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Abstract In this paper, we present a new technique,
developed using time-delay estimation (TDE) and su-
pervising switching control (SSC), for the control and
synchronization of chaos systems. The proposed tech-
nique consists of three units: a time-delay estimation
unit that cancels system dynamics, a pole placement
control unit that shapes error dynamics, and an SSC
unit that is activated when the system dynamics are
rapidly changing. We prove the stability of the closed-
loop system using the Lyapunov analysis method. To
verify the control and synchronization performance
of the proposed technique (TDE-SSC), we compare
it with TDC using numerical simulation. Our results
indicate that the proposed scheme is an easily under-
stood, numerically efficient, robust, and accurate solu-
tion for the control and synchronization of chaos sys-
tems.
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1 Introduction

Over the past years, chaos systems have been widely
studied in various fields. In engineering applications,
chaotic behavior is undesirable [1, 2] and should be
regulated or suppressed to improve control perfor-
mance. Chaos systems are often used as keys for se-
cure communications or information processing be-
cause, although a chaos system is deterministic, its
long-term behavior is impossible to predict [3]. Con-
trolling the chaos systems is a real challenge because
they are sensitive to initial conditions, highly nonlin-
ear, irregular, and complex [4].

Recently, several types of controllers for the con-
trol and synchronization of chaos systems have been
proposed: fuzzy sliding mode control [5–7], linear
matrix inequality (LMI) based stabilization [8, 9],
fuzzy disturbance observer [10], particle swarm op-
timization (PSO) based fractional fuzzy control [11],
radial-neural-network-based control [12], finite time
control using fractional calculus [13–19], and linear
coupling and pragmatical adaptive tracking [20]. How-
ever, these approaches tend to require either a high
level of mathematical background or heavy comput-
ing power, restricting their practical applications de-
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spite their high performance. Sometimes, field engi-
neers find the complexity of the algorithm hard to han-
dle or encounter tuning difficulties.

It is worth noting that time-delay control (TDC) is
simpler in form and easier to implement for control-
ling and synchronizing chaos systems than the above-
mentioned techniques. TDC was first introduced to
control robot manipulators [21, 22]. TDC eliminates
unknown dynamics and disturbance using time-delay
estimation (TDE), which employs one-step delayed
state variables and control input, and then applies the
desired error dynamics [21–25]. With TDE, the con-
trol structure and the effect of tuning parameters are
transparent to designers. TDC has been proved to
be numerically efficient, practically effective in con-
trolling and synchronizing chaos systems, and robust
against parametric perturbation [26].

To further improve control and synchronization
performance using TDE, we must first consider the
characteristics of chaotic systems. Chaos systems are
highly nonlinear and irregular; the state variables of
chaos systems vary slowly for some time, but, some-
times, they change abruptly. The flow of unified chaos
systems [27] is described as multiple orbits circulat-
ing around the stationary points [28]. The instance the
center and size of the orbits are changed, the system
dynamics tends to rapidly change. Hence, the approx-
imation capability of TDE instantaneously weakens,
degrading the control accuracy of TDC.

In this paper, we propose a supervising switching
controller (SSC) for TDC to enhance the control and
synchronization accuracy of chaos systems. SSC is de-
signed to adjust the switching gain in proportion to
TDE errors in order to counteract them. When the dy-
namics of a chaos system is rapidly changing, the su-
pervising controller increases the switching gain. If
the state variables move slowly, SSC decreases the
switching gain towards zero. In our proposed tech-
nique, a saturation function is used instead of the
signum function to avoid chattering the control in-
put. We prove stability using the Lyapunov analysis
method. Further, the results of a simulation showed
that TDE-SSC is indeed effective and feasible. Thus,
our proposed technique is a simple, numerically ef-
ficient, robust, and highly accurate solution for con-
trolling and synchronizing chaos systems. The pro-
posed technique is successfully implemented for stabi-
lization of three-dimensional chaotic Arneodo systems
[19, 29] via a single variable control input. Simulation

results show the effectiveness and applicability of the
proposed control technique.

