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Abstract The global homoclinic bifurcation and tran-
sition to chaotic behavior of a nonlinear gear system
are studied by means of Melnikov analytical analy-
sis. It is also an effective approach to analyze homo-
clinic bifurcation and detect chaotic behavior. A gener-
alized nonlinear time varying (NLTV) dynamic model
of a spur gear pair is formulated, where the back-
lash, time varying stiffness, external excitation, and
static transmission error are included. From Melnikov
method, the threshold values of the control parameter
for the occurrence of homoclinic bifurcation and onset
of chaos are predicted. Additionally, the numerical bi-
furcation analysis and numerical simulation of the sys-
tem including bifurcation diagrams, phase plane por-
traits, time histories, power spectras, and Poincare sec-
tions are used to confirm the analytical predictions and
show the transition to chaos.

Keywords Nonlinear vibration · Spur gear · Global
homoclinic bifurcation · Chaos · Melnikov method

1 Introduction

Gears are one of the most common and important com-
ponents in industrial rotating machinery and power
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transmission systems. The prediction and control of
the gear vibrations have become important concerns in
various engineering fields. Due to the high sensitivity
of the gear pair to its control parameters, the vibratory
response can be very complex and not easy to control.
An attempt to design and develop silent gears system
requires a good understanding of the dynamic behav-
ior of the system. Over a long time, gear transmission
systems were investigated with linear vibration the-
ories, without considering nonlinear parameters [1].
The more accurate evaluation and the experimental in-
vestigations of the dynamic response have indicated
that the vibration of geared systems should be con-
sidered with nonlinear vibration theories. A gear sys-
tem with backlash, transmission error, and time vary-
ing stiffness is a nonlinear vibration system, which
display some complicated phenomena such as regular
vibrations, nonperiodic motions or even chaotic mo-
tions [2–16]. With the development of nonlinear dy-
namics theories, the nonlinear characteristics of these
systems such as stability, periodic solutions, bifurca-
tions, and chaos, have become the most interesting
research areas. As a consequence, many studies have
focused on analyzing nonlinear dynamics of the gear
system or the related researches.

For instance, Sato et al. [2] established a nonlinear
model of the gear system with the time dependence of
tooth stiffness and backlash. They investigated the bi-
furcation of periodic response and chaotic behavior by
using a shooting method. Kahraman and Blankenship
[3, 4] performed some experiments on a spur gear pair
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and observed various nonlinear phenomena including
gear tooth contact loss, period doubling and chaos.
Raghothama and Narayanan [5] investigated nonlin-
ear vibrations of a geared rotor-bearing system with
time varying mesh stiffness and backlash. Periodic
motions were obtained by the incremental harmonic
balance method (IHBM). The chaotic motions were
investigated numerically, and the Lyapunov exponents
were computed. Theodossiades and Natsiavas [6, 7]
analyzed the motor driven gear systems and predicted
chaotic behaviors. De Souza et al. [8] used a numeri-
cal simulation method to demonstrate the existence of
chaotic solutions in the gear systems. Bifurcation dia-
grams were calculated to determine regions of chaotic
vibrations. Luczko [9] investigated a nonlinear model
with the backlash and time varying stiffness to de-
scribe vibration of a one stage gearbox. The possibility
of existence of quasi-periodic or chaotic response for
some regions of the parameters was studied. Different
types of vibration were illustrated by plots of time his-
tories, phase portraits, and bifurcation diagrams. The
study was done numerically using numerical integra-
tion and spectrum analysis.

Effects of the frictional force and backlash on the
multidegree of freedom nonlinear dynamic gear sys-
tem, which incorporate time varying stiffness, were
investigated by Siyu et al. [10]. The chaotic motions
were investigated numerically. The system exhibited
a chaos in different regions of the control parameter.
Wang [11] studied a gear pair associated with fric-
tion, backlash, and time varying gear meshing stiff-
ness. A numerical simulation was applied. Bifurca-
tion, chaos, and their corresponding largest Lyapunov
exponents of the gear system are investigated and the
critical parameters are identified. Also, Chang Jian and
Chen [12–15] presented a series of investigations in bi-
furcation and chaotic responses of a gear bearing sys-
tem. The results provided an understanding of the op-
erating conditions in the gear systems and, therefore,
serve as a useful reference in designing and controlling
such systems.

From the above mentioned references, one finds
that three kinds of methods, including experimen-
tal [3, 4], analytical [5], and numerical methods
[2, 5–15], have been adopted to analyze the bifurca-
tion and chaos in the nonlinear dynamics of the gear
systems. Due to the complexity of the gear system
and also the difficulty and limitation of the analytical
methods, the numerical method was commonly used

to analyze the gear systems, but they cannot provide
any analytical expression of the solutions. Although a
significant amount of research has been devoted to the
nonlinear dynamics of the gear systems, few attempts
have been made to investigate analytical solutions of
the system. Melnikov analysis is one of the few analyt-
ical methods to provide an approximate criterion for
the occurrence of homoclinic bifurcation and chaos
in the nonlinear systems. Since Melnikov’s analysis
is considered standard, it has been used by different
authors today [16–18]. According to this theory, the
existence of the transversal intersection of the stable
and unstable manifolds of a saddle fixed point implies
the existence of the chaotic behaviors [16–24]. The
current study performs a nonlinear analysis of a spur
gear pair. The chaotic motions of the gear system are
studied analytically with the Melnikov method. The
critical curves separating the periodic and chaotic re-
gions are drawn. Also, the dynamic behaviors of the
gear system are numerically computed and character-
ized using phase diagrams, power spectrums, Poincare
maps, and bifurcation diagrams, which verify the ana-
lytical results.

