e6, e131" }¢ (1)

+2 x(s) ds) Gr3i (1) + Grax (1) + Gus f (x (1))

T
+2( h(t)x (1) - x(s) ds) (G3i(1) + Gaax (1) + Gas f (x (1))

t h(t)

+2</ o EIO) dS)(Gz3fC(t)+Gz4X(t)+stf(X(t)))
t t

T
+2 / /x(u)duds) (G34x(t)+G44x(t)+G45f(x(t)))
t—h(t)

+2</ h(>/ f(x(u))duds) (Gis(0) + Gisx(r) + Gss f (x(1)))
t 1) Js

=T (@& + Nipa)e (). (23)

Inspired by the work of [37], the following two zero equalities with any symmetric matrices P; (i = 1,2) are
considered:

t
= (hU){xT(t)Plx(t) —xT(t = h@®)Pix(t — h(0)) — 2/ xT(s)Plfc(s)ds}, (24)
t—h(t)

t—h(t)

=(hU){xT(t—h(t))sz(t—h(t)) —xT(t—hU)sz(t—hU)—Z/ xT(s)Pz)'c(s)ds}. (25)
t

—hy
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Furthermore, the following two zero equalities with symmetric matrices P; (i = 3, 4) are newly introduced:

t
=(hU){xT(t)(h(t)P3)x(t)—/ xT(s)P3x(s)ds — 2 / T(u)P3x(u)duds} (26)
t—h(t)

t—h(t)
t—h(t)

t—h(t)
0= (hU){xT(t)((hU —h(t)) Ps)x(t) — f xT(s)Pyx(s)ds — 2/ / xT (u) Pyx(u) du ds}. 27)
t t—hy N

—hy
Summing the four zero equalities presented by Eqs. (24)—(27) leads to

t—h(t)

t
0=§T(t)(E7+T2|h(t)])§(t)—2hU/ h()xT(s)Plic(s)ds—ZhU/ . xT(s)Prx(s)ds
t t t—hy

t
—hy / +7 (5) Py (s) ds — 2hy / o7 () Pyx () du ds
t—h(t)

t—h(t)

t—h(t) t—h(t)
—hU/ xT(s)P4x(s)ds—2th / xT (u) Pyx (u) du ds. (28)
t t—hy K

—hy

By calculating V4(t), it can be obtained that

t
Va) =hi BT QB0 — (ho) | BT(5)QiB(s)ds. (29)
t—hy
With the consideration of the four integral terms in Eq. (28), if the inequality (15) holds, then an upper bound of
the last term in Eq. (29) can be obtained by utilizing reciprocally convex optimization approach [38]:

t—h(t)
x () Pyi(s)ds — 2hy / 27 (5) Poi (s) ds

t—hy

—(/w)/ g (S)Q1/3(S)ds—2hU/

t—h(t)
t t—h(t)

—hU/ xT(s)P3x(s)ds—hU/ xT(s)Pyx(s)ds
t—h(t) t

_hU

t Py P 0y t—h(t) Py Py 0,
< _hU/ . Br@ | Qi+ | P 0, 0, |BGs)— hU/ BT | Qi+ | P 0, 0, |]|BG)
t—h(t) t

0, 0, 0, —hu 0, 0, 0,
Py P>
_ [Fesods Ta+n s S Bs)ds
= ftt /’l(l)‘B(s) ds S]T Ql +P2 ftt_—h/’llﬁl)ﬂ(s) ds
i ftfh(,)x(s) ds 1" i fltfh(t)x(s) ds
x(t) —x(t — h(@)) x(t) —x(t — h(t))
_ flt h(r) f(x(s))ds I:Ql + P S :| f,t h(t) f(x(s))ds
= r— h(t)x(s)ds Sir Ql +732 11— h([)x(s)ds
x(t —h(t)) —x(t —hy) x(t —h(t)) —x(t —hy)
Jom0 fe(snds | SN pes))ds

= _é-T(Z‘){[eG,e] — ey, €13, €7, — €3, e14] |:QIS‘?,P] Qlipz]