To demonstrate the practicality of our proposed
technique, we simulate a chaotic masking technique
for secure communications [30]. A secret information
signal is masked by a chaos system at the transmit-
ter side, and then it is sent to a public communication
channel. To recover the original information, the chaos
system at the receiver side must be synchronized with
the chaos system at the transmitter side. We show that
the reconstruction accuracy depends significantly on
the synchronization accuracy, and the proposed TDE-
SSC indeed reduces loss of the original information
compared with the TDC.

The remainder of this paper is organized as fol-
lows. In Sect. 2, we propose TDE-SSC for the con-
trol and synchronization of chaos systems, and prove
that the closed-loop system is stable with the proposed
TDE-SSC. Section 3 presents a simulation for the con-
trol of a Lorenz system [31]. Stabilization of three-
dimensional chaotic Arneodo systems with a single
variable control input is given in Sect. 4. In Sect. 5, the
Lorenz system is synchronized with Lü’s system [32].
In Sect. 6, we present an example of chaotic masking
used for secure communication. Finally, in Sect. 7 we
conclude this paper.

2 Design of controllers for chaos systems

2.1 Time-delay control

Consider a class of nonlinear systems:

ẋt = ft + ut , (1)

where xt = [x1,t , x2,t , . . . , xn,t ]T = [x(t), x(1)(t), . . . ,

x(n−1)(t)]T , ft = f(xt ) = [f1(xt ), f2(xt ), . . . , fn(xt )]T ,
and ut = u(xt ) = [u1(xt ), u2(xt ), . . . , un(xt )]T . Sup-
pose that xt ∈ [t0, tf ) × D ⊂ Rn and f is a Lipschitz
function on D. That is, there exist δ∗ = [δ∗

1 , δ∗
2 , . . . ,

δ∗
n]T and 0 < δ∗

i such that

sup
x,y∈D

∥
∥fi(x) − fi(y)

∥
∥ ≤ δ∗

i · ‖x − y‖. (2)

In order to design a controller for the system tracking
a desired trajectory xm,t , we first estimate ft from TDE
as

ft ≈ ft−L = ẋt−L − ut−L, (3)
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where L is a small time delay, which is given as
the sampling time of a control microprocessor. Using
TDE, a TDC controller is designed as

ut = −ẋt−L + ut−L
︸ ︷︷ ︸

TDE of −ft

+ ẋm,t + Ket
︸ ︷︷ ︸

Pole placement
control

, (4)

where et = xt − xm,t and K is a matrix used to assign
stable closed-loop poles. By substituting ut in (1), the
closed-loop system becomes

ėt = Ket + ft − ft−L. (5)

Hence, if the TDE error ‖ft − ft−L‖ is sufficiently
small, then the closed-loop system follows the desired
error dynamics characterized by the pole placement
gain K.

2.2 Design of TDE-SSC

In order to enhance the accuracy of TDC, we propose
the following TDE-SSC:

ut = −ẋt−L + ut−L
︸ ︷︷ ︸

TDE

+ ẋm,t + Ket
︸ ︷︷ ︸

Pole placement
control

+ rt
︸︷︷︸

SSC

,
(6)

where rt = [r1,t , r2,t , . . . , rn,t ]T is the vector signal of
SSC that compensates for the TDE error and is ex-
pressed as

ri,t = −δ̂i,t · ‖xt − xt−L‖ · sgn
(

eT
t Pbi

)

, (7a)

˙̂
δi,t = γi · ‖xt − xt−L‖ · ∣∣eT

t Pbi

∣
∣, (7b)

where 0 ≤ δ̂i,t ≤ δ̂max
i is used to estimate the maxi-

mum gain, γi > 0 is an adaptation gain, P = PT > 0
is the solution of the algebraic Riccati equation of
KT P+PK+q · I = 0 for a given q > 0 and an identity
matrix I, and

I = [

b1; b2; . . . ;bn

]

. (8)

In (6), the high order term ẋt−L can be calculated by
numerical differentiation, as ẋt−L ≈ (xt − xt−L)/L.

