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Abstract A nonlinear time-varying dynamic model
for a multistage planetary gear train, considering time-
varying meshing stiffness, nonlinear error excitation,
and piece-wise backlash nonlinearities, is formulated.
Varying dynamic motions are obtained by solving the
dimensionless equations of motion in general coordi-
nates by using the varying-step Gill numerical integra-
tion method. The influences of damping coefficient,
excitation frequency, and backlash on bifurcation and
chaos properties of the system are analyzed through
dynamic bifurcation diagram, time history, phase tra-
jectory, Poincaré map, and power spectrum. It shows
that the multi-stage planetary gear train system has
various inner nonlinear dynamic behaviors because of
the coupling of gear backlash and time-varying mesh-
ing stiffness. As the damping coefficient increases, the
dynamic behavior of the system transits to an increas-
ingly stable periodic motion, which demonstrates that
a higher damping coefficient can suppress a nonpe-
riodic motion and thereby improve its dynamic re-
sponse. The motion state of the system changes into
chaos in different ways of period doubling bifurcation,
and Hopf bifurcation.
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Nomenclature
b backlash
c damping
e error of transmission
F force
g nonlinear displacement function
I rotary inertia
K,k stiffness
M,m mass
N number of planet
r radius
t time
T torque
u displacement
x relative displacement
Z number of tooth
α pressure angle
θ angular displacement
ξ damping coefficient
τ dimensionless time
ϕ phase angle
Ω,ω frequency

Subscripts
b base circle
c carrier
in input
out output
p planet gear
r ring gear
s sun gear
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Superscripts
(n) number of stage
T matrix transpose

1 Introduction

Multistage planetary gear trains are widely used in
various applications including automotive transmis-
sion, rotorcraft, wind and gas turbine gearboxes, and
other industrial power transmission systems, owing to
their advantages such as less space requirement, larger
transmission ratio, greater load sharing, and provid-
ing multiple speed reduction (gear) ratios. Multistage
planetary trains consist of a number of single-stage
planetary gear sets whose central members are con-
nected according to a given power flow configuration.
Input, output, and a fixed (stationary) member are as-
signed to certain central members to achieve a given
gear ratio.

Most of the published planetary gear train dynamic
models were limited to single-stage planetary gear
sets. Early models were of linear time-invariant type,
and the eigen solutions and model summation tech-
niques were used to predict the natural modes and
the forced responses [1–4]. The gear systems in the
advanced mechanical systems often undergo startups
and brakes interactively or run at high speed and un-
der light load. Current studies have shown that it
would be likely for a gear to lose contact and the
tooth separations to occur due to the unavoidable back-
lash. Moreover, experimental and theoretical studies
on varying-form gear trains dynamics [5–7] clearly in-
dicate that the gear trains should be modeled as non-
linear systems including periodically varying param-
eters and backlash. In recent years, the research on
nonlinear dynamic of planetary gear sets has been
developed. Al-shyyab and Kahraman [8] developed
a torsional single-stage nonlinear dynamic model of
a simple planetary gear set and provided a semi-
analytical forced response solution by using the mul-
titerm harmonic balance method (HBM). They also
showed that these HBM solutions matched well with
the numerical integration (NI) and deformable body
finite-element-based solutions. Tao and Yan [9] inves-
tigated the frequency response of nonlinear planetary
set with multiple clearances by means of a single-term
HBM focusing on a single power flow configuration
in which the ring gear was held stationary. Parker et

al. [10] employed a unique finite element-contact anal-
ysis method to simulate the nonlinear dynamics of a
spur gear system and verified the numerical predic-
tions experimentally. Studies on the bifurcation and
chaos characteristics of the gear systems started more
than ten years ago. In 2001, Vaishya and Singh [11]
used a sliding friction method to simulate the nonlin-
ear dynamics of a gear system in order to obtain in-
sights into the relative effects of sliding friction and
mesh damping, respectively. Litak and Friswell [12]
examined the effect of adding an additional degree
of freedom to a simple model of gear vibration and
presented the evolution of attractor Poincaré sections
with respect to the shaft stiffness showing a number
of chaotic and regular attractors. They [13] also ex-
amined the dynamics of gear systems with various
faults in meshing stiffness, and the analysis of vari-
ous types of errors and tooth faults highlights the pres-
ence of dynamic jumping phenomenon. Such jumps
between different types of motions, namely chaotic
and regular, can be crucial for the system reliability.
Recently, Chang-Jian and Chen [14–17] presented a
series of investigations on nonperiodic and chaotic re-
sponses of flexible rotors supported by various bear-
ings. The results provided a useful source of refer-
ence for engineers in specifying suitable operating pa-
rameters to prevent an undesirable motion of the rotor
and therefore to reduce the vibrations within the rotor-
bearing system. The nonlinear dynamics of a multi-
stage planetary compared with a single-stage one is
much more complicated, and the related published pa-
pers are very limited. Al-shyyab [18] built a nonlin-
ear, torsional dynamic model of a multistage planetary
train. A case study of a two-stage planetary train was
used to demonstrate the effectiveness of the model and
multiterm HBM solution methods. The nonlinear dy-
namic behaviors and bifurcation and chaos character-
istics of a multistage planetary train need further re-
search.