X [es, e1 — €2, €13, €7, 2 — €3, e14]}2 (1), (30)

where S is any matrix.
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Thus, from (29) and (30) we have
. t t—h(r)
Va(t) — 2th xT(s)Pix(s)ds — 2hU/ xT(s) Pax(s)ds
t—h(t) t—hy
t t—h(t)
— hU/ xT(s)P3x(s)ds — hU/ xT(s)Pyx(s)ds
t—h(t) t

_hU

<" & ). 31

By adding the two integral terms —2hy f[t_h(t) [ xT (w)P3x (u) du ds and —2hy j;t:hhlf') S xT () Pax (u) du ds to
the results of V5 (1), if the inequality (16) holds, then it can be obtained that

t—h(t)
vs(z)—th/ / T(u)P3x(u)duds—2hU/ / xT(u)Pax(u) duds
h(r)

= (h}/2)*BT (1) Q28(t) — (h} /2) / ﬂT(u)Qzﬂ(u)du ds

t—hy Js

P P 1—h(t) pt
—2hU/ / xT(u)ng(u)duds —2hU/ / xT(u)P4x(u) duds
t—h(t) Js t—hy s

0, Py 0,
— (13,287 (1) Q2B (1) — h%,/zf /ﬁ W) 2+(4/hU)|: 0, on} Bu) duds
1=h() 0, 0, O,
_\/_J
P3
t—h(t) pt 0, Py 0O,
) / / 87w | @+ @my | e 00 0y || By duds. )
t—hy s On On On
—_—
Pa

By utilizing Lemma 1 and reciprocally convex optimization approach [38], it can be confirmed that

—(n/2) f e / BT (w)(Q2+ 4/ hy)P3)Bw) duds
t—n(t s
t—h(t) pt
—(h%]/Z)/ / ﬁT(M)(Qz—i-(4/hu)734),3(u)duds
(h%]/Z)(2/h2(t)( fﬁ(u)duds) (Qz+(4/hU)7>3< /ﬂ(u)duds)
t—h(t) t—h(t)
t—h(t) t—h(t)

—(h%,/2)(2/(h%,—h2(t)))</ /ﬂ(u)duds) (Q2+ (4/ hy)Ps) (/ /ﬂ(u)duds)

[ S S B duds [ S5 (Do + 4/ hu)Py) O3
O [ () duds 030 = (@2 + 4/ hy)Pa)
ft h(z)f Bu)duds
t ha)f Bw)duds
_ [ S [ peoduds [Q2+(4/hu)733 S ] Sy L B duds .
=L [ By duds st Qo+ @/ ho)Pa || [0 17 p(u) duds

where S; is any matrix and n(t) = hz(t)/h%].
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It should be noted that

I B [ Bw)duds
t—h(t)
ft f Bw)duds

B ft—h(t) f‘Y x(u)duds
h(O)x (@) = [y X(5)ds
f; ho) f’f(x(u))duds
- f: h(')f x(u)duds
(hy — h(@)x(@) — [0 x(s) ds
flt h(t)f f(x(u))duds
. x(1) i
_On h® I, 0, 0, (hy—h@®)I On_ ./;l—h(z)x(s) ds
On —1 On On On On t—h(t) d
0p  0n 0y O, A On e x(s)ds
=15 0, 0, 0, 0, 0, Si—ny Js x) duds
0, 0, 0, In 0y, 0, f: h(t)f x(u)duds
0, 0, I, 0O, 0n 05
[0, 0, 0, 0, 0, ]| e Jo £ @) duds
s o g Fx))duds |
_ -T
On h(t)l On On (hU - h([))ln On
0, -I, 0, 0, 0y, 0,
0, 0, 0, O, -1, 0,
=| I 0, 0, 0, 0, 0y, [e1, eq, €7, €3, €9, €15, el6]T€(t)
0, 0, 0, I, 0, 0,
0, 0, I, 0, 0, On
L Op 0, 0, O, 0, I
= A€ (@).
From (32) to (34) the following inequality holds:
t t—h(t) pt
Vs(1) — 2hy / xT () P3x (u) du ds —2hU/ / xT () Pyx (u) du ds
t—h(t) t—hy s
O+ (4/hy)Ps S
< Hl{ &= —A t).
¢ ()( 5 (h()] [ ST Oy + (&) hy)Ps | A1 ()

