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Abstract The asymptotic stability and stabilization
problem of a class of fractional-order nonlinear sys-
tems with Caputo derivative are discussed in this
paper. By using of Mittag–Leffler function, Laplace
transform, and the generalized Gronwall inequality,
a new sufficient condition ensuring local asymptotic
stability and stabilization of a class of fractional-order
nonlinear systems with fractional-order α : 1 < α < 2
is proposed. Then a sufficient condition for the global
asymptotic stability and stabilization of such system
is presented firstly. Finally, two numerical examples
are provided to show the validity and feasibility of the
proposed method.
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1 Introduction

Recently fractional-order systems have attracted in-
creasing interests from scientists and engineers. The
essential difference between the fractional-order deri-
vation model and integer-order derivation lies in the
following two aspects. First, the integer-order deriva-
tive indicates a variation or certain attribute at par-
ticular time for a physical or mechanical process,
while fractional-order derivative is concerned with the
whole time domain. Second, integer-order derivative
describes the local properties of a certain position for
a physical process, while fractional-order derivative is
related to the whole space. It is therefore that many
real-world physical systems are well characterized by
fractional-order state equations [1–4], for example,
fractional-order Schrödinger equation [5] in quantum
mechanics, fractional-order oscillator equation [6] in
damping vibration, fractional Lotka–Volterra equation
[7] in biological systems, fractional Langevin equa-
tion [8] in anomalous diffusion and so on. In particu-
larly, stability analysis is one of the most fundamental
and important issues for systems. In spite of extensive
researches, nonlinear stability of fractional order sys-
tems remains a formidable problem. In recent years,
there are many results about the stability of fractional-
order linear time invariant systems [9–15]. However,
only in certain cases or under some special circum-
stances, the practical problems may be regarded as lin-
ear systems. Therefore, research on nonlinear dynam-
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ics not only is of great significance, but also has im-
portant value in application.

It is well known that the analysis on stability
of fractional-order systems is more complex than
that of classical differential equations, since frac-
tional derivatives are nonlocal and have weakly sin-
gular kernels. Especially, the development on stability
of nonlinear fractional-order equations is a bit slow
[16]. Up to now, few authors investigated the stabil-
ity of fractional-order nonlinear system and obtained
some useful results. Li et al proposed the definition
of Mittag–Leffler stability and introduced the frac-
tional Lyapunov direct method to discuss stability of
fractional-order nonlinear systems [17]. Then Sadati
et al. [18] and Liu et al. [19] studied Mittag–Leffler
stability of the fractional nonlinear delayed systems
and fractional nonlinear neutral singular systems, re-
spectively. By using Bihari’s inequality and Bellman–
Gronwall’s inequality, rather than Laplace transform
and inverse Laplace transform, Delavari et al. pre-
sented an extension of Lyapunov direct method for the
Caputo type fractional-order nonlinear system [20],
which overcome some limitations in [17] and have im-
portant values in theory. However, in practice, to select
a suitable Lyapunov function and calculate its frac-
tional derivative for fractional-order system are very
inconvenient. Wen et al. considered the stability and
stabilization of nonlinear fractional-order dynamical
systems with fractional-order α : 0 < α < 1 [21]. Deng
derived sufficient conditions for the local asymptoti-
cal stability of nonlinear fractional-order systems with
fractional-order α : 0 < α < 1 [22]. Chen et al. ob-
tained two sufficient criteria on the asymptotical sta-
bility and stabilization of a class of fractional-order
nonlinear systems with fractional-order α : 0 < α < 1
and α : 1 < α < 2, respectively [23]. Zhao et al. stud-
ied the stabilization of nonlinear fractional order dy-
namic systems [24].