The switching gain in (7a) can be approximated as

‖xt − xt−L‖ ≈ L · ‖ẋt‖, (9)

by using the finite divided difference method as given
in [33]. If the system dynamics is rapidly changing,
then the switching amplitude increases but if the state

variables converge to the steady state, then the switch-
ing amplitude decreases to zero. Using this property
of the proposed switching gain, we can suppress the
chattering. A large γi updates δ̂i,t quickly but it tends
to overestimate δ∗

i . On the other hand, a small γi can
avoid the overestimation but δ̂i,t will only be slowly
updated.

The following theorem shows that the tracking er-
ror of the closed-loop system converges to zero.

Theorem 1 The closed-loop control system (1)–(6),
and (7a), (7b) converges in the sense that

lim
t→∞‖et‖ = 0.

Proof Let us consider the following Lyapunov func-
tion Vt :

Vt = 1

2
eT
t Pet + 1

2
· δ̃T

t Γ δ̃t , (10)

where δ̃t = δ̂t − δ∗ = [δ̃1,t , δ̃2,t , . . . , δ̃n,t ]T , δ̂t =
[δ̂1,t , δ̂2,t , . . . , δ̂n,t ], and Γ = diag(γ −1

1 , γ −1
2 , . . . , γ −1

n )

is a diagonal matrix. Then we have

V̇t ≤ − q · ‖et‖2 + eT
t P · (ft − ft−L + rt ) + δ̃

T

t Γ
˙̂
δt .

(11)

By using (2), we obtain

‖fi,t − fi,t−L‖ ≤ δ∗
i · ‖xt − xt−L‖

= (δ̂i,t − δ̃i,t ) · ‖xt − xt−L‖. (12)

Hence, it follows from (11) that

V̇t ≤ −q · ‖et‖2

+
n

∑

i=1

{

δ̂i,t · ‖xt − xt−L‖ · |eT
t Pbi | + eT

t Pbi · ri,t
}

+
n

∑

i=1

[
1

γi

δ̃i,t

× { ˙̂
δi,t − γi · ‖xt − xt−L‖ · ∣∣eT

t Pbi

∣
∣
}
]

. (13)

Substituting (7a) and (7b) in the above equation yields

V̇t ≤ −q · ‖et‖2. (14)

Hence, there exists a positive constant c such that
∫ t

0
‖eτ‖2 dτ ≤ c · {|V0| − |Vt |

} ≤ c · |V0| < ∞, (15)
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from which it follows that limt→∞
∫ t

0 ‖eτ‖dτ exists
and is finite. By using Barbalat’s lemma [34], we can
then show that ‖et‖ → 0 as t → ∞. �

Remark 1 The boundary layer approach helps to re-
duce the high-frequency action in the proposed con-
troller. That is, the switching boundary is smoothed
out by replacing the signum function with a saturation
function [35]:

sat

(
x

ε

)

=
⎧

⎨

⎩

x if |x| ≤ ε,

sign(x) if ε < |x|,
(16)

where ε > 0. Because ε is proportional to the upper
bound of the synchronization error, it should be care-
fully selected.

3 Control of the Lorenz system

The Lorenz system to be controlled [26, 36–38]
(Fig. 1) is expressed as follows:

ẋ1,t = σ · (x2,t − x1,t ) + d1,t ,

ẋ2,t = r · x1,t − x2,t − x1,t · x3,t + d2,t + u2,t ,

ẋ3,t = x1,t · x2,t − b · x3,t ,

(17)

where σ = 10, b = 8/3, and r = 28. According to
[28], the Lorenz system has a bounded, zero volume,
and a globally attracting set. Hence, ‖ft‖ is bounded
for all 0 ≤ t . Let d1,t = d2,t = 0.5 · cos(5πt) be distur-
bances [37] and x0 = [10,10,10]T . The desired posi-

Fig. 1 Phase portrait of the uncontrolled Lorenz system

tion trajectory is given as

xm,t =
{

[8.50,8.50,27.09]T , 5 ≤ t < 10,

[12,12,54]T , 10 ≤ t ≤ 20.
(18)

The control input u2,t is designed as

u2,t = −ẋ2,t−L + ut−L + k1 · e1,t + k2 · e2,t + r2,t ,

(19)

where k1 = −10, k2 = −50, L = 1 ms, γ = 100, P =
[2.61 0.05; 0.05 0.01], and q = 1. The control input
is applied to the system after 5 ≤ t .