By utilizing (c) in Lemma 1, the estimation of Ve can be

t t
V6(t)—(h§]/6)2 T(1)Q3x(t) — (h3; /6) / / / T (v)03x(v)dvduds
t—hy Js Ju

T t t pt
(h?j/6)2 T(t)Q3x(t)—< . /ffc(v)dvduds) Q3<f ) //k(v)dvduds)
t—hy Js u t—hy Js u

= (h}/6)° " (1) Q3%(1)

t t t—h(t) pt T
— <(h%,/2)x(t)—/ / x(u)duds—/ f x(u)duds>
t—h(t) Js t—hy K
t t t—h(t) t
X Q3<(h%]/2)x(t) —/ / x(u)duds —/ / x(u)duds)
t—h(t) Js t—hy s

=T ()6t (1).
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From (6), for any positive diagonal matrices H; = diag{h;, ..., hpiy(i=1,..., 3), the following inequality holds:
0< =2 hu[fi(xi()) = k7 xi O] fi (xi (1) — ki xi ()]
i=1
— ZZhiz[fi (x,- (t — h(t))) -k x; (t - h(t))][ﬁ (x,- (t — h(t))) — kl*x,- (t — h(t))]
i=1
- ZZhB[fi (xi(t = he)) — k7 xi(t — ho) [ fi (xi (¢ — hy)) — k" xi (1 — hy)]
i=1
=T mecw, 37)
where @ is defined in (12).
Inspired by the work of [29], from (5), the following conditions hold:
< f ) = il —h@)
YT () —xit—h@) T
kf<tﬁ@ﬂt—hUD)—f}@Kt—hUD<<k%’ (38)
YT xi(t—h@) —xi(t —hy) -
i=1,..., n.
Fori=1,..., n, the above two conditions are equivalent to
[fi (ki (D) = fi(xi (1 = h (D)) = ki (xi (1) = xi (r = h(D)))]

X [f,- (x,- (t)) — fi(xi (t — h(t))) — kl*(xl- t) —x; (t — h(t)))] <0, 39)
[fi (xi(t = h(®))) = fi(xit — hv)) — ki (xi (t = (1)) — xi (t — hp))]

x [fi(xi(t = h®)) = fi(xi(t — hv)) =k (x; (t = h(®)) — xi(t — hy))] <O. (40)
Therefore, for any positive diagonal matrices H; = diag{hy;, ..., hpi} (i =4,5), the following inequality holds:
0= =2 {hufi(xi®) = fi(x:(t = h(®))) — ki (x:(1) = xi (t = h()))]

i=1
x [filxi ) = filxi(t = @) =k (xi (1) = xi(t = h(0))) ]}
=23 {his[fi(xi(t = h(®))) = fi (xi (¢ — he)) — ki (xi (t = h(®)) — xi(t — hy))]
i=1
x [ fi (xi(t = h(@®)) — fi(xi(t — ko)) — & (xi (£ — h (@) — xi(t — hy))]}
=T ()R2¢). (41)

From (17)—(41) and by applying the S-procedure from Ref. [43], an upper bound of V()= Z,’G: 1 Vi(¢) with the

addition of (28) can be written as

. t t—h(t)
V() + 1087 + Vo)) (1) — 2hy / xT(s)Px(s)ds — ZhU[ xT(s)Pax(s)ds
t—h(r) t—hy
t t t
—hU/ xT(s)P3x(s)ds —2hU/ / xT(u)P3x(u) duds
t—h(t) t—h(t) Js

t—h(t) t—h(t) pt
—hU/ xT(s)P4x(s)ds —ZhU/ / xT(u)P4x(u)duds
t t—hy K

—hy
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7

< CT(t){Z i + Yitay) + Vatn) + O + $2
i=1

iy

AT [Q2+(4/hU)P3 S
[h(1)]

By Lemma 2,

Q2+ @4/ hy)P;3 S
D+ (4/hU)774] AUZ([”) ¢ <0

¢ (H[hm] = Aoy [ SI

with 0 = I"¢(¢) is equivalent to

Sy Q)+ (4/hU)7>J Ao }C(t).