Note that these literatures on the stability of frac-
tional order systems mainly concentrated on fractional-
order α belonging to 0 < α < 1. In fact, not all the
fractional differential systems have fractional orders
in 0 < α < 1. There exist fractional-order models
described by fractional order α lying in 1 < α < 2,
for example, super-diffusion [25]. However, as far as
we know, there are few results on stability and sta-
bilization of fractional-order nonlinear systems with
the order α belonging to 1 < α < 2. [23] obtained
sufficient conditions for such asymptotical stability

of fractional-order nonlinear systems, but these re-
sults are local. Here, by using Mittag–Leffler function,
Laplace transform, and the Gronwall inequality, two
sufficient conditions for the local and global asymp-
totic stability and stabilization of a class of fractional-
order nonlinear systems with fractional-order α : 1 <

α < 2 are presented, respectively.
The remainder of this paper is organized as fol-

lows. In Sect. 2, some necessary definitions, lemmas
are presented. Main results are proposed in Sect. 3.
In Sect. 4, two examples and corresponding numerical
simulations are used to illustrate the validity and feasi-
bility of the proposed method. Finally, conclusions are
drawn in Sect. 5.

2 Preliminaries

There are some definitions for fractional derivatives.
The commonly used definitions are Grunwald–Letni-
kov (GL), Riemann–Liouville (RL), and Caputo (C)
definitions.

Definition 1 The fractional integral (Riemann–Liou-
ville integral) D−α

t0,t
with fractional order α ∈ R+ of

function x(t) is defined as

D−α
t0,t

x(t) = 1

Γ (α)

∫ t

t0

(t − τ)α−1x(τ) dτ, (1)

where Γ (·) is the gamma function, Γ (τ) =∫ ∞
0 tτ−1e−t dt .

Definition 2 The Riemann–Liouville derivative of
fractional order α of function x(t) is given as

RLDα
t0,t

x(t) = dn

dtn
D

−(n−α)
t0,t

x(t)

= dn

dtn

1

Γ (n − α)

∫ t

t0

(t − τ)n−α−1x(τ) dτ,

(2)

where n − 1 ≤ α < n ∈ Z+.
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Definition 3 The Caputo derivative of fractional order
α of function x(t) is defined as follows:

CDα
t0,t

x(t) = D
−(n−α)
t0,t

dn

dtn
x(t)

= 1

Γ (n − α)

∫ t

t0

(t − τ)n−α−1x(n)(τ ) dτ,

(3)

where n − 1 ≤ α < n ∈ Z+.

The Laplace transform of Caputo fractional deriva-
tives CDα

t0,t
x(t) is given as follows:

∫ ∞

0
e−st

CDα
0,t x(t) dt

= sαX(s) −
n−1∑
k=0

sα−k−1x(k)(t)

∣∣∣∣
t=0

(n − 1 ≤ α < n). (4)

Grunwald–Letnikov (GL) definition is difference
scheme and suitable for numerical calculations,
Riemann–Liouville (RL) definition takes the form of
differential-integral and plays an important role in the-
ory analysis. Throughout the paper, only the Caputo
definition is used since this Laplace transform allows
for initial conditions taking the same forms as those
for integer-order derivatives, which have clear physi-
cal interpretations and have a wide range of applica-
tions in the process of factual modeling. The notation
dα

dtα
is chosen as the Caputo fractional derivative oper-

ator CDα
0,t .

In order to obtain main results, the following defi-
nitions and lemmas are presented firstly.

Similar to the exponential function frequently used
in the solutions of integer-order systems, a function
frequently used in the solutions of fractional order sys-
tems is the Mittag–Leffler function.

Definition 4 Mittag–Leffler function is defined as

Eα(z) =
∞∑

k=0

zk

Γ (kα + 1)
, (5)

where α > 0 and z ∈ C.

The Mittag–Leffler function with two parameters
appears most frequently and has the following form:

Eα,β(z) =
∞∑

k=0

zk

Γ (kα + β)
, (6)

where α > 0, β > 0, and z ∈ C. When β = 1, one has
Eα(z) = Eα,1(z), further, E1,1(z) = ez.