This study establishes a nonlinear dynamic model
of a two-stage planetary gear train. This model in-
cludes time-varying meshing stiffness, nonlinear er-
ror excitation, and piece-wise backlash nonlineari-
ties. Equations of motion in general coordinates are
obtained in a matrix form and solved by using the
varying-step Gill numerical integration method. The
nonlinear dynamic behavior of the two-stage planetary
gear train is analyzed as a function of the damping co-
efficient, the dimensionless excitation frequency, and
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Fig. 1 Structure diagram of two-stage planetary gear train

the dimensionless backlash. The bifurcation and chaos
traits of the system are illustrated by calculating dy-
namic bifurcation diagrams, time histories, phase tra-
jectories, Poincaré maps, and power spectra.

2 Dynamic model

A schematic of a two-stage compound planetary gear
train is shown in Fig. 1. The system consists of two
single-stage 2K-H type planetary gear trains in se-
ries. A particular stage n (n = 1,2) is comprised of
four elements, the sun gear s(n), the ring gear r(n),
the carrier c(n), and several planet gears p

(n)
i (N(n)

p

is the number of the planet gears of stage n, and
N

(1)
p = 3,N

(2)
p = 4). The ring gear of each stage is a

part of the gearbox, thus, its displacement is insignifi-
cant, and the center of ring gear is assumed to be sta-
tionary. In each stage, the central component sun gear
and carrier are identified as input and output mem-
bers of the gear train. The planet gears of each stage
are free to rotate with respect to the carrier. All the
gears are mounted on their flexile shafts supported by
rolling element bearings. Tin and Tout are representa-
tives of input and output torques. The torsional spring
stiffnesses K(1,2) represents the coupling between the
central member carrier of stage 1 and the central mem-
ber sun gear of stage 2.

To establish the mathematical model of the system,
a number of assumptions are employed as follows:

1. Each gear body is assumed to be rigid, and the
flexibilities of the gear teeth at each gear mesh in-
terface are modeled by a spring with periodically

time-varying stiffness acting along the gear line of
action. This mesh stiffness is subject to a clearance
element representing gear backlash.

2. Each gear and the planet carrier are assumed to
move in the torsional direction only.

3. Each planet gear on the planet carrier distributes
uniformly with the same parameters.

4. Gears and carriers are considered to be free of
any eccentricities or run-out, roundness errors, and
meshing friction on tooth surface.

The torsional dynamic model of the planetary gear
train of stage n is shown in Fig. 2. The central ele-
ments s, r , and c are constrained by torsional linear
springs of stiffness magnitudes k

(n)
st , k

(n)
rt , and k

(n)
ct ,

respectively. The magnitudes of these stiffness con-
straints can be chosen according to simulated differ-
ent power flow arrangements with different fixed cen-
tral members. A particular central member is held
stationary by assigning a very large constraint stiff-
ness value to it. Likewise, a zero value for the con-
straint stiffness indicates that this central member
is not connected to the gearbox. Each gear body
j (j = s(n),p

(n)
i , c(n), r(n), i = 1,2, . . . ,N

(n)
p , n =

1,2) is modeled as a rigid disc of polar mass mo-
ment of inertia I

(n)
j , base radius r

(n)
bj , and angular

displacement θ
(n)
j . Here, θ

(n)
j is the nominal rigid

body rotation of the gear. External torques T
(n)
j (j =

s(n), c(n), r(n), n = 1,2) are applied to the central
members that are identified as the input and the output
members of the gear train.

The mesh of gear j (s or r) with a planet pi is repre-
sented by a periodically time-varying stiffness element
k
(n)
jpi subjected to a piecewise-linear backlash function

g
(n)
jpi that includes a backlash of amplitude 2b

(n)
jpi . A pe-

riodic displacement function e
(n)
jpi is applied along the

line of action of account for intentional gear tooth pro-
file modifications and deviations because of surface
wear and manufacturing errors. The dissipation on the
lubricated gear mesh interface is represented by the
constant viscous damping c

(n)
jpi . Here, for each stage,

k
(n)
jpi , e

(n)
jpi , b

(n)
jpi , g

(n)
jpi , and c

(n)
jpi are the same for all

jpi(n) meshes, except the phase angles of k
(n)
jpi and

e
(n)
jpi , which differ since that the particular planet phas-

ing condition is considered.
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Fig. 2 Dynamics model of
multistage planetary gear
train

3 Equations of motion

3.1 Equivalent displacements

Regarding the angular displacement θ
(n)
j of each

gear body in driving j (j = s(n),p
(n)
i , c(n), r(n), i =

1,2, . . . ,N
(n)
p , n = 1,2), the direction of the revolu-

tion caused by the driving torque is assumed to be
positive. The equivalent gear mesh displacements u

(n)
j

in the pressure line direction are defined as

u(n)
s = r

(n)
bs θ(n)

s , u
(n)
pi = r

(n)
bpi θ

(n)
pi ,

u(n)
r = r

(n)
br θ(n)

r , u(n)
c = r

(n)
bc θ(n)

c ,

(1)

where r
(n)
bj (j = s,pi, r) are the base circle radii of

gears, and r
(n)
bc is the nominal base circle radius of the

carrier defined as r
(n)
bc = r

(n)
bs + r

(n)
bpi .