(42)

Q> + 4/ hy)P S
(r)" (H[h(tﬂ —Aﬂu)l[ ’ SiT v Q2+(4;hU)P4i|A[h(t)])(FJ—> <0. 43)

Then, by Lemma 3, the condition (43) is equivalent to the following inequality with any matrix ¥ € R%* 15

(IS o) I+ Sym{(THT Al #)

Pl

lI/T
<0. (44)

W _ [ Q+@4/hy)P;3 S ]

8T Q+@/hy)Pa

The above condition is affinely dependent on h(%).
Therefore, if inequalities (13) and (14) hold, then in-
equality (44) is satisfied, which means that system
(4) is asymptotically stable for 0 < h(¢) < hy and
h(t) < hp. This completes our proof. (]

Remark 2 Unlike the previous works [11-30], the new
augmented vector ¢ (¢) defined by Eq. (12) was utilized
in Theorem 1 which includes the state vectors such as
t t t—h(t) rt

ftfh(t) J; f(x(u))duds and ft—hu [5 fx)duds.
These state vectors have not been utilized as an ele-
ment of augmented vector. Furthermore, Vi, V3, Vg4,
and V5 have not been proposed yet in the previous
works to stability analysis of neural networks with
time-varying delays, which is the main difference be-
tween Theorem 1 and the methods in other literature.
Thus, some new cross terms which may play a role
to reduce the conservatism of stability condition were
considered in stability criteria of (4).

Remark 3 1t should be noted that the four zero equal-
ities (24)—(27) are added in the results of V() as
shown in (42). Inspired by the work of [37], the
two zero equalities in Egs. (24) and (25) are pro-
posed and utilized in Theorem 1 to enhance the
feasible region of stability criterion. As presented
in Egs. (24) and (25), the quadratic terms such as

@ Springer

(hy)xT (1) Prx(t) — xT(r = h(1)) Pix(t — h(1))) and
(hy) (T (t = h (1)) Pax(t — (1)) = xT (t — hy) Pax (1 —
hy)) play a role in enhancing the feasible region of
stability criterion. Also, as shown in (30), by merging
the two integral terms —2(hy/) flt_h([) T (s)P1x(s)ds
and —2(hy) [{7" 57 (s)Pyx(s)ds into the terms

—(hU)ftt—h(t)ﬁT(S)Qlﬂ(S)ds and _(hU)ftt__th(l) y

BT (s)Q1B(s)ds, respectively, the conservatism of
stability criterion can be reduced. Furthermore, the
two zero equalities (26) and (27) are proposed for the
first time to increase the feasible region of the crite-
rion. These zero equalities can be obtained from the
fact that [' , [! f(u)duds = hf(t) — [, f(s)ds
with f(z) = xT(#)Px(¢). The terms —(hu)ftih(t) X

2T ($)Psx(s)ds and —(hy) f{ 0 2T (5) Pax(s) ds

are merged into the results of V4(t) and the terms
—2(hU)fj_h(,) [1 T (w)P3x(u)duds and —2(hy) x

f__,f’;t) st T (u)Psx(u)duds are merged into the re-

sult of V5(¢) as shown in (32).

Remark 4 In the proposed Theorem 1, the positiveness
of V() is included such as R >0, N> 0, ¥ > 0,
A>0,G>0, 91 >0, @ >0, and Q3 > 0. These
conditions guarantee the positiveness of each V;(¢)
(i =1,...,6). However, as mentioned in [39] and
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[40], by incorporating some functional of V (), the
positiveness of V (¢) can be relaxed which will be in-
troduced in Theorem 2.