Moreover, the Laplace transform of Mittag–Leffler
function in two parameters is

L
{
tβ−1Eα,β

(−λtα
)} = sα−β

sα + λ

(
R(s) > |λ| 1

α
)
, (7)

where t and s are, respectively, the variables in the
time domain and Laplace domain, L{·} stands for the
Laplace transform.

Lemma 1 ([1]) If 0 < α < 2, β is an arbitrary real
number, μ satisfies πα/2 < μ < min{π,πα}, and
C1,C2 are real constants, then

∣∣Eα,β(z)
∣∣ ≤ C1

(
1 + |z|)(1−β)/α exp

(
Re

(
z1/α

))

+ C2

1 + |z| , (8)

where | arg(z)| ≤ μ, |z| ≥ 0.

Lemma 2 ([26]) The following properties hold.

(i) There exist finite real constants M1,M2 ≥ 1 such
that for any 0 < α < 1,

Eα,1
(
Atα

) ≤ M1
∥∥eAt

∥∥,

Eα,α

(
Atα

) ≤ M2
∥∥eAt

∥∥,
(9)

where A denotes matrix, ‖ · ‖ denotes any vector
or induced matrix norm.

(ii) If α ≥ 1, then for β = 1,2, α

Eα,β

(
Atα

) ≤ ∥∥eAtα
∥∥. (10)

Lemma 3 ([27]) Suppose α > 0, a(t) is a non-
negative function locally integrable on 0 ≤ t < T

(some T ≤ +∞) and g(t) is a nonnegative, nonde-
creasing continuous function defined on 0 ≤ t < T ,
g(t) ≤ M(constant), and suppose u(t) is nonnegative
and locally integrable on 0 ≤ t < T with

u(t) ≤ a(t) + g(t)

∫ t

0
(t − s)α−1u(s) ds, (11)
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on this interval. Then

u(t) ≤ a(t)

+
∫ t

0

[ ∞∑
n=1

(g(t)Γ (α))n

Γ (nα)
(t − s)nα−1a(s)

]
ds.

(12)

Moreover, if a(t) is a nondecreasing function on
[0, T ), then

u(t) ≤ a(t)Eα,1
(
g(t)Γ (α)tα

)
. (13)

3 Main results

Consider the following fractional-order nonlinear sys-
tem:

dαx(t)

dtα
= f

(
x(t)

) = Ax(t) + h
(
x(t)

)
, (14)

where x(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ Rn denotes

the state vector of the state system, f : Rn → Rn de-
fines a nonlinear vector field in the n-dimensional vec-
tor space, fractional-order α belongs to 1 < α < 2.
A ∈ Rn×n is a constant matrix, Ax(t) and h(x(t)) de-
note linear and nonlinear parts of f (x(t)).

3.1 Stability of fractional-order nonlinear systems

Theorem 1 System (14) is locally asymptotically sta-
ble, if

(i) h(x(t)) satisfies h(0) = 0 and limx→0
‖h(x(t))‖
‖x(t)‖

= 0;
(ii) Reλ(A) < 0 and ω = −max{Reλ(A)} >

(Γ (α))1/α .

Proof Assume the initial conditions be x(k)(0) =
xk(k = 0,1), the solution of (14) can be obtained
by taking the Laplace transform and inverse Laplace
transform on (14)

x(t) = Eα,1
(
Atα

)
x0 + tEα,2

(
Atα

)
x1

+
∫ t

0
(t − τ)α−1Eα,α

(
Atα

)
h
(
x(τ)

)
dτ. (15)

From Lemma 2, one has
∥∥x(t)

∥∥ ≤ ∥∥eAtα
∥∥‖x0‖ + ∥∥eAtα

∥∥‖x1‖t

+
∫ t

0
(t − τ)α−1

∥∥eA(t−τ)α
∥∥∥∥h

(
x(τ)

)∥∥dτ.

(16)

Since A is a stability matrix, there exists N > 0 such
‖eAt‖ ≤ Ne−ωt and
∥∥eAtα

∥∥ ≤ Ne−ωtα ≤ Ne−ωt . (17)

Combining (16) with (17), one obtains
∥∥x(t)

∥∥ ≤ Ne−ωt‖x0‖ + Ne−ωt‖x1‖t

+ N

∫ t

0
(t − τ)α−1e−ω(t−τ)

∥∥h
(
x(τ)

)∥∥dτ.