According to the meshing relation, the relative gear
mesh displacements x

(n)
jpi(j = s, r) in the direction of

the pressure line of stage n are expressed as

{
x

(n)
spi = u

(n)
s − u

(n)
pi − u

(n)
c − e

(n)
spi

x
(n)
rpi = u

(n)
pi − u

(n)
c − u

(n)
r − e

(n)
rpi

. (2)

It should be pointed out that the angular displace-
ment of the ring gear r in the two-stage compound
planetary gear train as shown in Fig. 1 is set to be
zero because the ring gear is fixed on gearbox, that
is, θ

(n)
r = 0.

The relative displacement x
(1,2)
cs between the output

member carrier c of stage 1 and input member sun gear
s of stage 2 is defined as

x(1,2)
cs = u(1)

c − u(2)
s . (3)

3.2 Excitations of the system

The mesh cycle of each gear pair in the same stage
is identical because of the continuous rotation of the
planetary gear train. As the ring gear of each stage is
fixed on the gearbox, according to the transmission of
the planetary gear, the meshing frequency of stage n

can be derived as

ω(n)
m = ω

(n)
s Z

(n)
s Z

(n)
r

Z
(n)
s + Z

(n)
r

= ω(n)
c Z(n)

r , (4)

where ω
(n)
m is the meshing frequency of stage-n, ω

(n)
s

and ω
(n)
c are the rotational frequency of the sun gear
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and the carrier in stage n, respectively, and Z
(n)
s and

Z
(n)
r are the numbers of teeth of the sun gear and the

ring gear in stage n, respectively.
The nonlinear time-varying meshing stiffness k

(n)
jpi

(j = s, r) of stage n can be represented as a rectan-
gular wave with a fundamental time period [19]. They
can be written in the form of Fourier series

k
(n)
jpi = k

(n)
mjpi + k

(n)
ajpi cos

(
ω(n)

m t + ϕ
(n)
kjpi

)
, (5)

where k
(n)
mjpi , k

(n)
aspi , and ϕ

(n)
kjpi(j = s, r) are the aver-

age amplitude, the varying amplitude, and the initial
phase angle of the jpi(n) meshing stiffness in stage n,
respectively.

The periodic meshing error function e
(n)
jpi(j = s, r)

of stage n can be simplified in the sine function
form [20] as

e
(n)
jpi = E

(n)
jpi sin

(
ω(n)

m t + ϕ
(n)
ejpi

)
, (6)

where E
(n)
jpi, ϕ

(n)
ejpi (j = s, r) are the amplitude and the

initial phase angle of comprehensive meshing error in
stage n, respectively.

The piecewise-linear backlash functions g
(n)
jpi(j =

s, r) of stage n are defined as

g
(
x

(n)
l

) =

⎧⎪⎨
⎪⎩

x
(n)
l − b

(n)
l x

(n)
l > b

(n)
l

0 |x(n)
l | ≤ b

(n)
l

x
(n)
l + b

(n)
l x

(n)
l < −b

(n)
l

, (7)

where 2b
(n)
l (l = spi, rpi) is the gear backlash in

stage n.

3.3 Dynamic equations of the system

The equations of motion for the two-stage compound
planetary gear train shown in Fig. 1 can be established
by using the Lagrange principle as

I (1)
s θ̈ (1)

s +
N1∑
i=1

c
(1)
spi r

(1)
bs ẋ

(1)
spi +

N1∑
i=1

k
(1)
spi r

(1)
bs g

(
x

(1)
spi

)

= T (1)
s , (8a)

I
(1)
pi θ̈

(1)
pi − c

(1)
spi r

(1)
bpi ẋ

(1)
spi + c

(1)
rpi r

(1)
bpi ẋ

(1)
rpi

− k
(1)
spi r

(1)
bpig

(
x

(1)
spi

) + k
(1)
rpi r

(1)
bpig

(
x

(1)
rpi

) = 0, (8b)

I (1)
ce θ̈ (1)

c −
N1∑
i=1

c
(1)
spi r

(1)
bc ẋ

(1)
spi −

N1∑
i=1

c
(1)
rpi r

(1)
bc ẋ

(1)
rpi

−
N1∑
i=1

k
(1)
spi r

(1)
bc g

(
x

(1)
spi

) −
N1∑
i=1

k
(1)
rpi r

(1)
bc g

(
x

(1)
rpi

)

+ K(1,2)r
(1)
bc

[
u(1)

c − u(2)
s

] = −T (1)
c , (8c)

I (2)
s θ̈ (2)

s +
N2∑
i=1

c
(2)
spi r

(2)
bs ẋ

(2)
spi +

N2∑
i=1

k
(2)
spi r

(2)
bs g

(
x

(2)
spi

)

− K(1,2)r
(2)
bs

[
u(1)

c − u(2)
s

] = T (2)
s , (8d)

