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Abstract We present a new dynamical model describ-
ing 3D motion in non-axially symmetric galaxies. The
model covers a wide range of galaxies from a disk sys-
tem to an elliptical galaxy by suitably choosing the dy-
namical parameters. We study the regular and chaotic
character of orbits in the model and try to connect the
degree of chaos with the parameter describing the de-
viation of the system from axial symmetry. In order
to obtain this, we use the Smaller ALingment Index
(SALI) method to extensive samples of orbits obtained
by integrating numerically the equations of motion, as
well as the variational equations. Our results suggest
that the influence of the deviation parameter on the
portion of chaotic orbits strongly depends on the ver-
tical distance z from the galactic plane of the orbits.
Using different sets of initial conditions, we show that
the chaotic motion is dominant in galaxy models with
low values of z, while in the case of stars with large
values of z the regular motion is more abundant, both
in elliptical and disk galaxy models.
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1 Introduction

To study the dynamical behavior of galaxies it is nec-
essary to build a model describing the properties of the
system. Information on the construction of dynamical
models of galaxies are provided usually from observa-
tions, made after some necessary simplifying assump-
tions. On the other hand, it is a fact that galactic dy-
namical models are successful and realistic, only if the
modeled characteristics agree with the corresponding
observational data.

In most cases, the galactic models are spherical or
axially symmetric, in an attempt to simplify the study
of orbits. For instance, in a spherical system all three
components of the angular momentum and of course
the total angular momentum is conserved. Thus, we
have a plane motion, which takes place in the plane
perpendicular to the vector of the total angular mo-
mentum. On the other hand, in an axially symmetric
system, where the motion is described by a potential
Φ(R,z) the Lz component of the angular momen-
tum is conserved and the motion takes place in the
meridional plane (R, z), which rotates non-uniformly
around the axis of symmetry with angular velocity
φ̇ = Lz/R

2.
Spherical models for galaxies were studied by

[12, 22, 33]. Moreover, interesting axially symmetric
galaxy models were presented and studied by [11]. Re-
cently, [34] used data derived from rotation curves of
real galaxies, in order to construct a new axially sym-
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metric model describing the motion in both elliptical
and disk galaxy systems.

Of particular interest, are the so-called composite
galactic dynamical models. In those models the poten-
tial has several components each describing a part of
the system. Such a dynamical model composed of four
components, that is, a disk, a nucleus, a bulge and a
dark halo was studied by [6]. A new composite mass
model describing motion in axially symmetric galax-
ies with dark matter was recently presented and stud-
ied by [7]. Composite axially symmetric galaxy mod-
els describing the orbital motion in the Galaxy were
also studied by [3]. In these models the gravitational
potential is generated by three superposed disks: one
representing the gas layer, one the thin disk and one
representing the thick disk.

Another interesting class of galaxy models is the
self-consistent models. In order to build a self-consis-
tent model, one must take into account Jeans Theorem
(see e.g., [5]). According to this theorem, the distribu-
tion function f of a steady state galaxy, depends on the
integrals of motion, where only isolating integrals are
taken into account. The self-consistent problem is one
of the most difficult problems in galactic dynamics.
Nevertheless, there are several ways of approaching
this problem. For instance, Binney & Tremaine used
two different approaches in order to obtain the distri-
bution function. Using the first way, they start from f

in order to produce the mass density ρ, while in the
second they start from ρ heading to f .

An effective technique to build self-consistent mod-
els for galaxies is the Schwarzschild orbit superposi-
tion method. This method has been applied in order
to study the dynamical behavior in both axially sym-
metric and triaxial galaxies in a number of papers (see,
e.g., [17, 25, 28, 30]). Self-consistent dynamical mod-
els for a disk galaxy with a triaxial halo were con-
structed by [31], where the starting point was a galaxy
in equilibrium composed of an axially symmetric disk-
bulge and a halo. Then, applying an artificial accelera-
tion he managed to obtain a system in equilibrium with
a triaxial halo.

Realistic triaxial models for galaxies with dark mat-
ter haloes were provided in [24]. In their article, the
authors extended an earlier method used by [23] to
three-dimensional systems by replacing the radial with
an ellipsoidal symmetry in the mass density. Triaxial
galaxy models were also constructed by [2] and [19].

The main goal of this article is to introduce a new
composite mass model in order to use it for the dynam-
ical investigation of galaxies. The model consists of
two parts. The main galaxy body and a massive dense
nucleus. The model can describe disk and elliptical
galaxies as well. Furthermore, the model is designed
to describe not only galaxies that are close to axial
symmetry but also systems with considerable devia-
tion from axial symmetry. Our target is to investigate
the regular and chaotic character of orbits in the new
model and connect the degree of chaos with the param-
eter describing the deviation of the model from axial
symmetry.

The paper is organized as follows: In Sect. 2 we
present the structure and the properties of our new
galactic mass model. In Sect. 3 we describe the com-
putational methods we used in order to explore the na-
ture of orbits. In the following section, we investigate
how the parameter describing the deviation from axi-
ally symmetry influences the regular or chaotic char-
acter of the 3D orbits. We conclude with Sect. 5, where
the discussion and the conclusions of this research are
presented.