The rest of paper is organized as follows. In Sect. 2,
a nonlinear dynamic model of a spur gear pair is for-
mulated, where the backlash, time varying stiffness,
external excitation, and static transmission error are
included. In Sect. 3, the unperturbed system is an-
alyzed in which the damping and forcing terms are
dropped out. The conditions for existence of chaos
behavior in terms of homoclinic bifurcation by us-
ing Melnikov analysis are performed. In Sect. 4, the
threshold values of the control parameter for the oc-
currence of homoclinic bifurcation and onset of chaos
are obtained for various models. The influence of the
parameters on the character and level of vibrations are
studied. The theoretical predictions are verified with
direct numerical simulations by construction of the bi-
furcation diagrams and computation of the plane phase
portraits, time histories, power spectra, and Poincare
section. Finally, Sect. 5 presents some brief conclu-
sions.

2 Dynamic model and equations of motion

For the purpose of illustration, a generalized model of
a spur gear pair system is considered. It is assumed
that the transmission shafts and the bearing of the gear
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Fig. 1 A spur gear pair
model

system are inflexible, so that the parametric and non-
linear effects in the meshing are accentuated. Figure 1
shows a generalized model for a single mesh gear sys-
tem, which the gear mesh is modeled as a pair of rigid
disks connected by a spring damper set along the line
of action. The gears are represented by their base cir-
cles with radius ra and rb , respectively. Ia and Ib are
the mass moments of inertia of the gears. K and c

represent the time varying mesh stiffness and a con-
stant mesh damping. The backlash function fh, is usu-
ally used to represent gear clearances and an inter-
nal displacement excitation e(t), is also applied to the
gear mesh interface to represent manufacturing errors.
Ta , and Tb are external torques acting on the driver and
driven gear, respectively. In addition, the total rotation
angle of each gear is assumed to result from a con-
stant angular velocity term plus a small variation that
represent the vibratory angular displacements from the
mean position. This means that

ϕa(t) = ωat + θa(t) and ϕb(t) = ωbt + θb(t) (1)

where ωa and ωb are the constant angular velocities
of the gears. Under these assumptions, the differential
equations of the torsional motion can be written as fol-
lows:

Ia

d2θa

dt2
+ c

(
ra

dθa

dt
− rb

dθb

dt
− de

dt

)
ra

+ rak(t)fh

(
raθa − rbθb − e(t)

) = Ta (2a)

Ib

d2θb

dt2
− c

(
ra

dθa

dt
− rb

dθb

dt
− de

dt

)
rb

− rbk(t)fh

(
raθa − rbθb − e(t)

) = −Tb (2b)

An input torque Ta is applied to the driver gear ro-
tating at ωa , and the mean braking torque Tb to the

driven gear with angular velocity ωb. The excitation
torque Ta , fluctuates significantly between low and
high values. Therefore, the Ta can be decomposed
into the average torque transmitted through the gear
pair Tma and the fluctuating external torque excitation
Tp(t) parts. Such excitations are typically at low fre-
quencies ωp which are the first few multiples of the in-
put shaft frequency. Also, output torque Tb is assumed
to be constant to simplify the dynamic problem, i.e.,
Tb(t) = Tmb . Ta can be expressed via Fourier series as
follows [25, 26]:

Ta(t) = Tma +
∞∑

r=1

Tpr cos(rωpt + ϕpr) (3)

Moreover, the mesh stiffness of the gear is a periodic
function depending on the number and position of the
teeth in contact. Since the stiffness is periodically time
varying with the mesh frequency, its analytical formu-
lation can be obtained by means of a Fourier expan-
sion [27]:

k(t) = k(t + 2π/ωk) = km +
∞∑

r=1

kr cos(rωkt + φkr)

(4)

where ωk = naωa = nbωb is the mesh frequency,
na and nb are the teeth number of each gear. The
model takes into account the static transmission er-
ror e(t) applied along the line of action to model any
manufacturing errors, and teeth deformations. Since
the mean angular velocities of the gears are constant,
the static transmission error can be approximated as
time periodic function. Its fundamental frequency is
the meshing frequency. As a result, static transmis-
sion error can be expressed in a Fourier series in the
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form [28]:

e(t) = e(t + 2π/ωe) =
∞∑

r=1

er cos(rωet + φer) (5)

The gear pair is bound to have some backlash, which
may be designed for better lubrication and to reduce
interference, or caused by wear and mounting errors.
The gear backlash is essentially a discontinuous and
nondifferentiable function, which is the main source
of nonlinearity in the system. The backlash function
fh defined by the following equation:

fh =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

raθa − rbθb − e(t) − (1 − α)b

b < raθa − rbθb − e(t)

α(raθa − rbθb − e(t))

−b ≤ (raθa − rbθb − e(t)) ≤ b

raθa − rbθb − e(t) + (1 − α)b

b < −(raθa − rbθb − e(t))

(6)

where 2b represents the total backlash.
Equations (2a), (2b) can be reduced to a single

equation by introducing a new variable x̃ = raθa −
rbθb − e(t), which is the difference between the dy-
namic transmission error and the static transmission
error.

m
d2x̃

dt2
+ c

dx̃

dt
+ k(t)fh(x̃) = F̂m + F̂e(t) + F̂p(t) (7)

with

fh(x̃) =
⎧⎨
⎩

x̃ − (1 − α)b b < x̃

αx̃ −b ≤ x̃ ≤ b

x̃ + (1 − α)b b < −x̃

m = IaIb

Ibr2
a + Iar

2
b

, F̂e(t) = −m
d2e(t)

dt2

F̂m = m

(
Tmara

Ia

+ Tmbrb

Ib

)

F̂p =
∞∑

r=1

m

(
ra

Ia

)
Tpr cos(rωpt + φpr)

=
∞∑

r=1

F̂pr cos(rωpt + φpr)