I
(2)
pi θ̈

(2)
pi − c

(2)
spi r

(2)
bpi ẋ

(2)
spi + c

(2)
rpi r

(2)
bpi ẋ

(2)
rpi

− k
(2)
spi r

(2)
bpig

(
x

(2)
spi

) + k
(2)
rpi r

(2)
bpig

(
x

(2)
rpi

) = 0, (8e)

I (2)
ce θ̈ (2)

c −
N2∑
i=1

c
(2)
spi r

(2)
bc ẋ

(2)
spi −

N2∑
i=1

c
(2)
rpi r

(2)
bc ẋ

(2)
rpi

−
N2∑
i=1

k
(2)
spi r

(2)
bc g

(
x

(2)
spi

) −
N2∑
i=1

k
(2)
rpi r

(2)
bc g

(
x

(2)
rpi

)

= −T (2)
c , (8f)

where I
(n)
ce = I

(n)
c + ∑N

(n)
p

i=1 m
(n)
pi [r(n)

c ]2 is the equiva-
lent mass moment of inertia of the carrier assembly of
stage n, m

(n)
pi is the mass of the planet p

(n)
i , and r

(n)
c is

the radius of the carrier in stage n.
The dynamic model derived above is a semi-

definite system. It can be changed into a definite sys-
tem by using the equivalent relative displacements de-
fined in Eqs. (2) and (3). New general coordinates q

are introduced in order to eliminate the rigid body
movement in Eqs. (8a)–(8f) as

q = {
x

(1)
sp1, x

(1)
sp2, x

(1)
sp3, x

(1)
rp1, x

(1)
rp2, x

(1)
rp3, x

(2)
sp1, x

(2)
sp2,

x
(2)
sp3, x

(2)
sp4, x

(2)
rp1, x

(2)
rp2, x

(2)
rp3, x

(2)
rp4, x

(1,2)
cs

}T
. (9)

The equations of motion in the general coordi-
nates q can be derived as

ẍ
(1)
spi +

(
1

M
(1)
s

+ 1

M
(1)
c

) N1∑
i=1

c
(1)
spi ẋ

(1)
spi

+
(

1

M
(1)
s

+ 1

M
(1)
c

) N1∑
i=1

k
(1)
spi g

(
x

(1)
spi

)
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+ 1

M
(1)
pi

c
(1)
spi ẋ

(1)
spi + 1

M
(1)
pi

k
(1)
spi g

(
x

(1)
spi

)

− 1

M
(1)
pi

c
(1)
rpi ẋ

(1)
rpi − 1

M
(1)
pi

k
(1)
rpi g

(
x

(1)
rpi

)

+ 1

M
(1)
c

N1∑
i=1

c
(1)
rpi ẋ

(1)
rpi + 1

M
(1)
c

×
N1∑
i=1

k
(1)
rpi g

(
x

(1)
rpi

) − 1

M
(1)
c

K(1,2)x(1,2)
cs

= r
(1)
bs

I
(1)
s

T (1)
s + r

(1)
bc

I
(1)
ce

T (1)
c − ë

(1)
spi , (10a)

ẍ
(1)
rpi − 1

M
(1)
pi

c
(1)
spi ẋ

(1)
spi − 1

M
(1)
pi

k
(1)
spi g

(
x

(1)
spi

)

+ 1

M
(1)
pi

c
(1)
rpi ẋ

(1)
rpi + 1

M
(1)
pi

k
(1)
rpi g

(
x

(1)
rpi

) + 1

M
(1)
c

×
N1∑
i=1

c
(1)
spi ẋ

(1)
spi + 1

M
(1)
c

N1∑
i=1

k
(1)
spi g

(
x

(1)
spi

) + 1

M
(1)
c

×
N1∑
i=1

c
(1)
rpi ẋ

(1)
rpi + 1

M
(1)
c

N1∑
i=1

k
(1)
rpi g

(
x

(1)
rpi

)

− 1

M
(1)
c

K(1,2)x(1,2)
cs

= r
(1)
bc

I
(1)
ce

T (1)
c − ë

(1)
rpi , (10b)

ẍ
(2)
spi +

(
1

M
(2)
s

+ 1

M
(2)
c

) N2∑
i=1

c
(2)
spi ẋ

(2)
spi

+
(

1

M
(2)
s

+ 1

M
(2)
c

) N2∑
i=1

k
(2)
spi g

(
x

(2)
spi

)

+ 1

M
(2)
pi

c
(2)
spi ẋ

(2)
spi + 1

M
(2)
pi

k
(2)
spi g

(
x

(2)
spi

)

− 1

M
(2)
pi

c
(2)
rpi ẋ

(2)
rpi − 1

M
(2)
pi

k
(2)
rpi g

(
x

(2)
rpi

) + 1

M
(2)
c

×
N2∑
i=1

c
(2)
rpi ẋ

(2)
rpi + 1

M
(2)
c

N2∑
i=1

k
(2)
rpi g

(
x

(2)
rpi

)

− 1

M
(2)
s

K(1,2)x(1,2)
cs

= r
(2)
bs

I
(2)
s

T (2)
s + r

(2)
bc

I
(2)
ce

T (2)
c − ë

(2)
spi , (10c)