Figure 2 shows the state variables and the phase
portrait of the controlled Lorenz system. It can be
seen that the proposed controller drives the state vari-
ables of the Lorenz system to the desired position. The
supervising controller reduces the switching gain to
zero as x1,t and x2,t converge to the desired position
xm,1 = xm,2 = 8.50 (Fig. 3). It increases the switch-
ing gain again when the desired position is changed to
xm,1 = xm,2 = 12 after 10 ≤ t s.

4 Control of the Arneodo system

The Arneodo chaos system to be controlled [19, 29] is
expressed as follows:

ẋ1,t = x2,t + δft + ut ,

ẋ2,t = x3,t ,

ẋ3,t = 5.5x1,t − 3.5x2,t − x3,t − x3
1,t ,

(20)

where δft is a disturbance given as

δft = 0.12 sin(4t)x2,t + 0.18 cos(3t)x1,t

+ 0.15 cos(5t). (21)

In [19], it was shown that if x1,t = 0, then we have

ẋ2,t = x3,t ,

ẋ3,t = −3.5x2,t − x3,t ,
(22)

which is asymptotically stable. The control input ut is
designed as

ut = −ẋ1,t−L + ut−L + k · x1,t + rt , (23)

where −ẋ1,t−L + ut−L is to estimate and eliminate
the disturbance δft , and the desired dynamics k · x1,t
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Fig. 2 The controlled Lorenz system. The state variables con-
verge to the desired position trajectory xT

m,1 = [8.5,8.5,27.09]
for 5 ≤ t ≤ 10, and xT

m,2 = [12,12,54] for 10 ≤ t ≤ 20; a is

the initial position; the controller activated at t = 5 drives the
state variables from b to c located at xm,1 and then to d located

at xm,2

Fig. 3 The control input u2,t and the switching amplitude of
SSC r2,t ; the u2,t is activated after 5 ≤ t ; and r2,t impulsively
increases when the desired position is changed

is applied to the system; the switching input rt , (7a),
(7b), is designed to compensate the TDE error. The
initial value of the system are given as x1,0 = 0.15,
x1,0 = −0.10, and x3,0 = 0.20. The sampling time and
gains are selected as L = 1 ms, k = −0.01, γ = 100,
P = 50, and q = 1. As a result, x1,t converges to zero,
and the closed-loop system is asymptotically stable.

Figure 4 shows that the state variables of the Ar-
neodo system with TDE-SSC is asymptotically stable.
The control input converges to zero as state variable
reduces to zero (Fig. 5).

Fig. 4 State variables of the Arneodo system: the TDE-SSC
stabilizes the state variables to zero

5 Chaos synchronization between Lorenz and Lü
systems

The Lorenz system to be synchronized with the Lü
systems is given as

ẋ1,t = (σ + δσ ) · (x2,t − x1,t ) + d1,t + u1,t ,

ẋ2,t = (r + δr) · x1,t − x2,t − x1,t · x3,t + d2,t + u2,t ,

ẋ3,t = x1,t · x2,t − (b + δb) · x3,t + d3,t + u3,t ,

(24)
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Fig. 5 The control input of TDE-SSC

where δσ = 0.1, δr = 0.1, and δb = 0.2 denote the
corresponding perturbation of the parameters σ = 10,
r = 28, and b = 8/3, respectively; d1 = 0.3 · sin(x2,t ),
d2 = 0.1 · cos(x1,t ), and d3 = 0.2 · sin(3 · x2,t ) are dis-
turbances; and x0 = [0.2,0.6,1]T . The desired Lü sys-
tem [32] is given as