For the sake of simplicity of matrix and vector rep-
resentation in Theorem 2, ¢; (i =1,...,6) € ROnxn
which will be used are defined as block entry matri-
ces. (For example, e3 = [0, 0,, I, 0, Oy, 0,17.) As-
sume that N >0, ¥ >0, A>0,G >0, Q; >0,
Q5 > 0, and Q3 > 0. Then, V(¢) has the following
lower bound:

t
V(1) >aT(t)Ra(t)+/ BT (HNB(s)ds
t—hy

t t
+hy / / BT W) QiBw) duds.  (45)
t—hy

N

By (a) in Lemma 1, the lower bound of [ hy BT () X
N B(s)ds can be obtained as

t
/ BT ()N B(s)ds
t—hy

t T t
z(l//w)(/ h ﬂ(S)dS> N(/ h ﬁ(s)ds>
T

fttth x(s)ds
=(1/hy) | x(t) = x(t — hy)
Sy Fx(s))ds

ftt_hux(s) ds
x N | x(t) —x(t —hy)
Jpy F () ds

= (1/hp)a’ (t)([e3. &1 — &2, &5]

x N(é3, &1 — &, &1 )au(t). (46)

By utilizing (b) in Lemma 1, the lower bound of the
integral term hy fzt—hu fst BT (u)Q1B(u)duds can be

t t
hU/ [ s duds
t—ny Js

t t T
2(2/hu)</h /ﬁ(u)duds)
t— s
t Y t
x 9 </ / ,B(M)duds)
t—hy Js

ftt—hU f;x(u) duds
hyx (1) —f;x(s)ds
frtth [! f(x@)) duds

=(2/hv)

ftt—hU f;x(u)du ds
x Q1| hyx(t)— [} x(s)ds
ftt—hu fst f(x))duds

= @2/ hy)a’ (t)([8s, huér — &3, &)
x Qi[é4, hyéy — &3, )" )a(?). 47)
Therefore, if the following inequality holds,
R+ (1/hy)es, &) — &, 85N (63,61 — &2, 851"
+ (2/hy)les, hye, — e3, egl
x Q1[es, hyeé) — &, )" >0, (48)

then the lower bound of V (#) can be guaranteed to be
positive. Thus, by deleting the positiveness of the ma-
trix R and adding the inequality (48) into stability con-
dition of Theorem 1, we have the following theorem.

Theorem 2 For given scalars hy > 0, hp, and di-
agonal matrices K, = diag{k;, ..., k) and Ky =
diag{k, , ...,k }, system (4) is asymptotically sta-
ble for 0 < h(t) < hy and h(t) < hp, if there ex-
ist positive diagonal matrices ¥ = diag{oy, ..., 0},
A= diag{al, ey 5,,}, H,‘ = diag{hl,-, ey hm'} (i =
1,...,5), symmetric matrices R € ROnx06n positive
definite matrices N' € R¥*3 G = [Gij]l e R3nx5n
Q€ R3nx3n’ Q) € R3n><3n’ 03 € R*n any matri-
ces S e R3S, e R3W3n @ e RO>151 and any
symmetric matrices P; € R"*" (i =1, ...,4), satisfy-
ing the LMIs (13)—(16) and (48) where @1y}, Pi (i =
1,...,4), ® and I" are defined as in (12), and rtis
the right orthogonal complement of .

Remark 5 When information about the upper bound
of /z(t) is unknown, then Theorems 1 and 2 can pro-
vide delay-dependent stability criteria for 0 < h(t) <
hy by not considering V3 (¢).

4 Numerical examples

In this section, two numerical examples are introduced
to show the improvements of the proposed methods. In
examples, MATLAB, YALMIP 3.0 and SeDuMi 1.3

are used to solve LMI problems.

Example 1 Consider the neural networks (4) where

1.2769 0 0 0
A= 0 0.6231 0 0
0 0 0.9230 0 ’
0 0 0 0.4480
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Table 1 Delay bounds &y with different 2 p (Example 1)

Table 2 Delay bounds iy with different 2 p (Example 2)

