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Abstract In this paper, the mathematical model of the
stabilization of the inverted pendulum with vertically
oscillating suspension under hysteretic control is con-
structed. In the frame of the presented model, the sta-
bility criteria for the linearized equations of motion
are found. We have made the numerical construction
of the stability zones in the two-dimensional parame-
ter space. Dependencies between initial conditions and
driven parameters that provide periodic oscillations of
the pendulum are obtained.
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1 Introduction

The problem of the inverted pendulum has a long
history [14, 15, 33] and remains relevant even in
the present days [1, 5–7, 12, 20, 23, 26, 34, 35, 37].
As is well known, the model of the inverted pen-
dulum plays the central role in the control theory
[4, 5, 10, 13, 16, 22, 28, 34, 35]. It is a well estab-
lished benchmark problem that provides many chal-
lenging problems to control design. Because of their
nonlinear nature, pendulums have maintained their
usefulness and they are now used to illustrate many
of the ideas emerging in the field of nonlinear con-
trol [2]. Typical examples are feedback stabilization,
variable structure control, passivity based control,
back-stepping and forwarding, nonlinear observers,
friction compensation, and nonlinear model reduction.
The challenges of control made the inverted pendulum
systems a classic tools in control laboratories.1

According to control purposes of the inverted pen-
dulum, the control of inverted pendulum can be di-
vided into three aspects. The first aspect that is widely
researched is the swing-up control of inverted pendu-

1Here, it should be noted that although a lot of control algorithm
are researched in the systems control design, PID controller is
the most widely used controller structure in the realization of
a control system [34]. The advantages of the PID controller,
which have greatly contributed to its wide acceptance, are its
simplicity and sufficient ability to solve many practical control
problems.
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Fig. 1 Geometry of the problem. Panel a: general view of the
inverted pendulum. Panel b: the suspension point (cylinder and
piston)

lum [10, 22, 28].2 The interesting and important re-
sults on the time optimal control of the inverted pendu-
lum were obtained in [10, 28]. In particular, in [28] the
optimal transients (taking into account the cylindrical
character of the states space of the system under con-
trol) were built for different values of the parameters
and constraints on the control torque. The second as-
pect is the stabilization of the inverted pendulum [3, 9].
The third aspect is the tracking control of the inverted
pendulum [8]. In practice, stabilization and tracking
control are more useful for application.

Also, the model of the inverted pendulum (espe-
cially, under various kinds of control of the motion
of the suspension point) is widely used in the vari-
ous fields of physics [31], applied mathematics [35],
engineer sciences [19, 32], neuroscience [36], eco-
nomics [30], and others.

The model of an inverted pendulum with an oscil-
lating suspension point (see panel a in Fig. 1) was stud-
ied in detail by Kapitza [14, 15]. Let us recall that the
equation of motion of pendulum has the form:

φ̈ − 1

l

[
g + f̈ (t)

]
sinφ = 0 (1)

where φ is the angle of vertical deviation of the pen-
dulum, l is the pendulum’s length, g is the gravita-
tional acceleration, and f (t) is the law of motion of
the suspension point (of course, this equation should

2The one-dimensional swinging inverted pendulum with two
degrees of freedom is a popular demonstration of using feed-
back control to stabilize an open-loop unstable system. Since
the system is inherently nonlinear, it has been used extensively
by the control engineers to verify a modern control theory. In
this system, an inverted pendulum is attached to a cart equipped
with a motor that drives it along a horizontal track [11].

be considered together with the corresponding initial
conditions).

As is known, if the motion of the suspension point
is of harmonic character, then Eq. (1) reduces to the
Mathieu equation, studied in detail, e.g., in [21].

In order to make an adequate description of the
dynamics of real physical and mechanical systems, it
is necessary to take into account the effects of hys-
teretic nature such as “backlash,” “stops,” etc. [25].
The mathematical models of such nonlinearities ac-
cording to the classical patterns of Krasnosel’skii and
Pokrovskii [18], reduce to operators that are treated as
converters in appropriate function spaces. The dynam-
ics of such converters are described by the relation of
“input-state” and “state-output.”