(18)

Multiplying by eωt both sides of (18), one yields

eωt
∥∥x(t)

∥∥ ≤ N‖x0‖ + N‖x1‖t

+ N

∫ t

0
(t − τ)α−1eωτ

∥∥h
(
x(τ)

)∥∥dτ.

(19)

Based on the properties of limx→0
‖h(x(t))‖
‖x(t)‖ = 0, there

exists a constant δ > 0, such that

∥∥h
(
x(t)

)∥∥ ≤ 1

N

∥∥x(t)
∥∥ as

∥∥x(t)
∥∥ < δ. (20)

Substituting (20) into (19), one gets

eωt
∥∥x(t)

∥∥ ≤ N‖x0‖ + N‖x1‖t

+
∫ t

0
(t − τ)α−1eωτ

∥∥x(τ)
∥∥dτ. (21)

According to Lemma 3, and denote a(t) = N‖x0‖ +
N‖x1‖t , g(t) = 1, u(t) = eωt‖x(t)‖, one obtains

eωt
∥∥x(t)

∥∥ ≤ (
N‖x0‖ + N‖x1‖t

)
Eα,1

(
Γ (α)tα

)
. (22)

Then it follows from Lemma 1 that there exist two real
constants C1,C2 > 0 such that

eωt
∥∥x(t)

∥∥ ≤ (
N‖x0‖ + N‖x1‖t

)
Eα,1

(
Γ (α)tα

)

≤ C1
(
N‖x0‖ + N‖x1‖t

)
e(Γ (α))1/αt

+ C2(N‖x0‖ + N‖x1‖t)
1 + Γ (α)tα

. (23)



New results on stability and stabilization of a class of nonlinear fractional-order systems 637

That is,

∥∥x(t)
∥∥ ≤ C1

(
N‖x0‖ + N‖x1‖t

)
e[(Γ (α))1/α−ω]t

+ C2(N‖x0‖ + N‖x1‖t)
(1 + Γ (α)tα)eωt

. (24)

Based on Condition (ii), ‖x(t)‖ → 0 as t → +∞,
which implies that system (14) is locally asymptoti-
cally stable. �

Theorem 2 System (14) is globally asymptotically
stable, if

(i) h(x(t)) satisfies h(0) = 0, and is global Lipschitz
with Lipschitz constant L, i.e., |h(x1) − h(x2)| ≤
L|x1 − x2| for ∀x1, x2 ∈ R;

(ii) Reλ(A) < 0 and ω = −max{Reλ(A)} >

(NLΓ (α))1/α , in which N satisfies
‖eAt‖ ≤ Ne−ωt .

Proof Similar to Theorem 1, the solution of (14) can
be obtained by taking the Laplace transform and in-
verse Laplace transform on (14)

x(t) = Eα,1
(
Atα

)
x0 + tEα,2

(
Atα

)
x1

+
∫ t

0
(t − τ)α−1Eα,α

(
Atα

)
h
(
x(τ)

)
dτ. (25)

It follows from Lemma 2 and Condition (i) that

∥∥x(t)
∥∥ ≤ ∥∥eAtα

∥∥‖x0‖ + ∥∥eAtα
∥∥‖x1‖t

+ L

∫ t

0
(t − τ)α−1

∥∥eA(t−τ)α
∥∥∥∥x(τ)

∥∥dτ.

(26)

Due to A is a stability matrix, then ‖eAt‖ ≤ Ne−ωt

and

∥∥eAtα
∥∥ ≤ Ne−ωtα ≤ Ne−ωt . (27)

Substituting (27) into (26), one gets

∥∥x(t)
∥∥ ≤ Neωt‖x0‖ + Neωt‖x1‖t

+ LN

∫ t

0
(t − τ)α−1e−ω(t−τ)

∥∥x(τ)
∥∥dτ.