Here, m is the equivalent mass representing the total
inertia of the gear pair, F̂m is the average force trans-
mitted through the gear pair, F̂p(t) is the fluctuating
force related to the input torque excitation, and the in-
ternal excitation term F̂e(t) arises from the gear static

transmission error. Dimensionless equation of motion
can be obtained by defining:

x = x̃/b, ωn = √
km/m, τ = ωnt

Ωk = ωk/ωn, Ωe = ωe/ωn, Ωp = ωp/ωn

μ̃ = c/2mωn, k̃pr = kr/2mω2
n

F̃m = F̂m/bkm, F̃pr = F̂pr/bkm, F̃er = er/b

The dimensionless equation of the gear pair could be
written as

d2x

dτ 2
+ 2μ̃

dx

dτ

+
(

1 + 2
∞∑

r=1

k̃pr cos(rΩkτ + φkr)

)
fh(x)

= F̃m +
∞∑

r=1

F̃pr cos(rΩpτ + φpr)

+
∞∑

r=1

(rΩe)
2F̃er cos(rΩeτ + φer) (8)

where

fh(x) =
⎧⎨
⎩

x − (1 − α) 1 < x

αx −1 ≤ x ≤ 1
x + (1 − α) 1 < −x

fh(x) is the nonlinear displacement function due
to backlash. The third-order approximation polyno-
mial can express the gear backlash clearance func-
tion fh(x). Therefore the third-order polynomial is
taken to do the following analysis in this study. The
particular case of α = 0 for a gear pair system is stud-
ied. The approximated polynomial can be written as
fh(x) = −0.1667x + 0.1667x3. Figure 2(a) and (b)
shows the fh(x) and approximated function, respec-
tively.

Substituting fh(x) into Eq. (8), the equation of mo-
tion of the system can be obtained as

d2x

dτ 2
+ 2μ̃

dx

dτ
+

(
1 + 2

∞∑
r=1

k̃pr cos(rΩkτ + φkr)

)

× (−0.1667x + 0.1667x3)

= F̃m +
∞∑

r=1

F̃pr cos(rΩpτ + φpr)

+
∞∑

r=1

(rΩe)
2F̃er cos(rΩeτ + φer) (9)
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Fig. 2 (a) Schematic of the
backlash function, fh(x).
(b) The approximated of the
fh(x) based on a
third-order polynomial

The proposed study is focused on the homoclinic bi-
furcation and chaos of Eq. (9), which represents a
generalized nonlinear time varying (NLTV) dynamic
model of a spur gear pair. Both analytical and nu-
merical solution techniques are employed to solve this
equation.

3 Global homoclinic bifurcation and chaos
prediction

Homoclinic bifurcation is the occurrence of transverse
intersection of the stable and unstable manifolds of a
saddle fixed point and is a global bifurcation. In partic-
ular, it is defined as mechanisms responsible for pre-
diction of the chaotic behavior. The Melnikov method
is one of the few analytical tools to study the global
bifurcation of the system, and it gives a procedure for
analyzing and estimating when a chaotic behavior of
a nonlinear dynamical system is expected [16–18]. In
the following subsections, in order to apply this tech-
nique the fixed points and the homoclinic orbits of the
unperturbed system are derived. Then the conditions
of existence of chaos behavior in terms of homoclinic
bifurcation by using Melnikov analysis are performed.

3.1 Analysis of the unperturbed system

In this subsection, we derive the homoclinic orbits, sta-
ble, and unstable manifolds of the unperturbed system.
In order to apply the Melnikov technique and to carry
out this study, we need to consider the average force,
the excitation terms, the mesh stiffness, and damping
term as small perturbations to the Hamiltonian system.

Scaling F̃m = εfm, F̃pr = εfpr , F̃er = εfer , μ̃ = εμ

and k̃pr = εkpr , the perturbed equation of Eq. (9) can
be rewritten as

ẋ = y

ẏ = −2εμẋ +
(

1 + 2
∞∑

r=1

εkpr cos(rΩkτ + φkr)

)

× (
0.1667x − 0.1667x3)

+ ε

(
fm +

∞∑
r=1

fpr cos(rΩpτ + φpr)

+
∞∑

r=1

(rΩe)
2fer cos(rΩeτ + φer )

)
(10)

where ε is a small parameter. When ε = 0, Eq. (10)
becomes

ẋ = y

ẏ = (
0.1667x − 0.1667x3) = (

ax − cx3) (11)

which is referred to as the unperturbed system. The un-
perturbed system (11) is a planar Hamiltonian system
with a potential and Hamiltonian function as

U(x) = −ax2

2
+ cx4

4
(12)

H(x,y) = y2

2
+ U(x) = 1

2
y2 − a

2
x2 + c

4
x4 (13)

The potential and the Hamiltonian function of the un-
perturbed system are shown in Fig. 3(a) and (b), re-
spectively. The unperturbed system has three equilib-
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Fig. 3 (a) Potential
function and,
(b) Hamiltonian function of
the unperturbed system

rium points: (0,0) and (±
√

a
c
,0). From the linear sta-

bility analysis, the Jacobian matrix and eigenvalues of
the system are obtained as

J =
(

0 1
(a − 3cx2) 0

)

⇒ eigenvalue λ = 1

2

(±
√

4
(
a − 3cx2

))
(14)

So, the eigenvalues of the fixed point (0,0) are ob-
tained as λ1,2 = ±√

a, that is, λ1 < 0 < λ2, and hence
is a saddle. The eigenvalues of the remaining two fixed

points (±
√

a
c
,0) are λ1,2 = ±i

√
2a, purely imaginary,

and are thus center. Thus, the saddle point is connected
to itself by two homoclinic orbits and defined as

(
xh(τ̄ ), yh(τ̄ )

) =
(

±
√

2a

c
sech

(√
a(τ̄ )

)
,

∓
√

2

c
a sech

(√
a(τ̄ )

)
tanh

(√
a(τ̄ )

))

(15)

where τ − τ0 = τ̄ . Stable manifolds (W±
s ) and unsta-

ble manifolds (W±
u ) of the homoclinic orbits are indi-

cated in Fig. 4. Periodic orbits are depicted outside and
inside of the homoclinic orbit. In the following parts,
we use Melnikov’s method to study how the dynam-
ics of the perturbed system are changed under homo-
clinic bifurcation and how the chaotic dynamics are
performed.