As is known, most of the real physical and techni-
cal systems contain a various kind of parts that can
be represented as a cylinder with a piston [25]. In-
evitably, the backlashes appear in such systems during
its long operation due to the “aging” of the materials.
As was mentioned above, such backlashes are of hys-
teretic nature and the analysis of such nonlinearities is
quite important and an actual problem. In this paper,
we investigate the problem of the inverted pendulum
under hysteretic control in the form of backlash. More
specific, we investigate the dynamical features of such
a system depending on the control parameters, espe-
cially on the cylinder’s length that of hysteretic nature.
Let us note also that the system under consideration
can be considered as a successful model for a real me-
chanical system with a hysteretic type of nonlinearity.

The paper is organized as follows. In Sect. 2, we
construct the mathematical model of the inverted pen-
dulum under hysteretic control. Section 3 is dedicated
to the problem of stability of the linearized equation
of motion. Particularly, in this section the monodromy
matrix and the stability condition for the inverted pen-
dulum under hysteretic control are found in the ex-
plicit analytical form. In Sect. 4, the stability zones of
the presented system are analyzed in detail. Section 5
is dedicated to the analysis of the periodic solutions
for the system under consideration taking into account
that the hysteretic control takes place. In the last sec-
tion, all the main results of this paper are summarized.

2 Mathematical model

Let us consider a system where the base of the pendu-
lum is a physical system (P,S) formed by a cylinder
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of length H and the piston P .3 Both the cylinder and
piston can move in the direction of the vertical axis as
it is shown in panel b of the Fig. 1.

We determine the piston’s position by the coordi-
nate f (t) and the cylinder’s position by coordinate
υ(t). Let us assume also that the “leading” element
in the system (P,S) is a cylinder P . In this assump-
tion, the system (P,S) can be considered as a con-
verter Γ with the input signal f (t) (piston’s position)
and the output signal υ(t) (cylinder’s position). Such
a converter is called backlash. The set of its possible
states is f (t) ≤ υ(t) ≤ f (t) + H (−∞ < f (t) < ∞).
The cylinder’s position υ(t) at t > t0 is defined by
υ(t) = Γ [t0, υ(t0)]f (t), where Γ [t0, υ(t0)] is the op-
erator defined for each υ0 = υ(t0) on the set of contin-
uous inputs f (t) (t > t0) for which υ0 − H < f (t) <

υ0 [18].
We assume that the piston’s acceleration periodi-

cally changes from −aω2 to aω2 with the frequency
ω. This assumption consists in the fact that the lin-
earized equation of motion of such a pendulum can be
written in the form:4

φ̈ − 1

l

[
g + aω2G(t,H)w(t)

]
φ = 0,

w(t) = − sign
[
sin (ωt)

]
,

φ(0) = φ10, φ̇(0) = φ20,

(2)

where sign(z) is the usual signum function,
G(t,H)w(t) is the acceleration of the suspension
point and

G(t,H) =
{

0, t ∈ (t∗, t∗ + �t),

1, t out of (t∗, t∗ + �t),

where t∗ are the moments after which the accelera-
tion’s sign change takes place; �t =

√
2H

aω2 is the time
for which the piston passes through the cylinder.

3Here, we would like to note that both the cylinder and piston
are ideal, absolutely rigid, and can move along the y-axis in the
infinite ranges.
4It should also be pointed out that such a periodic behavior of
the piston’s acceleration (namely, the fact that the acceleration
of the piston changes from −aω2 to aω2) is an assumption of
the model presented in this paper. Such a model allows us to
obtain some analytical results (the explicit conditions for the
stability zones). Also, the numerical simulations are most ef-
fectively in the frame of this model. Moreover, such a model of
the piston’s behavior most effectively and adequately describes
the dynamics of the parts of real technical devices.

3 Stability of linearized equation

Let we pass to dimensionless units in (2) using the fol-
lowing change:

x ≡ φ, τ = ωt, k = g

lω2
, s = a

l
,

�τ =
√

2H

sl
.