ẍ
(2)
rpi − 1

M
(2)
pi

c
(2)
spi ẋ

(2)
spi − 1

M
(2)
pi

k
(2)
spi g

(
x

(2)
spi

)

+ 1

M
(2)
pi

c
(2)
rpi ẋ

(2)
rpi + 1

M
(2)
pi

k
(2)
rpi g

(
x

(2)
rpi

)

+ 1

M
(2)
c

N2∑
i=1

c
(2)
spi ẋ

(2)
spi + 1

M
(2)
c

N2∑
i=1

k
(2)
spi g

(
x

(2)
spi

)

+ 1

M
(2)
c

N2∑
i=1

c
(2)
rpi ẋ

(2)
rpi + 1

M
(2)
c

N2∑
i=1

k
(2)
rpi g

(
x

(2)
rpi

)

= r
(2)
bc

I
(2)
ce

T (2)
c − ë

(2)
rpi , (10d)

ẍ(1,2)
cs − 1

M
(1)
pi

c
(1)
rpi ẋ

(1)
rpi − 1

M
(1)
pi

k
(1)
rpi g

(
x

(1)
rpi

)

− 1

M
(1)
c

N1∑
i=1

c
(1)
rpi ẋ

(1)
rpi − 1

M
(1)
c

N1∑
i=1

k
(1)
rpi g

(
x

(1)
rpi

)

− 1

M
(2)
s

N2∑
i=1

c
(2)
spi ẋ

(2)
spi − 1

M
(2)
s

N2∑
i=1

k
(2)
spi g

(
x

(2)
spi

)

+
(

1

M
(1)
c

+ 1

M
(2)
s

)
K(1,2)x(1,2)

cs

= − r
(1)
bc

I
(1)
ce

T (1)
c − r

(2)
bs

I
(2)
s

T (2)
s . (10e)

Here M
(n)
j = I

(n)
j

[r(n)
bj ]2

(j = s, r,pi), M
(n)
c = I

(n)
ce

[r(n)
bc ]2

,

c
(n)
spi = 2ξ1

√
k
(n)
mspi/(1/M

(n)
s + 1/M

(n)
pi ), and c

(n)
rpi =

2ξ2

√
k
(n)
mrpi (1/M

(n)
r + 1/M

(n)
pi ), where ξ1 and ξ2 are the

damping coefficients of the meshes spi(n) and rpi(n)

in stage n, respectively.
Equations (10a)–(10e) can be further simplified

by using a number of dimensionless parameters. The
dimensionless time parameter is introduced by set-

ting τ = ωdt , where ωd =
√

k
(1)
mspi/meq1, and meq1 =
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Table 1 System parameters of the two-stage planetary gear train

System parameters Stage 1, N1 = 3 Stage 2, N2 = 4

Sun gear Planet gear Ring gear Carrier Sun gear Planet gear Ring gear Carrier

Number of teeth 14 25 64 – 17 21 59 –

Ii (kg m2) 6.355e−4 0.005 1.67 0.053 0.009 0.013 3.35 3.276

rbi (m) 0.033 0.058 0.150 0.092 0.048 0.059 0.166 0.107

Pressure angle (°) 20 20 20 – 20 20 20 –

Module (mm) 5 5 5 – 6 6 6 –

Transmission ratio 5.571 4.471

M
(1)
s M

(1)
c M

(1)
pi /(M

(1)
c M

(1)
pi + M

(1)
s M

(1)
pi + M

(1)
s M

(1)
c ).

The nominal dimension bc is employed, and the di-
mensionless displacement, velocity, and acceleration
are representatives of x̄ = x/bc, ˙̄x = ẋ/ωdbc, and ¨̄x =
ẍ/ω2

dbc. Other dimensionless parameters are defined
as

ē
(n)
jpi = E

(n)
jpi

bc
sin

(
Ω(n)

m τ + ϕ
(n)
ejpi

)
, (11)

where Ω
(n)
m = ω

(n)
m

ωd
.

g
(
x̄

(n)
l

) =

⎧⎪⎨
⎪⎩

x̄
(n)
l − b̄

(n)
l x̄

(n)
l > b̄

(n)
l

0 |x̄(n)
l | ≤ b̄

(n)
l

x̄
(n)
l + b̄

(n)
l x̄

(n)
l < −b̄

(n)
l

,

b̄l = bl/bc(l = spi, rpi). (12)

Thus, the dimensionless equation of motion in the
general coordinates can be derived in the matrix form
as

M̄ ¨̄q(τ ) + C̄ ˙̄q(τ ) + K̄g
(
q̄(τ )

) = F̄ (τ ). (13)

Here the mass matrix M̄ , the stiffness matrix K̄ , the
damping matrix C̄, and the force vector F̄ (τ ) could
be obtained from the dimensionless method mentioned
above.