3.2 Melnikov analysis for gear model equation

The stable and unstable manifolds (W±
s and W±

u ) of
the homoclinic orbits for the unperturbed system have

Fig. 4 Phase portrait and the homoclinic orbits of unperturbed
system

been obtained. When the perturbation terms are added
to the unperturbed system, the closed homoclinic or-
bits break, and may have transverse manifolds. It is
a global homoclinic bifurcation and implies the exis-
tence of the chaotic behaviors. The Melnikov method
provides the estimate in the parameter space for the
appearance of homoclinic bifurcation, and hence for
transition to chaos. In this section, we give the condi-
tions for existence of the homoclinic bifurcation and
chaos by using the Melnikov method. According to
this theory, the existence of transversal intersection of
the stable and unstable manifolds of the homoclinic
orbits implies the existence of the chaotic behaviors.
Hence, the homoclinic bifurcation for our model is an-
alyzed by transforming Eq. (10) into the vector form as
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ẋ = p1(x, y) + εq1(x, y, τ )

ẏ = p2(x, y) + εq2(x, y, τ )
(16)

where

p1(x, y) = y q1(x, y, τ ) = 0

p2(x, y) = (
ax − cx3)

q2(x, y, τ )

= −2μẋ + 2
∞∑

r=1

kpr cos(rΩkτ + φkr)
(
ax − cx3)

+ fm +
∞∑

r=1

fpr cos(rΩpτ + φpr)

+
∞∑

r=1

(rΩe)
2fer cos(rΩeτ + φer )

The Melnikov function measuring the distance be-
tween the stable and unstable manifolds of the per-
turbed system in the Poincare section is defined as fol-
lows [18]:

M(τ0) =
∫ +∞

−∞
p
(
Xh(τ − τ0)

) ∧ q
(
Xh(τ − τ0), τ

)
dτ

=
∫ +∞

−∞
p
(
Xh(τ)

) ∧ q
(
Xh(τ), τ + τ0

)
dτ

(17)

where Xh = (xh, yh) represents homoclinic orbits,
and p ∧ q = p1q2 − p2q1. Substituting Eq. (16) into
Eq. (17), the Melnikov integral could be rewritten as

M(τ0) =
∫ +∞

−∞
yh

(
−2μyh + 2

∞∑
r=1

kpr cos
(
rΩk(τ + τ0) + φkr

)(
axh − cx3

h

) + fm

+
∞∑

r=1

fpr cos
(
rΩp(τ + τ0) + φpr

) +
∞∑

r=1

(rΩe)
2fer cos

(
rΩe(τ + τ0) + φer

))
dτ

⇒ M(τ0) =
∫ +∞

−∞

[
∓

√
2

c
a sech(

√
aτ) tanh(

√
aτ)

](
−2μ

[
∓

√
2

c
a sech(

√
aτ) tanh(

√
aτ)

]

+
∞∑

r=1

2kpr cos
(
rΩk(τ + τ0) + φkr

)

×
(

a

[
±

√
2a

c
sech

(√
a(τ)

)] − c

[
±

√
2a

c
sech

(√
a(τ)

)]3)
+ fm

+
∞∑

r=1

fpr cos
(
rΩp(τ + τ0) + φpr

) +
∞∑

r=1

(rΩe)
2fer cos

(
rΩe(τ + τ0) + φer

))
dτ (18)

Considering only the first harmonics term (r = 1), and evaluating the integral, the Melnikov function can be written
as

M±(τ0) = −8

3

μ(a)2

c
√

a
+ 4a

√
a

c2
kp1

π csch(
πΩk

2
√

a
) sin(Ωkτ0 + φk1)Ω

2
k

2a3/2

− 8a

√
1

c

(
a

c

)3/2

ckp1

π csch(
πΩk

2
√

a
) sin(Ωkτ0 + φk1)Ω

2
k (4a + Ω2

k )

24a5/2

±
√

2

c
fp1π sech

(
πΩp

2
√

a

)
sin(Ωpτ0 + φp1)Ωp ±

√
2

c
fe1π sech

(
πΩe

2
√

a

)
sin(Ωeτ0 + φe1)Ω

3
e (19)
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According to Melnikov theory, M(τ0) = 0 and
dM(τ0)

dτ0
�= 0 are conditions that the stable and unsta-

ble manifolds intersect transversally. So, if M(τ0) has
a simple zero, the global homoclinic bifurcation oc-
curs, which is indicative of chaotic vibration. From
this relation, the threshold values of the parameters for
occurrence of the homoclinic bifurcation are obtained.

4 Numerical simulations and analysis

In this section, we study the occurrence of the homo-
clinic bifurcation and chaos both analytically and nu-
merically. We give the numerical simulation to demon-
strate the theoretical results from Melnikov analysis
obtained in the previous section. Different reduced
models of the geared systems are considered in prac-
tice. The homoclinic bifurcation in case of internal ex-
citation, external excitation, parametric excitation, and
combination excitation of internal, external, and para-
metric excitation is obtained and the threshold curves
are plotted. The conditions and system parameters are
also investigated at which these models can imply the
existence of chaotic behavior.