As a result, we obtain an equation similar to the Meiss-
ner equation [21], but with the negative coefficients
and hysteretic nonlinearity, namely:

ẍ − [
k − sG(τ,H) sign(sin τ)

]
x = 0,

G(τ,H) =
{

0, τ ∈ (τ ∗, τ ∗ + �τ),

1, τ out of (τ ∗, τ ∗ + �τ),

x(0) = x10, ẋ(0) = x20.

(3)

We can write Eq. (3) in the form of an equivalent sys-
tem:
{

ẋ1 = x2,

ẋ2 = p(τ)x1,

x1(0) = x10, x2(0) = x20.

(4)

The matrix of this system has the form:

P(τ ) =
(

0 1
p(τ) 0

)
,

where p(τ) = k − sG(τ,H) sign(sin τ). In the frame
of our assumptions, the matrix P(τ ) is a periodic func-
tion of time with the period 2π , namely: P(τ + 2π) ≡
P(τ ).

Let we say that Eq. (3) is stable (or unstable) ac-
cording to Lagrange if the system (4) is stable (or un-
stable, respectively). It means that all solutions x(τ)

of the stable Eq. (3) are bounded in [τ0,∞) together
with the derivatives ẋ(τ ).

Following the results of Floquet [27], the investi-
gation of the stability of such systems reduces to the
problem of finding of the fundamental matrix of the
solutions at the moment 2π (the so-called monodromy
matrix) and evaluation of its eigenvalues (the so-called
multipliers). For the stability of the periodic system, it
is necessary and sufficient that the following condition
takes place |	| < 1 (all the multipliers are placed in-
side the unit circle).
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Fig. 2 Functions r(τ ) and p(τ)

Due to the fact that the matrix P(τ ) is a piecewise-
constant, the fundamental system of solutions and
the monodromy matrix can be constructed in the
closed form. In order to do this, let us consider
behavior of a piecewise-constant function r(τ ) =

−G(τ,H) sign(sin τ) with the period 2π , and a func-
tion p(τ), respectively (see Fig. 2).

As we see from Fig. 2, in the interval (0,2π) the
system (4) can be described by the following linear
systems with the constant coefficients:
{

ẋ1
1 = x1

2 ,

ẋ1
2 = kx1

1 ,
τ ∈ [0,�τ ], (5)

{
ẋ2

1 = x2
2 ,

ẋ2
2 = −(s − k)x2

1 ,
τ ∈ [�τ,π], (6)

{
ẋ3

1 = x3
2 ,

ẋ3
2 = kx3

1 ,
τ ∈ [π,π + �τ ], (7)

{
ẋ4

1 = x4
2 ,

ẋ4
2 = (k + s)x4

1 ,
τ ∈ [π + �τ,2π]. (8)

Since the fundamental matrix should be continu-
ous, the solutions of (5)–(8) should match at the cor-

responding points, namely:

X1(0) = E, Xj
(
τ ∗
j

) = Xj+1(τ ∗
j

)
,

where i = 1,2,3, τ ∗
i are the moments at which the

control changes during the period, E is the unity ma-
trix.

Consistent integration of the systems (5)–(8) leads
to the following fundamental matrices:

X1(τ ) =
(

cosh (
√

kτ) 1√
k

sinh (
√

kτ)√
k sinh (

√
kτ) cosh (

√
kτ)

)

,

X2(τ ) = X1(�τ)

(
cos [k2(τ − �τ)] 1

k2
sin [k2(τ − �τ)]

−k2 sin [k2(τ − �τ)] cos [k2(τ − �τ)]
)

,

X3(τ ) = X2(π)

(
cosh [√k(τ − π)] 1√

k
sinh [√k(τ − π)]√

k sinh [√k(τ − π)] cosh [√k(τ − π)]

)

,

X4(τ ) = X3(π + �τ)

(
cosh [k1(τ − π − �τ)] 1

k1
sinh [k1(τ − π − �τ)]

k1 sinh [k1(τ − π − �τ)] cosh [k1(τ − π − �τ)]
)

.