(28)

Multiplying by eωt both sides of (28), one has

eωt
∥∥x(t)

∥∥ ≤ N‖x0‖ + N‖x1‖t

+ LN

∫ t

0
(t − τ)α−1eωτ

∥∥x(τ)
∥∥dτ.

(29)

Based on Lemma 3, and let a(t) = N‖x0‖ + N‖x1‖t ,
g(t) = LN , u(t) = eωt‖x(t)‖, it yields

eωt
∥∥x(t)

∥∥ ≤ (
N‖x0‖ + N‖x1‖t

)
Eα,1

(
LNΓ (α)tα

)
.

(30)

Then, according to Lemma 1, there exist two real con-
stants C1,C2 > 0 such that

eωt
∥∥x(t)

∥∥ ≤ (
N‖x0‖ + N‖x1‖t

)
Eα,1

(
LNΓ (α)tα

)

≤ C1
(
N‖x0‖ + N‖x1‖t

)
e(LNΓ (α))1/αt

+ C2(N‖x0‖ + N‖x1‖t)
1 + LNΓ (α)tα

, (31)

which is equivalent to

∥∥x(t)
∥∥ ≤ C1

(
N‖x0‖ + N‖x1‖t

)
e[(LNΓ (α))1/α−ω]t

+ C2(N‖x0‖ + N‖x1‖t)
(1 + LNΓ (α)tα)eωt

. (32)

Therefore, from Condition (ii), when t → +∞,
‖x(t)‖ → 0, which implies system (14) is globally
asymptotically stable. �

3.2 Stabilization of fractional-order nonlinear
systems

The fractional-order system (14) is said to be stabi-
lization via linear state-feedback control if there exists
a state-feedback controller u(t) = Kx(t) such that the
closed-loop system

dαx(t)

dtα
= Ax(t) + h

(
x(t)

) + Bu(t)

= (A + BK)x(t) + h
(
x(t)

)

= Ãx(t) + h
(
x(t)

)
, (33)

is asymptotically stable, where feedback gains K need
to be determined, Ã = A + BK .

Therefore, our aim is to design a suitable feedback
gain matrix K such that the controlled system (33) is
asymptotically stable.
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Theorem 3 If feedback gains K is chosen such that
the following conditions hold:

(i) h(x(t)) satisfies h(0) = 0 and limx→0
‖h(x(t))‖
‖x(t)‖ =

0;
(ii) Reλ(Ã) < 0 and ω = −max{Reλ(Ã)} >

(Γ (α))1/α , then controlled system (33) is locally
asymptotically stable.

Proof The process of the proof is similar to that of
Theorem 1, so we omit it here. �

Theorem 4 If feedback gains K is chosen such that
the following conditions hold,

(i) h(x(t)) satisfies h(0) = 0 and is global Lipschitz
with Lipschitz constant L, i.e., |h(x1) − h(x2)| ≤
L|x1 − x2| for ∀x1, x2 ∈ R;

(ii) Reλ(Ã) < 0 and ω = −max{Reλ(Ã)} >

(NLΓ (α))1/α , in which N satisfies ‖eÃt‖ ≤
Ne−ωt , then controlled system (33) is globally
asymptotically stable.

Proof The process of the proof is similar to that of
Theorem 2, it is omitted here. �

Remark 1 Although [23] obtained the sufficient con-
ditions for ensuring the asymptotical stability and sta-
bilization of system (14) and controlled system (33),
respectively, these results are also local. Here, we de-
rive the sufficient conditions on the global asymptotic
stability of fractional order nonlinear systems.

4 Numerical examples

In this section, to verify and demonstrate the effec-
tiveness of the proposed method, we apply them to
stabilizing fractional-order chaotic Lü system with
fractional-order α = 1.1 and fractional-order chaotic
Lorenz system with fractional-order α = 1.05, respec-
tively. Here, an improved predictor-corrector algo-
rithm proposed by Deng [28] is applied.