4.1 Gear model with manufacturing error term

A gear system with the manufacturing error is con-
sidered as the first example case. Here, we study the
gear pair system on the condition of internal excita-
tion term (the manufacturing error). The external ex-
citation and time varying stiffness terms are ignored,
i.e., k̃pr = F̃pr = 0. When only internal forces excite
the system, Eq. (9) reduces to:

d2x

dτ 2
+ 2μ̃

dx

dτ
+ fh(x)

= F̃m +
∞∑

r=1

(rΩe)
2F̃er cos(rΩeτ + φer ) (20)

According to Eq. (19) and by considering the first har-
monic term (r = 1), M(τ0)

± can be simplified as fol-
lows:

M±(τ0)

= −8

3

μ(a)2

c
√

a
±

√
2

c
fe1π sech

(
πΩe

2
√

a

)

× sin(Ωeτ0 + φe1)Ω
3
e

= A′ ± F ′ sin(Ωeτ0 + φe1) (21)

The condition for transverse intersection of the stable
and unstable manifolds can be written as

∣∣A′∣∣ ≤ ∣∣F ′∣∣

⇒
∣∣∣∣−8

3

μ(a)2

c
√

a

∣∣∣∣ ≤
∣∣∣∣
√

2

c
fe1π sech

(
πΩe

2
√

a

)
Ω3

e

∣∣∣∣
(22)

This equation provides the condition for the occur-
rence of chaos. Equality sign corresponds to the tan-
gential intersections of the homoclinic orbits. Using
Eq. (22) and choosing fe1 as the control parameter,
the conditions for transverse intersection of the stable
and unstable manifolds are obtained as

fe1 ≥ fe1(1) = 8

3
√

2

|μ|√c(a)2

πΩ3
e c

√
a

cosh

(
πΩe

2
√

a

)
or

fe1 ≤ fe1(2) = − 8

3
√

2

|μ|√c(a)2

πΩ3
e c

√
a

cosh

(
πΩe

2
√

a

) (23)

These conditions provide a domain on the parameter
space where the system has transverse homoclinic or-
bits resulting in possible chaotic behavior. Figure 5
shows the Melnikov threshold curves for chaos in
the (fe1–Ωe) plane for μ = 7. In the region between
threshold curves fe1(1), and fe1(2), Melnikov func-
tion does not change its sign and is an indication of
no transverse intersection of the stable and unstable
manifolds. In the no-shaded regions that are above the
threshold curve fe1(1), and below the threshold curve
fe1(2), both M+(τ0) and M−(τ0) change their sign.
As a result, in these regions transverse intersection of
the stable and unstable manifolds occurs, and onset of
chaos is expected.

For instance, in Ωe = 0.5, when the control param-
eter fe1 is increased from a zero value in the shaded re-
gion, transverse intersection of the stable and unstable
manifolds (W±

s and W±
u ) occurs for fe1 ≥ 20. Since

the Melnikov function can change its sign (it has sim-
ple zeros), chaos may occur.

To verify the analytical predictions, a series of nu-
merical simulations of Eq. (20) has been performed.
The nonlinear equation (20) is integrated numeri-
cally using the fourth-order Runge–Kutta method. Fig-
ure 6 presents the bifurcation diagram of the spur
gear system using the F̃e1 (F̃e1 = εfe1), as a bi-
furcation parameter. The values of the parameters
Ωe = 0.5, fm = 1, μ = 7, ε = 0.01 and initial con-
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Fig. 5 Threshold curves
for homoclinic bifurcation
in the (fe1–Ωe) plane for
μ = 7

ditions x = 0.01 and ẋ = 0.01 are chosen. A tran-
sition from periodic motion to the chaotic dynam-
ics are seen when F̃e1 is increased from 0 to 0.3.
It can be observed that the gear system exhibits a
1T -periodic response at low values of the internal
excitation term F̃e1, i.e., F̃e1 ≤ 0.21. However, as
F̃e1 is increased from 0.21 to 0.23, the 1T -periodic
motion is replaced by 2T -periodic motion through
a period doubling bifurcation. As the control pa-
rameter F̃e1 is further increased, the 2T -periodic
motion transits to periodic motion with a period
of 4T . With the increase of the control parameter
F̃e1, period doubling occurs, and a bifurcation cas-
cade leads to chaos. Finally, for F̃e1 ≥ 0.235, the
gear system performs nonperiodic or chaotic mo-
tion.

For a better clarity, we show the transition to
chaos through the numerical simulation for five val-
ues of fe1 chosen in the shaded and no shaded regions
(fe1 = 18, fe1 = 22, fe1 = 23, fe1 = 24, and fe1 = 28
(see Fig. 5)). Transverse intersections of the stable and
unstable manifolds of both the homoclinic orbits are
seen in fe1 ≥ 20, which is above the threshold value.
Figures 7–11 illustrate the time histories, phase plane
diagrams, Poincare sections, and Fourier spectras for
this gear model at points 1–5, respectively. Accord-
ing to Fig. 5, point 1 corresponds to the point situated
below threshold values (in the shaded region), and is

Fig. 6 Bifurcation diagram using F̃e1 (F̃e1 = εfe1) as control
parameter

associated with the 1T -periodic motion (see Fig. 6).
The numerical simulations of Eq. (20) are performed
for this point. The time history, phase plane diagram,
Poincare section, and Fourier spectra are shown in
Fig. 7. These figures show the periodic response and
confirm the prediction of a periodic motion obtained
by the Melnikov function. With the increasing fe1 and
crossing the critical value, the system loses its sta-
bility and consequently, the system begins to execute
the chaotic behavior. The numerical analysis is carried
out for the parameters associated with points 2 and 3.
They correspond to the points situated in the transient
region (Fig. 5) and are associated with the 2T and
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Fig. 7 (a) Time history,
(b) phase plane,
(c) Poincare section, and
(d) Fourier spectra for
fe1 = 18

4T -periodic motion (Fig. 6). Figures 8 and 9 illustrate
the time histories, phase planes, Poincare sections, and
Fourier spectras for these points.