Putting τ = 2π in X4(τ ), we obtain the following form
of the monodromy matrix of the system (4):

A = X(2π)

=
(

cosh (
√

k�τ) 1√
k

sinh (
√

k�τ)√
k sinh (

√
k�τ) cosh (

√
k�τ)

)

×
(

cos (k2γ ) 1
k2

sin (k2γ )

−k2 sin (k2γ ) cos (k2γ )

)

×
(

cosh (
√

k�τ) 1√
k

sinh (
√

k�τ)√
k sinh (

√
k�τ) cosh (

√
k�τ)

)

×
(

cosh (k1γ ) 1
k1

sinh (k1γ )

k1 sinh (k1γ ) cosh (k1γ )

)
, (9)
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where (k1)
2 = k + s, (k2)

2 = s − k (s > k), γ = π −
�τ . Let we write also the characteristic equation for
the matrix A:

‖A − 	E‖ =
∣∣∣
∣
a11 − 	 a12

a21 a22 − 	

∣∣∣
∣ = 	2 + α	 + β = 0,

(10)

where

β = (−1)2 exp

(∫ T

0
Sp

[
P(τ )

]
dτ

)
= 1

[24] and α = −(a11 + a22).
The product of the roots 	1 and 	2 of Eq. (10) is

equal to unity, so the motion will be stable at |α| < 2
only, i.e., when the modules both of multipliers are
equal to unity, but these multipliers are different. Thus,
we obtain the following condition for the stability of
solutions of (3):

|a11 + a22| < 2. (11)

Using (9) the condition (11) can be written in the ex-
plicit form:
∣∣∣∣cos (k2γ )

[
2 cosh (2

√
k�τ) cosh (k1γ )

+ sinh (2
√

k�τ) sinh (k1γ )

(√
k

k1
+ k1√

k

)]

+ sin (k2γ )

[
sinh (2

√
k�τ) cosh (k1γ )

(√
k

k2
− k2√

k

)

+ cosh2 (
√

k�τ) sinh (k1γ )

(
k1

k2
− k2

k1

)

+ sinh2 (
√

k�τ) sinh (k1γ )

(
k

k1k2
− k1k2

k

)]∣∣∣∣ < 2.

(12)

Thus, the stability zone of the system (4) in the
space of parameters is defined by the inequality (12).

4 Stability zones

Let us consider Eq. (3) at H = 0, i.e., in the absence
of the hysteretic nonlinearity:

ẍ − [
k − s · sign(sin τ)

]
x = 0, (13)

then �τ = 0 and the inequality (12) takes the form:
∣∣∣∣cosh (πk1) cos (πk2)

+ 1

2

(
k1

k2
− k2

k1

)
sinh (πk1) sin (πk2)

∣∣∣∣ < 1. (14)

Now we construct numerically a solution of (14)
with relation to the parameters k and s (see the panel
a in Fig. 3). In panel b of the Fig. 3 we show also the
stability zone for the Meissner equation obtained by
Sato [29].

As we can see, these diagrams are the mirror im-
ages of each other because of opposite signs at x in
the corresponding equations.

Let us construct the stability zone for the sys-
tem (9). Such a system has a three-dimensional param-
eter space because of dependence on the three param-
eters takes place (namely, the dimensionless variables
k, s, and the piston’s length H ). We set the length of
the pendulum as l = 1 m.

Figure 4 shows that the stability zones do not
qualitatively change, but only slightly deformed with
growth of H . Note that in the presented problem the
parameters k and s can take the positive values only.
The change of the stability zone in the positive half-
plane is shown in Fig. 5. Also, in this figure, we see
that the growth of the parameter H leads to the in-
creasing of the lower boundary of the stability zone.
Moreover, we see in this figure that with increasing of
the hysteretic parameter (see the panel f) the bound-
aries of the stability zones become multivalued func-
tions (namely, the function s(k)). Such a behavior of
the boundaries is connected with the fact that the main
equation of the model contains the hysteretic non-
linearity (hysteretic behavior of the control parame-
ter H ).