4 Results and discussion

As an example, the two-stage compound planetary
gear train as shown in Fig. 1 is studied. The system
parameters are listed in Table 1, and the calculation
parameters are given in Table 2. The excitations are as-
sociated with the mesh stiffness fluctuation and the er-
rors expressed by Eqs. (5) and (6). The different stages

Table 2 Calculation parameters of the two-stage planetary gear
train

Parameter Value Parameter Value

k
(1)
mspi (N/m) 4.5 × 108 k

(2)
mspi (N/m) 4.1 × 108

k
(1)
mrpi (N/m) 5.1 × 108 k

(2)
mrpi (N/m) 4.4 × 108

k
(n)
ajpi (N/m) 50 K(1,2) (N/m) 109

E
(n)
jpi/bc 1.5 bc (µm) 5

have different mesh frequencies with the relationship
of ω

(1)
m = Λω

(2)
m , where Λ = 5.571 is the transmission

ratio of the planetary gear train of the first stage.
The nonlinear dynamic equations presented in

Eq. (13) are solved by using the varying-step Gill nu-
merical integration method, and the termination cri-
terion is specified to an error tolerance of less than
0.0001. The time series data corresponding to the first
800 revolutions of the dynamic system are deliber-
ately excluded from the results in order to discard
the transient solutions and ensure that the analyzed
data approaches to steady-state solution [21, 22]. The
sampled data were used to generate the bifurcation
diagrams, time histories, phase trajectories, Poincaré
maps, and power spectra of the two-stage compound
planetary gear train in order to obtain a basic under-
standing of its dynamic behaviors based on the non-
linear dynamic model.

The bifurcation diagram [23] could be obtained by
quasi-static increasing of the dimensionless displace-
ment and the bifurcation parameter, and the continua-
tion of solutions could be achieved by substitution of
final to initial conditions for the next new parameter
value. Figure 3 presents the dimensionless displace-
ment x̄

(1)
rpi of the two-stage compound planetary gear

train using the damping coefficient ξ as a bifurcation
parameter at the dimensionless excitation frequency of
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Fig. 3 Bifurcation diagram for x̄
(1)
rpi versus ξ with Ω

(1)
m = 1.06,

ba = 1, x̄
(1)
rpi (τ = 0) = 0.1, and ˙̄x(1)

rpi (τ = 0) = 0 obtained by the
varying-step Gill numerical integration method

stage 1 Ωm = 1.06 and the dimensionless backlash
ba = 1, and the initial conditions x̄

(1)
rpi (τ = 0) = 0.1

and ˙̄x(1)
rpi (τ = 0) = 0. It shows that the two-stage com-

pound planetary gear train has rich nonlinear dynamic
behavior because of the coupling of gear backlash and
time-varying meshing stiffness. The bifurcation dia-
grams of other mesh pairs of planetary gear train in
each stage can be obtained in the same way. The plots
are not provided here in order to be brief. The results
show that other solutions have the same variation ten-
dency.

According to Fig. 3, the system exhibits nonperi-
odic motion at low values of the damping coefficient ξ ,
i.e., ξ ≤ 0.0524. Specifically, when the damping coef-
ficient ξ = 0.03, the system experiences a chaotic mo-
tion, as shown in Fig. 4. The time history in Fig. 4(c)
shows that the chaos is characterized by obvious ir-
regular fluctuations of the amplitude from cycle to cy-
cle. The phase trajectories in Fig. 4(a) are highly dis-
ordered and spread through almost the entire phase
area, which indicates the chaotic motion. The strange
attractor of the chaotic motion is illustrated in the
Poincaré map as shown in Fig. 4(b). The power spec-
trum in Fig. 4(d) reveals the continuous power spec-
trum that has numerous excitation frequencies. The
chaotic motion transits to an unstable quasi-periodic
motion when the damping coefficient ξ reaches 0.035.
When the damping coefficient ξ = 0.045, the system
experiences a three quasi-periodic motion as shown
in Fig. 5. The phase trajectories are similar to 3T -
periodic motion and repeat themselves every three pe-
riods but have differences between adjacent trajecto-
ries. There are three closed loops in the Poincaré map
in Fig. 5(b). This quasi-periodic solution consists of

three frequencies ΩB1, ΩB2, and ΩB3, which are rel-
atively prime. There are peaks existing in the linear
combination of the three fundamental frequencies on
the power spectrum as shown in Fig. 5(d).

At higher values of the damping coefficient, the dy-
namic behavior of the system is found to be a sub-
harmonic 3T -periodic motion at ξ = 0.0524–0.0736.
Letting the damping coefficient ξ be equal to 0.06, for
example, the numerical solutions are shown in Fig. 6.
The trajectories repeat themselves every three peri-
ods, and there are three discrete points on the Poincaré
map. The corresponding power spectrum has peaks at
the point of hΩB/3, where ΩB is the fundamental fre-
quency, and h is a positive integer.

As the damping coefficient ξ further increases,
the dynamic behavior of the system reverts to a one
quasi-periodic motion at ξ = 0.0738–0.0878. When
the damping coefficient ξ = 0.075, the numerical solu-
tions are shown in Fig. 7. The time history in Fig. 7(c)
shows that there is only small, irregular fluctuation
of the amplitude from cycle to cycle. The phase tra-
jectories repeat themselves every period and have the
differences between adjacent trajectories, which look
like a closed curve belt with a certain width. The
Poincaré map in Fig. 7(b) appears as a closed loop,
and the power spectrum has peaks at iΩB1 + jΩB2

(i, j = 0, ±1, ±2, . . . ), where ΩB1 and ΩB2 are
two relatively prime fundamental frequencies. When
the damping coefficient ξ is at [0.0738, 0.0878] area,
there are some periodic motion windows. For exam-
ple, when the damping coefficient ξ = 0.081, a 17T -
periodic motion shows up, as shown in Fig. 8. There
are 17 discrete points on the Poincaré map. The phase
trajectory of this long periodic motion is similar to that
of the quasi-periodic motion.