Finally, the numerical analysis of Eq. (20) is car-
ried out for the parameters associated with points 4
and 5 (fe1 = 24 and fe1 = 28) situated above thresh-
old value. The investigated corresponds to the chaotic
motion. The chaotic trajectories are obtained by nu-
merical integration. The time histories, phase planes,
Poincare sections, and Fourier spectras correspond-
ing to the chaotic response are presented in Figs. 10
and 11. Chaotic behavior is clearly visible. The numer-
ical computations confirm the analytical prediction of
chaos for the applied value of fe1.

Now we consider the effect of the parameter μ for
the occurrence of homoclinic bifurcation and chaos
in the system. Both analytical and numerical solution
techniques are employed. Analytical solutions are con-
structed by the Melnikov method. Using Eq. (22) and
choosing μ as a control parameter, the conditions for
transverse intersection of the stable and unstable man-
ifolds are given by

μ ≤ μ(1) = 3c

8a2

√
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c
|fe1|π sech
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πΩe

2
√

a

)
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μ ≥ μ(2) = − 3c

8a2

√
2a

c
|fe1|π sech

(
πΩe

2
√

a

)
Ω3

e

(24)

The threshold curves for chaos in the (μ–Ωe) plane for
fe1 = 30 are shown in Fig. 12. In the region between
the threshold curves μ(1) and μ(2), both M+(τ0) and
M−(τ0) change their sign. As a result, in this region,
transverse intersection of the stable and unstable man-
ifolds occurs, and onset of chaos is expected. In the
shaded regions that are above the threshold curve μ(1)

and below the threshold curve μ(2), Melnikov func-
tion does not change sign and is an indication of no
transverse intersection of the stable and unstable man-
ifolds.

The influence of the parameter μ̃ (μ̃ = εμ) is also
illustrated in the bifurcation diagram shown in Fig. 13.
We fix the values of the parameters as Ωe = 0.7,
fe1 = 30, fm = 1, ε = 0.01 and initial conditions as
x = 0.01 and ẋ = 0.01. It can be observed that the
gear system exhibits chaotic motion at low values of
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Fig. 8 (a) Time history,
(b) phase plane,
(c) Poincare section, and
(d) Fourier spectra for
fe1 = 22

Fig. 9 (a) Time history,
(b) phase plane,
(c) Poincare section, and
(d) Fourier spectra for
fe1 = 23
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Fig. 10 (a) Time history,
(b) phase plane,
(c) Poincare section, and
(d) Fourier spectra for
fe1 = 24

Fig. 11 (a) Time history,
(b) phase plane,
(c) Poincare section, and
(d) Fourier spectra for
fe1 = 28
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Fig. 12 Threshold curves for homoclinic bifurcation in the
(μ − Ωe) plane for fe1 = 30

the dimensionless damping term μ̃. However, as μ̃

is increased, the nonperiodic motion is replaced by
nT -periodic motion. 4T and 2T periodic motions are
clearly visible in Fig. 13. Finally, as the damping μ̃ is
further increased, the 2T -periodic motion transits to a
motion with period of 1T .

Also, we show the transition to chaos through
the numerical simulation for three values of μ = 15,
μ = 13.5, and μ = 12 (see Figs. 12 and 13). It can
be observed that point 1 (μ = 15,Ωe = 0.7), lies out
of chaos, point 2 (μ = 13.5,Ωe = 0.7) and point 3
(μ = 12,Ωe = 0.7), lie in the chaotic area. Point (1)
corresponds to the point situated above threshold
value, the Melnikov function does not change its sign
and is associated with the periodic motion. The nu-
merical simulations are performed for the parame-
ter sets associated with this point. The time history,
phase plane diagram, Poincare section and Fourier
spectra are shown in Fig. 14. These figures show
the periodic response and confirm the prediction of
a periodic motion was obtained by Melnikov the-
ory.

In the next computational step, we have taken
μ = 13.5 (point 2). It corresponds to the point situ-
ated in transient region (see Fig. 12) and is associated
with the 2T -periodic motion (see Fig. 13). Figure 15
illustrates the time history, phase plane, Poincare sec-
tion, and Fourier spectra for the parameter μ = 13.5.
Observe that for this point the 2T -periodic motion oc-
curs.

Fig. 13 Bifurcation diagram using μ̃ (μ̃ = εμ) as control pa-
rameter

Finally, the numerical analysis is carried out for
the parameter μ = 12. Based on Fig. 12, the function
changes its sign for μ = 12. The investigated point
corresponds to the chaotic motion. The chaotic trajec-
tories are obtained by numerical integration. The time
history, phase plane, Poincare section, and Fourier
spectra corresponding to the chaotic response are pre-
sented in Fig. 16. Chaotic behavior is clearly visible.
The numerical computations confirm the prediction of
analytical chaos for applied value of μ.

We have also plotted the dependence of the ex-
citation fe1 for homoclinic chaos for different val-
ues of the damping parameter μ in a frequency range
0 < Ωe < 2.5. The surfaces are shown in Fig. 17(a).
As it can be observed from this figure, as μ increases,
the threshold fe1 for the onset of chaos obtained by
the Melnikov technique increases in a frequency range
0 < Ωe < 2.5. We have also plotted in Fig. 17(b)
the dependence of the parameter μ on the frequency
0 < Ωe < 2.5 for different values of fe1. In the param-
eter region, between the threshold curves transverse
intersection of the stable and unstable manifolds oc-
curs, onset of chaos is expected. One clear observation
from this figure is that, the threshold μ increases when
fe1 increases. These conditions provide a domain on
the parameter spaces where the system has transverse
homoclinic orbits resulting in possible chaotic behav-
ior. So, these results play an important role in the for-
mation of the chaotic regions and could be used for
the analysis and dynamic design of the gear system
parameters.
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Fig. 14 (a) Time history,
(b) phase plane,
(c) Poincare section, and
(d) Fourier spectra for
μ = 15