Stability zones in the space of parameters of the
system (see Eq. (2)) are shown in Fig. 6. This figure
shows that the area of stability zone essentially un-
changed with increasing of the length of piston H ,
just only shifted (for the values of H in the inter-
val H ∈ [0,0.5]). This means that for any H in the
presented interval there exists a pair of values ω and
a to ensure the stability of the vertical position of
the inverted pendulum with oscillating suspension and
the hysteretic nonlinearity. However, as we can see in
panel f, at H = 1, there are two domains of values ω

and a that ensure the stability of the vertical position.
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Fig. 3 Stability zones in
the absence of the hysteretic
control (H = 0): panel a
corresponds to Eq. (13);
panel b corresponds to the
Meissner equation

Fig. 4 Stability zones in
the presence of the
hysteretic control. Panel a
is H = 0 m, panel b is
H = 0.2 m, panel c is
H = 0.4 m, panel d is
H = 0.6 m, panel e is
H = 0.8 m, panel f is
H = 1 m

It should also be pointed out that in full analogy with
Fig. 5 the boundaries of the stability zones become
multivalued functions (in this case, the function ω(a))
when the hysteretic parameter H increases. Such a be-
havior of the boundaries follows from the fact that in
the presence of the hysteretic control the main equa-
tion (2) (together with the corresponding monodromy
matrix (9)) becomes essentially nonlinear.

In Fig. 7, we plot the dependencies of the oscilla-
tion frequency (namely, the frequency which lies on
the border of the stability zone, in other words, the
frequency which ensuring the stability of solutions
of (2)), on the length of the piston H at different values
of a (oscillation amplitude for the piston).

Let us note that the parameters which satisfy the
inequality (12) correspond to the almost periodic os-
cillations [17] relative to the top of the pendulum. In

order to confirm these results, we present the plots of
characteristics of oscillations (in the linearized model
described by Eq. (2)) of the inverted pendulum with
length l = 1 m and hysteretic nonlinearity H = 0.05 m
(Fig. 8). The amplitude and frequency of oscillation
of the piston are a = 0.15 m and ω = 30 s−1, re-
spectively. The initial conditions are φ(0) = 0.2 and
φ̇(0) = 1 s−1.

5 Periodic solutions

Now, let us consider the behavior of the pendulum on
the edges of the stability zone. In the characteristic
equation for the monodromy matrix (10) such a situa-
tion corresponds to the two cases: α = −2 (left edge)
and α = 2 (right edge). The multipliers in this case
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Fig. 5 Stability zones in
the positive half-plane
(k > 0, s > 0) in the
presence of the hysteretic
control. Panel a is H = 0 m,
panel b is H = 0.2 m, panel
c is H = 0.4 m, panel d is
H = 0.6 m, panel e is
H = 0.8 m, panel f is
H = 1 m

Fig. 6 Stability zones in
the coordinates a and ω for
different values of the
parameter H . Panel a is
H = 0 m, panel b is
H = 0.05 m, panel c is
H = 0.1 m, panel d is
H = 0.2 m, panel e is
H = 0.5 m, panel f is
H = 1 m

have taken the values 	1 = 	2 = 1 and 	1 = 	2 = −1,
respectively.

If 	1 = 	2 = 1, then the corresponding normal
solution will satisfy the equality X(t + 2π) = X(t).
Therefore, Eq. (2) has a periodic solution and the pe-
riod of such a solution coincides with the period of the
coefficients T1 = 2π

ω
.

In the second case (	1 = 	2 = −1), the correspond-
ing normal solution will satisfy the equality X(t +
2π) = −X(t) (through the one more period X(t +
4π) = −X(t + 2π) = X(t)). This fact means that in
the case when the multipliers equal to −1, Eq. (2) has
a periodic solution with the period T2 = 4π

ω
.

The solutions are periodic (and hence limited) in
both of the presented cases. We will say that they are
stable by Lagrange. We assume also that all of the
pendulum’s parameters (in periodic regime of oscil-
lations) should satisfy the following condition:

a11 + a22 = 2, for the period T1, (15)

a11 + a22 = −2, for the period T2. (16)

However, these conditions are necessary only, but
not sufficient due to the fact that not for all of the
nonzero initial values (for a given control with the pa-
rameters which satisfy to one of these equations) the
periodic solutions will exist.
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Note also that for the presented control described
by the function υ(t) = −aω2G(t,H) sign[sin (ωt)]
the initial conditions lie in the first and third quadrants.