Finally, for the damping coefficient ξ > 0.088, the
system performs a stable 1T -periodic motion. An ex-
ample is presented in Fig. 9, which illustrates the situ-
ation where the damping coefficient ξ is equal to 0.1.
The solutions have a noncircular phase plane plots,
and there is a single point on the Poincaré map. The
time history illustrates that the motion repeats itself
during each period and the corresponding power spec-
trum has peaks at the point of hΩB , where h is a pos-
itive integer.

It can be seen that the nonlinear behavior of the
compound multistage planetary gear system is very
sensitive to the damping coefficient ξ . In practical
multistage compound planetary gear trains, the rota-
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Fig. 4 Chaotic motion at
ξ = 0.03 with Ω

(1)
m = 1.06,

ba = 1, x̄
(1)
rpi (τ = 0) = 0.1,

and ˙̄x(1)
rpi (τ = 0) = 0: (a) the

time history, (b) the phase
trajectory, (c) the Poincaré
map, (d) the power
spectrum

tional speed is commonly used as a bifurcation param-
eter. Accordingly, the dynamic behavior of the two-
stage compound planetary gear train is also examined
using the dimensionless excitation frequency Ωm as
a bifurcation parameter. Figure 10 presents the cor-
responding bifurcation diagrams of the dynamic sys-

tem at the dimensionless backlash ba = 1, the initial
conditions x̄

(1)
rpi (τ = 0) = 0.1 and ˙̄x(1)

rpi (τ = 0) = 0, and
different damping coefficients of ξ = 0.07, 0.1, 0.12,
and 0.15. By comparing Figs. 10(a)–(d), the results
show that at low values of the damping coefficient ξ ,
the two-stage compound planetary gear train exhibits a
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Fig. 5 Quasi-periodic
motion at ξ = 0.045 with
Ω

(1)
m = 1.06, ba = 1,

x̄
(1)
rpi (τ = 0) = 0.1, and

˙̄x(1)
rpi (τ = 0) = 0: (a) the

time history, (b) the phase
trajectory, (c) the Poincaré
map, (d) the power
spectrum

nonperiodic response at most values of the dimension-
less excitation frequency Ωm. However, the dynamic
behavior of the system transits to an increasingly sta-
ble periodic motion as the value of the damping co-
efficient increases. In other words, the results demon-
strate the effectiveness of a higher damping coefficient
in suppressing nonperiodic motions of the multistage

planetary gear train, thereby improving its dynamic re-
sponse.

The damping coefficient in tooth meshing is related
to the structure parameter and the physical parame-
ters of the gear train. By on-purpose designing, the
proper damping coefficient could be acquired through
adjusting the structure and the physical parameters of
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Fig. 6 3T -periodic motion
at ξ = 0.06 with
Ω

(1)
m = 1.06, ba = 1,

x̄
(1)
rpi (τ = 0) = 0.1 and

˙̄x(1)
rpi (τ = 0) = 0: (a) the

time history, (b) the phase
trajectory, (c) the Poincaré
map, (d) the power
spectrum

the gear train. As a result of that, the system is ex-
pected to have narrow interval of the chaotic motion,
extended life time, enhanced reliability, and lower
noise.

The bifurcation diagram, as shown in Fig. 11, using
the dimensionless backlash ba as a bifurcation param-
eter at the dimensionless excitation frequency Ωm =

0.85 and the damping coefficient ξ = 0.07, and the ini-
tial conditions x̄

(1)
rpi (τ = 0) = 0.1 and ˙̄x(1)

rpi (τ = 0) = 0.
According to Figs. 3, 10, and 11, it can be revealed that
the motion state of the system changes into chaos in
many different ways. As the dimensionless excitation
frequency and the dimensionless backlash increase,
the motion state of the system changes into chaos
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Fig. 7 Quasi-periodic
motion at ξ = 0.075 with
Ω

(1)
m = 1.06, ba = 1,

x̄
(1)
rpi (τ = 0) = 0.1, and

˙̄x(1)
rpi (τ = 0) = 0: (a) the

time history, (b) the phase
trajectory, (c) the Poincaré
map, (d) the power
spectrum

through Hopf bifurcation and period doubling bifur-
cation, respectively. Take the parameter of the dimen-
sionless excitation frequency Ωm for example, Fig. 12
presents the corresponding Poincaré maps at various
values of the dimensionless excitation frequency in

the range of Ωm = 1.45–1.55 from Fig. 10(a). It re-
veals the bifurcation and chaos properties of the sys-
tem, which changes into chaos through Hopf bifurca-
tion. It is found that the Poincaré map corresponding
to Ωm = 1.45 has two points, and thus it can be in-
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Fig. 8 17T -periodic
motion at ξ = 0.081 with
Ω