Fig. 15 (a) Time history,
(b) phase plane,
(c) Poincare section, and
(d) Fourier spectra for
μ = 13.5
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Fig. 16 (a) Time history,
(b) phase plane,
(c) Poincare section, and
(d) Fourier spectra for
μ = 12

4.2 Gear model with time varying stiffness
and manufacturing error

This section focuses on the analysis of the approxi-
mate model of the gear pair which represents a gear
pair with the static transmission error excitation and
the mesh stiffness variation. The governing equation
is given by substituting F̃p(t) = 0 in Eq. (9) and re-
duces to:

d2x

dτ 2
+ 2μ̃

dx

dτ

+
(

1 + 2
∞∑

r=1

k̃pr cos(rΩkτ + φkr)

)
fh(x)

= F̃m +
∞∑

r=1

(rΩe)
2F̃er cos(rΩeτ + φer ) (25)

According to Eq. (19) and by considering the first har-
monic term (r = 1), M(τ0)

± can be simplified as fol-
lows:
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⇒ M±(τ0) = A′ + (
B ′ + C′) sin(Ωkτ0 + φk1)

± F ′ sin(Ωeτ0 + φe1)

(26)

In the gear dynamic models, the dimensionless exci-
tation frequencies Ωe and Ωk are equal. The phase
angles φk1 and φe1 will be neglected to simplify the
dynamic problem. Thus, the condition for transverse
intersection of the stable and unstable manifolds can
be written as



798 A. Farshidianfar, A. Saghafi

∣∣A′∣∣ ≤ ∣∣B ′ + C′ ± F ′∣∣
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Using Eq. (27) and choosing fe1 as control parameter, the conditions for transverse intersection of the stable and

unstable manifolds W+
s and W+

u are obtained as:
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Also, the conditions for transverse intersection of the stable and unstable manifolds W−
s and W−

u are obtained as:
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or

fe1 ≥ fe1(4) =
(

4a

√
a

c2
kp1

π csch(
πΩk

2
√

a
)Ω2

k

2a3/2
− 8a

√
1

c

(
a

c

)3/2

ckp1

π csch(
πΩk

2
√

a
)Ω2

k (4a + Ω2
k )

24a5/2

+
∣∣∣∣−8

3

μ(a)2

c
√

a

∣∣∣∣
)/(√

2

c
π sech

(
πΩe

2
√

a

)
Ω3

e

)
(28d)



Global bifurcation and chaos analysis in nonlinear vibration of spur gear systems 799

Fig. 17 Threshold surfaces
for homoclinic bifurcation
in the parameter space for:
(a) control parameter fe1,
(b) control parameter μ

Fig. 18 Threshold curves for homoclinic bifurcation: (a) in the (fe1–Ω) plane, (b) in the (fe1–kp1) plane, (c) in the (fe1–μ) plane

The threshold curves for chaos in the (fe1–Ω),
(fe1–kp1), and (fe1–μ) plane are shown in Fig. 18.
Figure 18(a) shows the Melnikov threshold curves for
chaos in the (fe1–Ω) plane for kp1 = 10, and μ = 10.
In the regions above, the threshold curve fe1(1), and
below the threshold curve fe1(2), M+(τ0) changes
its sign. As a result, in these regions transverse

intersection of the stable and unstable manifolds W+
s

and W+
u occurs. In the regions below, the threshold

curve fe1(3), and above the threshold curve fe1(4),
M−(τ0) changes its sign, and the transverse intersec-
tion of the stable and unstable manifolds W−

s and
W−

u occurs. These conditions provide a domain on
the parameter spaces where the system has transverse
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homoclinic orbits resulting in possible chaotic be-
havior. Thus, in the shaded and dotted regions, both
M+(τ0) and M−(τ0) change their sign. Consequently,
in these regions transverse intersections of the man-
ifolds W+

s and W+
u and W−

s and W−
u occur. Trans-

verse intersections of W+
s and W+

u happen alone in the
dotted regions. Since, in these regions only M+(τ0)

changes its sign and the sign of M−(τ0) remains the
same. In the shaded regions, M−(τ0) alone changes
its sign.

This implies that in these regions the transverse in-
tersection of the manifolds W−

s and W−
u occurs. In the

no shaded and no dotted regions, both M+(τ0) and
M−(τ0) do not change their sign, and this is an in-

dication of no transverse intersection of the stable and
unstable manifolds.

Also, the Melnikov threshold curves in the
(fe1–kp1) plane for Ω = 1, and μ = 10, and the
threshold curves in the (fe1–μ) plane for Ω = 1, and
kp1 = 10, are shown in Fig. 18(b) and (c), respectively.
We have also plotted the threshold surfaces in the pa-
rameter space (fe1, kp1,μ) and (fe1,Ω,μ) in Figs. 19
and 20.