ẋm,1,t = a · (xm,2,t − xm,1,t ),

ẋm,2,t = −xm,1,t · xm,3,t + c · xm,2,t ,

ẋm,3,t = xm,1,t · xm,2,t − b · xm,3,t ,

(25)

where a = 35, b = 3, c = 20, and xm,0 = [−10,

−5,5]T . The control input ut is designed as follows:

ut = −ẋt−L + ut−L + ẋm,t + K · et + rt , (26)

where K = diag(−50,−50,−50), L = 1 ms, γ =
25000, P = diag(0.01,0.01,0.01), and q = 1. ẋt−L is
calculated by ẋt−L ≈ (xt − xt−L)/L.

Figure 6 depicts the simulation results, which show
that the Lorenz system is synchronized with the Lü
system using TDE-SSC. From Fig. 7 it is clear that
TDE-SSC improves the synchronization error ‖et‖2,
where ‖ · ‖2 is a conventional 2-norm, compared with
TDC [26]. Figure 8 shows that the supervising control
adjusts the switching gain of ri,t roughly in proportion
to the TDE error |fi,t − fi,t−L|.

In order to reduce the chattering problem, the
signum function is replaced with a saturation func-
tion, where ε = 10−4. Figures 9 and 10 show that the
chattering effect is substantially attenuated but Fig. 11
shows that the synchronization error is sufficiently
small even though the signum function is replaced
with the saturation function. Comparison of the root-
mean-square (RMS) error of the TDE-SSC and TDC
indicates that the TDE-SSC shows a better synchro-
nization performance compared with TDC, as shown
in Table 1.

To show the relationship between the synchroniza-
tion accuracy of the TDE-SSC and the time delay L,
we repeat the above simulation with L = 1, 10, 100,
and 1000 ms. The synchronization error for 9 ≤ t ≤ 11

Fig. 6 The Lorenz system synchronized with the Lü system
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Fig. 7 Synchronization errors ‖et‖2. The error of TDE-SSC is smaller than that of TDC

Fig. 8 Relationship
between the TDE error and
the switching gain. The
switching gain is adjusted
roughly in proportion to the
TDE error for 9 ≤ t ≤ 11

Fig. 9 Comparison of the control input of TDE-SSC with signum function and with saturation function. The control input chattering
is reduced in u3,t by using the saturation function
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Fig. 10 The TDE error and SSC input rt . The amplitude of SSC with the saturation function is roughly proportional to the TDE error

Fig. 11 The synchronization errors corresponding to TDC,
TDE-SSC with signum function, and TDE-SSC with saturation
function

Table 1 RMS synchronization errors for 1 ≤ t ≤ 20

Controller e1 e2 e3

TDC 0.0059 0.0128 0.0217

TDE-SSC (signum) 0.0004 0.0022 0.0059

TDE-SSC (saturation) 0.0020 0.0039 0.0065

is plotted in Fig. 12 and its RMS error is given in Ta-
ble 2, where we can see that the synchronization error
was roughly proportional to the length of the time de-
lay. In fact, as the length of the time delay increases,
the TDE error ft − ft−L increases (Fig. 13). Then the
increased TDE error disturbs the desired error dynam-
ics more as shown in (5), resulting poor synchroniza-

Table 2 RMS synchronization errors with L = 1, 10, 100, and
1000 ms for 1 ≤ t ≤ 20

L (ms) e1 e2 e3

1000 0.5895 0.8194 0.6851

100 0.1672 0.2482 0.2528

10 0.0064 0.0180 0.0553

1 0.0004 0.0022 0.0059

tion accuracy. It is obvious that TDE-SSC with shorter
time delay guarantees higher accuracy but L cannot
be infinitesimal due to CPU power limitation of the
microprocessor or computer. In general, the sampling
time of 1 ms is acceptable for various chaos applica-
tions.