Put the following initial condition (φ10, φ20), and
consider the case of periodic oscillations with the
period T1. In this case, the equality X(0 + T1) =
AX(0) = X(0) takes place, and also

(
a11 a12

a21 a22

)(
φ10

φ20

)
=

(
φ10

φ20

)
. (17)

Fig. 7 The dependence of the frequency ω on the hysteretic
parameter H (on the border of the stability zone, i.e., the con-
dition |a11 + a22| = 2 takes place) for various a: thin curve is
a = 0.1 m, thick curve is a = 0.2 m, dashed curve is a = 0.3 m

This implies that the initial conditions satisfy the fol-
lowing expressions:

φ10 = a12

a11 − 1
φ20, φ20 = a21

a22 − 1
φ10, (18)

i.e., lie on a straight line z1: φ̇ = K1φ, where the coef-
ficient K1 is

K1 = a11 − 1

a12
= a21

a22 − 1
. (19)

This equality ensures that the condition (15) is valid. If
for the initial conditions (φ10, φ20) can be found a pair
of the parameters a and ω, which lies on the border
of the stability zone (at fixed H ) and satisfies Eq. (18)
then this pair is unique. The opposite statement is also
true.

In similar manner, we find that the periodic solu-
tions with period T2 exist for initial conditions that
satisfy the equations:

φ10 = a12

1 + a11
φ20, φ20 = a21

1 + a22
φ10. (20)

In an analogous manner, these initial conditions lie on
a straight line z2: φ̇ = K2φ with the coefficient

K2 = a11 + 1

a12
= a21

a22 + 1
. (21)

Fig. 8 Panels a and b:
characteristics of the
inverted pendulum
described by Eq. (2)
(modeling parameters are
presented in the main text);
panel c: the control function
(solid line corresponds to
hysteretic control, dashed
line corresponds to the
absence of the hysteretic
control); panel d: phase
portrait
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Corresponding parameters a and ω have been
obtained from the numerical solution of Eqs. (19)
and (21). Namely, for the solutions of Eq. (2) with the
initial conditions that satisfy Eq. (19) the parameters
a and ω are a = 0.2 m and ω = 18.73 s−1 (hysteretic
nonlinearity H = 0.05 m). For the solutions with the
initial conditions that satisfy Eq. (21), the correspond-
ing parameters are a = 0.43 m and ω = 15.02 s−1 (at
the same value of the hysteretic nonlinearity). How-
ever, the obtained periodic solutions (using the corre-
sponding parameters a and ω) are not stable (in the
strict sense). Therefore, the numerical simulation of
these solutions cannot be made without a special reg-
ularization procedure.

However, we plot (see the Fig. 9) the surfaces in the
space of parameters ω, a, and H that satisfy the exis-
tence conditions for the periodic solutions (Eqs. (19)
and (21)). The complicated shape of the obtained sur-
faces is connected with the fact that the values of
the parameters that determine the periodic solutions
are placed on the boundary of the stability zone (see,
e.g., Eqs. (10) and (11)) where the corresponding so-
lutions are not stable. Moreover, the obtained surfaces
(more specific, the dependencies that determine such
surfaces) are the solutions of the essentially nonlinear
equations (19) and (21) (the parameters aij in these
equations are the elements of the monodromy ma-
trix (9)).

6 Conclusions

In this paper, we have analyzed the inverted pendu-
lum with the oscillating suspension point under hys-
teretic control (hysteretic nonlinearity) in the form of
a backlash. More specific, the explicit condition for
the stability of such a system has been obtained using
the monodromy matrix technique (for the monodromy
matrix is also obtained the explicit expression). The
periodic solutions in such a system is also analyzed
and the corresponding equations for the parameters
a and ω are obtained. Here, it should be pointed out
that the dynamics of the inverted pendulum with hys-
teretic control qualitatively differs from the dynamics
of the pendulum with conventional control. The pres-
ence of the hysteresis element complicates the study of
the dynamics of mechanical systems. As a result, the
main results of the presented paper were obtained us-
ing the numerical simulations only. It should be noted

Fig. 9 Surfaces in the space of parameters ω, a, and H that
satisfy Eq. (19) (top panel) and Eq. (21) (bottom panel)

also that the same model can be used in the economics,
namely for the problem of optimal production [30].
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