Using Eq. (27) and choosing kp1 as control param-
eter, the conditions for transverse intersection of the
stable and unstable manifolds W+

s and W+
u are ob-

tained as:
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Also, the conditions for transverse intersection of the stable and unstable manifolds W−
s and W−

u are obtained as:

kp1 ≥ kp1(3) =
(∣∣∣∣−8

3

μ(a)2

c
√

a

∣∣∣∣ +
√

2

c
fe1π sech

(
πΩe

2
√

a

)
Ω3

e

)/(
4a

√
a

c2

π csch(
πΩk

2
√

a
)Ω2

k

2a3/2

− 8a

√
1

c

(
a

c

)3/2

c
π csch(

πΩk

2
√

a
)Ω2

k (4a + Ω2
k )

24a5/2

)
(29c)

or

kp1 ≤ kp1(4) =
(

−
∣∣∣∣−8

3

μ(a)2

c
√

a

∣∣∣∣ +
√

2

c
fe1π sech

(
πΩe

2
√

a

)
Ω3

e

)/(
4a

√
a

c2

π csch(
πΩk

2
√

a
)Ω2

k

2a3/2

− 8a

√
1

c

(
a

c

)3/2

c
π csch(

πΩk

2
√

a
)Ω2

k (4a + Ω2
k )

24a5/2

)
(29d)



Global bifurcation and chaos analysis in nonlinear vibration of spur gear systems 801

Fig. 19 Threshold surfaces
for homoclinic bifurcation
in the parameter space
(fe1, kp1,μ) for Ω = 1

Fig. 20 Threshold surfaces
for homoclinic bifurcation
in the parameter space
(fe1,Ω,μ) for kp1 = 10

Fig. 21 Threshold curves for homoclinic bifurcation: (a) in the (kp1–fe1) plane for Ω = 1, and μ = 10, (b) in the (kp1–μ) plane for
Ω = 1, and fe1 = 10, (c) in the (kp1–Ω) plane for fe1 = 10, and μ = 10

These conditions provide a domain on the parameter
spaces where the system has transverse homoclinic or-
bits resulting in possible chaotic behavior. The thresh-
old curves for control parameter kp1 in the (kp1–fe1),

(kp1–μ), and (kp1–Ω) plane are shown in Fig. 21. We
have also plotted the threshold surfaces in the parame-
ter space (kp1, fe1,μ) for Ω = 1, and (kp1,Ω,μ) for
fe1 = 10 in Figs. 22 and 23, respectively.
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Using Eq. (27) and choosing μ as control parame-
ter, the conditions for transverse intersection of the sta-

ble and unstable manifolds W+
s and W+

u are obtained
as:
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Also, the conditions for transverse intersection of stable and unstablemanifolds W−
s and W−

u are obtained as:
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The threshold curves for the control parameter μ in
the (μ–fe1), (μ–kp1), and (μ–Ω) plane are shown
in Fig. 24. We have also plotted the threshold sur-
faces in the parameter space (μ,fe1, kp1) for Ω = 1
and (μ,fe1,Ω) for kp1 = 10 in Figs. 25 and 26.

4.3 A generalized nonlinear time varying (NLTV)
model of gear

The approximate analytical solutions given in the
above section are constructed only for one harmonic
excitation term F̃e. However, it is necessary to con-
sider the generalized nonlinear model included the

backlash, time varying stiffness, external excitation,
and manufacturing error in the analysis. This section
focuses on the study of Eq. (9), which represents a
generalized nonlinear time varying (NLTV) dynamic
model of a spur gear pair. By considering the first har-
monic term (r = 1), M(τ0)

± can be represented by
Eq. (19). Mesh frequency Ωk is higher than Ωp . The
dimensionless frequencies Ωp , Ωe, and Ωk are as-
sumed as: Ωk = Ωe = 1 and Ωp = 0.1. The phase
angles φp1, φk1, and φe1 will be neglected to sim-
plify the dynamic problem. The conditions where Mel-
nikov function can change its sign are obtained nu-
merically. The regions for transverse intersection of
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Fig. 22 Threshold surfaces
for homoclinic bifurcation
in the parameter space
(kp1, fe1,μ)

Fig. 23 Threshold surfaces
for homoclinic bifurcation
in the parameter space
(kp1,Ω,μ)

Fig. 24 Threshold curves for homoclinic bifurcation: (a) in the (μ–fe1) plane for Ω = 1, and kp1 = 10, (b) in the (μ–kp1) plane for
Ω = 1, and fe1 = 10, (c) in the (μ–Ω) plane for fe1 = 10, and kp1 = 10

the stable and unstable manifolds of W+
s and W+

u

and W−
s and W−

u in the parameter space (fe1,μ, kp1)
are shown in Fig. 27(a), and (b), respectively. Also,

Fig. 28 shows the regions for transverse intersection
of the stable and unstable manifolds in the parameter
space (fp1,μ, kp1), resulting in possible chaotic dy-
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Fig. 25 Threshold surfaces
for homoclinic bifurcation
in the parameter space
(μ,kp1, fe1)

Fig. 26 Threshold surfaces
for homoclinic bifurcation
in the parameter space
(μ,fe1,Ω)

Fig. 27 Homoclinic bifurcation regions in the parameter space (fe1,μ, kp1) for fp1 = 10: (a) for transverse intersection of manifolds
W+

s and W+
u , (b) for transverse intersection of manifolds W−

s and W−
u

namics. More precisely, these conditions play an im-
portant role in order to identify the chaotic region and

could be used for the analysis and dynamic design of
the gear system parameters.
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Fig. 28 Homoclinic bifurcation regions in the parameter space (fp1,μ, kp1) for fe1 = 10: (a) for transverse intersection of manifolds
W+

s and W+
u , (b) for transverse intersection of manifolds W−

s and W−
u

5 Conclusions

In the present paper, the dynamic behavior and global
homoclinic bifurcation of the generalized nonlinear
time varying (NLTV) model of a spur gear pair has
been studied. The Melnikov method has been applied
to predict the threshold values of the gear system pa-
rameters for the occurrence of the homoclinic bifur-
cation and transition to chaotic behavior. Threshold
curves were drawn on different parameter spaces and
effects of different parameters have been studied. The
analytical predictions have been verified through nu-
merical simulation and good agreement is observed.
Analyzing and predicting the chaotic behaviors of a
gear system are useful. These results provide some
idea and play an important role in order to analyze and
dynamic design of the gear system parameters. The
system parameters should be chosen, so that the sys-
tem is not chaotically excited.
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