The so-called Lü system is known as a bridge be-
tween the Lorenz system and Chen system [29]. Its

fractional version [30] is described as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dαx1

dtα
= a(x2 − x1),

dαx2

dtα
= −x1x3 + cx2,

dαx3

dtα
= x1x2 − bx3,

(34)

when the parameters are chosen as a = 36, b = 3,
c = 20, and α = 1.1, system (34) displays a chaotic
attractor, as shown in Fig. 1.

System (34) can be also rewritten as (14), in which

A =
⎡
⎣−a a 0

0 c 0
0 0 −b

⎤
⎦ , h(x) =

⎡
⎣ 0

−x1x3

x1x2

⎤
⎦ . (35)

It is very easy to verify that

lim
x→0

‖h(x(t))‖
‖x(t)‖ = lim

x→0

√
(x1x3)2 + (x1x2)2√

x2
1 + x2

2 + x2
3

≤ lim
x→0

|x1| = 0, (36)

which implies that h(x) satisfies Conditions (i). It fol-
lows from Theorem 3 and pole placement technique
that feedback gain is selected as

K =
⎡
⎣34 −36 0

0 −21 0
0 0 0

⎤
⎦ ,

which satisfies the conditions Re(λ(A)) < 0 and ω =
−max{λ(A+BK)} = 1 > 0.9557 = (Γ (α))1/α . Sim-
ulation results are depicted in Fig. 2, which show that
the zero solution of the controlled system is locally
asymptotically stable.

Fractional-order Lorenz system[31] can be de-
scribed by
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dαx1

dtα
= a(x2 − x1),

dαx2

dtα
= bx1 − x1x3 − x2,

dαx3

dtα
= x1x2 − cx3,

(37)

when the parameters are chosen as a = 10, b = 28,
c = 8/3, and α = 1.05, system (37) displays a chaotic
attractor, as shown in Fig. 3.
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Fig. 1 Chaotic behaviors of fractional-order chaotic Lü system (34) with fractional-order α = 1.1

Fig. 2 Stabilization of fractional-order chaotic Lü system (34)

Systems (37) can also be rewritten as (14), in which

A =
⎡
⎣−a a 0

b −1 0
0 0 −c

⎤
⎦ , h(x) =

⎡
⎣ 0

−x1x3

x1x2

⎤
⎦ . (38)

Based on the boundedness of chaotic systems, there
exist a real constant L such that

∥∥h(x)
∥∥ =

√
(x1x3)2 + (x1x2)2

= |x1|
√

x2
1 + x2

2 + x2
3 ≤ L‖x‖, (39)

which implies that h(x) satisfies Lipschitz-conditions.
From phase diagram, L is taken to be 20. In the sim-
ulation, according to Theorem 4, feedback gain is se-
lected as

K =
⎡
⎣ −8 −10 0

−28 −16 0
0 0 −15

⎤
⎦ .

By using simple calculation, ‖e(A+BK)‖ ≤ e−17.6667t

and ω = −max{Reλ(A + BK)} = 17.6667 > 16.9032
= (20×Γ (1.05))1/1.05, which satisfies Conditions (i).
Simulation results are displayed in Fig. 4, which show
that the zero solution of the controlled system is glob-
ally asymptotically stable.
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Fig. 3 Chaotic behaviors of fractional-order chaotic Lorenz system (37) with fractional-order α = 1.05

Fig. 4 Stabilization of fractional-order chaotic Lorenz system
(37)

5 Conclusion

In this paper, based on the Mittag–Leffler function, the
generalized Gronwall inequality and property of frac-

tional calculus, two sufficient stability theorems of a
class of nonlinear fractional-order differential systems
with fractional-order α : 1 < α < 2 have been given.
It should be pointed out that the global stability of
such systems is investigated for the first time. And the
corresponding criteria have been derived to construct
the linear state feedback controller that can stabilize
such systems. Simulation results have illustrated the
effectiveness of the results and the proposed control
method.
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