6 Chaos synchronization for secure
communications

In this section, we present a simulation example of a
chaotic masking process as given in Fig. 14 [30]. For
communication security, an information signal mt is
masked by adding a chaos signal xm,t with a particular
initial condition xm,0 at the transmitter side as

vt = mt + xm,t , (27)

where vt is the masked information signal. Figure 15
shows that the information signal mt = 0.3 sin(πt/2)

is masked by adding the Lü chaos signal xm,2,t with
xT
m,0 = [−10,−5,5]. Then the masked information
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Fig. 12 Synchronization errors ‖et‖ with L = 1, 10, 100, and 1000 ms

Fig. 13 The TDE errors fi,t − fi,t−L with L = 1, 10, and 100
ms for 9 ≤ t ≤ 11 (s)

signal vt is sent to a public communication chan-
nel. Any receivers in this public channel can access
the masked information signal but the recovery of
the original information mt is only possible when the
masking chaos signal xm,t is known. If xm,t informa-
tion is available, then mt can be recovered as

mt = vt − xm,t . (28)

Since the chaos systems are unpredictable, it is im-
possible to estimate the parameters of the chaos sys-
tem from the masked signal. An attempt to recover the

original information with an arbitrarily selected pa-
rameters will fail because the chaotic signal is very
sensitive to the initial condition and system parame-
ters. Even if the initial value of the unmasking signal
is slightly different from that of the original masking
signal, the unmasked information is completely dis-
torted: Fig. 16 shows the unmasked information mt by
subtracting the masking chaos signal with the original
initial value and with a small perturbed initial value.
Due to this property, the chaos system is known to be
suitable for secure communication.

For wireless communication environment, the
masking signal xm,t generated at the transmitter side is
not directly available at the receiver side. Instead, the
receiver generates the unmasking chaos signal xu,t and
synchronizes it with the masking signal xm,t generated
at the designated transmitter side. Then the original in-
formation is recovered by using the synchronized xu,t

as

m̂t = vt − xu,t , (29)

where m̂t is the unmasked information signal using
xu,t . Here, the synchronization accuracy is important
to reduce the loss of the original information because
‖mt − m̂t‖ = ‖xu,t −xm,t‖. Figure 17 presents the un-
masked information signals, where xu,t at the receiver
side is the Lorenz system with xT

u,0 = [0.2,0.6,1] as
given in the last section; xm,t at the transmitter side is
the Lü system with xT

m,0 = [−10,−5,5]; and the TDC
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Fig. 14 Structure of the
chaos masking scheme

Fig. 15 The original signal and the corresponding masked signals masked by the Lü chaos system with xT
m,0 = [−10 − 5 5]

Fig. 16 Unmasked information signals when there is no initial error and there is a small initial error

and the TDE-SSC with L = 1, 10, and 100 ms are used

for synchronization. As the length of the time delay L

decreases, the loss of the original information also de-

creases because the controllers with a shorter time de-

lay can provide better synchronization accuracy. Note
that the results of the control system obtained by using
the TDE-SSC are more robust and accurate than those
of the system obtained by using the TDC.
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Fig. 17 The original
information m̂t unmasked
by the synchronized Lorenz
system. Compared with
TDC, TDE-SSC improves
the quality of the recovered
signal even with a longer
time delay

7 Conclusion

In this paper, we showed that synergistic effects are
achieved by combining TDE and SSC for control and
synchronization of chaos systems. TDE is used to es-
timate nonlinearities in chaotic systems; however, rel-
atively large TDE errors occur when the dynamics of
chaos systems are rapidly changing. SSC is designed
to adjust the switching gain in proportion to TDE er-
rors in order to counteract the TDE errors. However,
the use of the signum function in SSC introduces chat-
tering in the control input. A saturation function can
be used instead of the signum function in our pro-
posed control technique. Simulation results show that
the synchronization error of our proposed technique is
smaller than that of TDC, and the chattering effect of
our proposed control input can be substantially atten-
uated without severely deteriorating the synchroniza-
tion performance of the signum function by using a
saturation function. Our proposed technique is an eas-
ily understood, numerically efficient, robust, and ac-
curate solution for the control and synchronization of
chaos systems.
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