Method hp Method hp
0.1 0.5 0.9 Unknown or >1 0.8 0.9 Unknown or >1
[23] (p=0.6) 3.3574 25915 2.1306 2.0779 [20] 2.3571 1.6050 1.5103
[20] 34183 2.5943 2.1306 2.0770 [21] (m =2)? 2.8634 1.9508 1.7809
[22] (m =2)* 3.5546 2.6438 2.1349 - [27] (m =2)* 3.0604 1.9956 1.7860
[21] (m =2)*  3.6402 2.6364 2.2202 2.1464 [28] (m =2)* 3.0640 2.0797 1.9207
[26] (m =2)* 3.8839 2.7758 2.3647 2.2487 [24] (m =2)* 3.1150 2.1153 1.3189
[25] (m=2)* 391 2.79 2.33 2.2047 [30] 3.1409 1.6375 -
[29] 3.7857 3.0546 2.6703 2.6575 [26] (m =2)? 3.3749 2.3329 2.0830
Theorem 1 4.0627 33227 3.0124 2.9994 [29] 3.7174 2.8339 2.8222
Theorem 2 4.1054 3.3402 3.0334 3.0263 Theorem 1 4.4794 3.4350 3.4170
Theorem 2 4.5940 3.4671 3.4504
4m is delay-partitioning number
4m is delay-partitioning number
[—0.0373 0.4852 —0.3351 0.2336 |
Wo = —1.6033  0.5988 —0.3224 1.2352 In Table 2, when hp is 0.8, 0.9, or unknown (or larger
0.3394  —0.0860 —0.3824 —0.5785 |’ than one), the comparison of maximum delay bounds
| —0.1311 0.3253 —0.9534 —0.5015 | obtained in Refs. [20, 21, 24, 26-30] and the results of
© 0.8674 —1.2405 —05325 0.0220 ] our proposed methods are listed. From Table 2 it can
00474 —09164 0.0360 0.9816 be confirmed that Theorem 1 significantly increase the
W= 1.8495 26117 —03788 08428 |’ feasible region of stability criterion. Also, one can see,
—2.0413  0.5179 11734  —0.2775 Theorem 2 provides larger feasible region than that of

K, =diag{0.1137,0.1279, 0.7994, 0.2368},
K, =diag{0,0,0, 0}.
(49)

When & p is 0.1, 0.5, 0.9, or unknown (or larger than
one), the obtained maximum delay bounds applying
Theorems 1 and 2 to the system (4) with the parameter
(49) and the results in recent works of [20-23, 25, 26,
29] are listed in Table 1. It can be seen that the pro-
posed Theorem 1 provides larger delay bounds than
those of the methods with the delay-partitioning ap-
proach. Also, as mentioned in Remark 4, Theorem 2
improved the feasible region of stability criterion of
Theorem 1.

Example 2 Consider the neural networks (4) with the
parameters

2 0 11
a=fo 2 wel 4]

W1=[0'88 1}, K, = diag{0.4,0.8}, (50)

1 1
K,, = diag{0, 0}.

@ Springer

Theorem 1. For the system (4) with the above param-
eters, Fig. 1 shows, for the state responses x(¢), when
h(t) = 3.4504|sin(¢)|, fi1(x1(t)) = 0.4tanh(x(?)),
fo(x2(2)) = 0.8tanh(x2(r)), and x(0) = [1,—-1]7.
This figure shows that the state signal converges to
zero, which verifies the effectiveness of Theorem 2.

5 Conclusion

In this paper, two improved delay-dependent stability
criteria for neural networks with time-varying delays
have been proposed by the use of Lyapunov stability
theorem and LMI framework. In Theorem 1, by con-
structing the newly augmented Lyapunov—Krasovskii
functional, utilizing some new zero equalities and
techniques mentioned in Remarks 3 and 4, a suffi-
cient condition for asymptotic stability of the system
was derived. By taking lower bound of Lyapunov—
Krasovskii functional and utilizing the property of
its positiveness, further improved stability condition
were derived in Theorem 2. By two numerical exam-
ples dealt with in many previous works, the improve-
ment of the feasible region of the two proposed sta-
bility criteria has been successfully verified. Based on
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1

_x1(t)
0.8 == )

0.6 b

0.4

0.2r

1 i i i i i
0 5 10 15 20 25 30

Time (seconds)

Fig. 1 State responses with i (¢) = 3.4504|sin(¢)| (Example 2)

the proposed Lyapunov—Krasovskii functional, future
work will focus on state estimation [44], periodic so-
lutions of neural networks [45], quasi-synchronization
control for switched networks [46], dissipativity and
quasi-synchronization with discontinuous activations
and parameter mismatches [47], and so on.
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