(1)
m = 1.06, ba = 1,

x̄
(1)
rpi (τ = 0) = 0.1, and

˙̄x(1)
rpi (τ = 0) = 0: (a) the

time history, (b) the phase
trajectory, (c) the Poincaré
map, (d) the power
spectrum

ferred that the system behavior is in a subharmonic
2T -periodic motion. As the dimensionless excitation
frequency increases, the two stable points lose their
stability and become two unstable points through Hopf
bifurcation, and then, the unstable points expand into
two closed-loop surfaces. This indicates that the sys-
tem comes into a two quasi-periodic motion. As the

dimensionless excitation frequency further increases,
the two smooth closed-loop surfaces start oscillating,
twisting, winding, and phase locking. Finally the two
closed-loop surfaces become fracture, and the pres-
ence of the strange attractor in the Poincaré map in-
dicates a chaotic motion. That is a complete process
for a stable subharmonic 2T -periodic motion transit-
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Fig. 9 1T -periodic motion
at ξ = 0.1 with
Ω

(1)
m = 1.06, ba = 1,

x̄
(1)
rpi (τ = 0) = 0.1, and

˙̄x(1)
rpi (τ = 0) = 0: (a) the

time history, (b) the phase
trajectory, (c) the Poincaré
map, (d) the power
spectrum

ing into a chaotic motion. It is a kind of common evo-
lution path that changes a stable periodic motion into
a chaotic motion.

Chaos happened in the transmission system means
that the system works in a state of unpredictability
and nonrepeatability. According to the Figs. 4 and 9,
the amplitudes in the chaotic motion are almost dou-

ble than that in the stable periodic motion. For the
actual mechanical equipments, chaos is partly detri-
mental to the working performance and causes noises.
According to the bifurcation diagram, the rotational
speeds that probably cause the chaotic motion should
be avoided in order to ensure the stability and reliabil-
ity of the system.
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Fig. 10 Bifurcation diagrams for x̄
(1)
rpi versus Ω

(1)
m for various ξ with ba = 1, x̄

(1)
rpi (τ = 0) = 0.1, and ˙̄x(1)

rpi (τ = 0) = 0 obtained by the
varying-step Gill numerical integration method: (a) ξ = 0.07, (b) ξ = 0.1, (c) ξ = 0.12, (d) ξ = 0.15

Fig. 11 Bifurcation diagram for x̄
(1)
rpi versus ba with

Ω
(1)
m = 0.85, ξ = 0.07, x̄

(1)
rpi (τ = 0) = 0.1, and ˙̄x(1)

rpi (τ = 0) = 0
obtained by the varying-step Gill numerical integration method

5 Conclusions

This study presented a numerical analysis of the non-
linear dynamic response of a typical two-stage plane-
tary gear train. The main conclusions are:

(1) A discrete nonlinear, time-variant, torsional dy-
namic model for a typical two-stage planetary gear
train, considering time-varying meshing stiffness,

nonlinear error excitation, and backlash, is formu-
lated. Dimensionless equations of motion in gen-
eral coordinates are obtained in a matrix form and
solved by using the varying-step Gill numerical
integration method.

(2) The nonlinear dynamics of the two-stage plane-
tary gear train are analyzed by reference to its dy-
namic bifurcation diagrams, time histories, phase
trajectories, Poincaré maps, and power spectra.
The dynamic response of the system is investi-
gated as a function of the dimensionless damping
coefficient. The numerical results reveal that the
system exhibits a nonperiodic motion at low val-
ues of the damping coefficient ξ , i.e., ξ ≤ 0.0524.
The chaotic motion transits to an unstable quasi-
periodic motion when the damping coefficient ξ

reaches 0.035. The dynamic behavior of the sys-
tem is found to be a subharmonic 3T -periodic mo-
tion at ξ = 0.0524–0.0736. As the damping coeffi-
cient ξ further increases, the dynamic behavior of
the system reverts to a one quasi-periodic motion
at ξ = 0.0738–0.0878. Finally, for the damping
coefficient ξ > 0.088, the system performs stable
1T -periodic motion.
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Fig. 12 Poincáre maps for various Ωm ∈ [1.45,1.55] with ξ = 0.07, ba = 1, x̄
(1)
rpi (τ = 0) = 0.1, and ˙̄x(1)

rpi (τ = 0) = 0

(3) The dynamic system is very sensitive to the damp-
ing coefficient and the backlash. The dynamic be-
havior of the system transited to an increasingly
stable periodic motion as the value of the damping
coefficient increased. This demonstrates the effec-
tiveness of a higher damping coefficient in sup-
pressing nonperiodic motion, thereby improving
its dynamic response. On the contrary, a higher
backlash would result in a chaotic motion of the
system.

(4) The motion state of the system changes into chaos
through Hopf bifurcation and period doubling
bifurcation as the dimensionless excitation fre-
quency and the dimensionless backlash increase,
respectively. Results enable suitable values of the
damping coefficient, the rotational speed ratio,
and the backlash to be specified so that chaotic
behavior can be avoided, thus reducing the ampli-
tude of vibration within the system and extending
the system life.
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