2 Presentation and analysis of the new dynamical
model

Our new dynamical model consists of two components
and the total potential V is given by the equation

V (x, y, z) = VG(x, y, z) + Vn(x, y, z), (1)

where

VG(x, y, z) = −GMG√
b2 + x2 + λy2 + (α + √

h2 + z2)2
,

(2)

and

Vn(x, y, z) = −GMn√
x2 + y2 + z2 + c2

n

. (3)

The first part, Eq. (2), is a generalization of the [18]
potential (see also [8, 9]). In Eq. (2) G is the grav-
itation constant, MG is the mass of the galaxy, while
α,b,h and λ are parameters connected to the geometry
of the galaxy. The parameter λ describes the deviation
from the axial symmetry. In the case where b > α and
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Fig. 1 The evolution of the minimum distance dmin at which negative value of density appears for the first time, as a function of the
parameter λ for (a—left): the disk galaxy model (b—right): the elliptical galaxy model

α � h the model describes a disk galaxy with a disk
halo. Here, α is the disk’s scale-length, h is the disk’s
scale-height and b is the core radius of the disk halo.
On the other hand, when b = 0 and h � α the model
describes an elliptical galaxy with α and h being the
horizontal and vertical scale-lengths, respectively. The
second part, Eq. (3), is the potential of a spherically
symmetric nucleus in which Mn and cn are the mass
and the scale-length of the nucleus, respectively. This
potential has been used in the past to model the central
mass component of a galaxy (see, e.g., [14, 15, 36]).
Here we must point out that the potential (3) is not in-
tended to represent a black hole nor any other compact
object, but a dense and massive nucleus therefore, we
do not include any relativistic effects.

We made this choice for two basic reasons. The
first reason is that the majority of galaxies are not ex-
actly axially symmetric. The axial symmetry is only
a good approximation, allowing us to perform the nu-
merical calculations a lot easier. Therefore, the new
model is useful because it is more realistic. Further-
more, this model can be use to describe a wide variety
of galaxies. For instance, when λ is close to unity it
can describe a nearly axially symmetric galaxy, while
for larger values of λ it describes systems that are far
from axial symmetry. A second reason is that the reg-
ular or chaotic nature of orbits is drastically affected
by the value of the parameter λ. Thus, using this new
model we can draw useful conclusions connecting the
deviation from axial symmetry with the character of
orbits in non-axially symmetric galaxies.

In this work, we use the well known system of
galactic units, where the unit of length is 1 kpc, the

unit of mass is 2.325 × 107 M� and the unit of time
is 0.9778 × 108 yr. The velocity units is 10 km/s,
while G is equal to unity. The energy unit (per unit
mass) is 100 km2 s−2. In these units the values of
the involved parameters are: MG = 9500, Mn = 400,
and cn = 0.25. For the disk model we choose b = 12,
α = 3 and h = 0.15, while for the elliptical model we
have set b = 0, α = 1 and h = 10. The particular val-
ues of the system’s parameters were chosen having
in mind a Milky Way-type galaxy [1]. The parameter
describing the deviation from axially symmetry λ, on
the other hand, is treated as a parameter and its value
varies in the interval 0.2 ≤ λ ≤ 1.5.

At this point, we must emphasize, the mass density
in our new model (1) can be negative when the dis-
tance from the center of the galaxy d = √

x2 + y2 + z2

described by the model exceeds a minimum distance
dmin, which strongly depends on the parameter λ. Fig-
ure 1(a–b) shows a plot of dmin vs. λ for the both disk
and elliptical galaxy models. In all cases, we consider
that the dimensions of our new model do not exceed
dmin. Therefore, the mass density is always positive in-
side the galaxy described by the model, while is zero
elsewhere. Being more precise, our gravitational po-
tential is truncated at dmax = 20 kpc for both reasons:
(i) otherwise the total mass of the galaxy modeled by
this potential would be infinite, which is obviously not
physical and (ii) to avoid the existence of any negative
density.

The corresponding equations of motion are

ẍ = −∂V

∂x
, ÿ = −∂V

∂y
, z̈ = −∂V

∂z
. (4)
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The evolution of a deviation vector δv = (δx, δy, δz,

δẋ, δẏ, δż), which joins the corresponding phase space
points of two initially nearby orbits, needed for the
computation of the standard indicators of chaos (the
SALI in our case), can be monitored by the variational
equations

˙(δx) = δẋ, ˙(δy) = δẏ, ˙(δz) = δż,

( ˙δẋ) = −∂2V

∂x2
δx − ∂2V

∂x∂y
δy − ∂2V

∂x∂z
δz,

( ˙δẏ) = − ∂2V

∂y∂x
δx − ∂2V

∂y2
δy − ∂2V

∂y∂z
δz,

(δ̇ż) = − ∂2V

∂z∂x
δx − ∂2V

∂z∂y
δy − ∂2V

∂z2
δz.

(5)

The Hamiltonian which determines the motion of a
test particle (star) in our system is

H = 1

2

(
ẋ2 + ẏ2 + ż2) + V (x, y, z) = E, (6)

where ẋ, ẏ, and ż are the momenta per unit mass con-
jugate to x, y and z, respectively, while E is the nu-
merical value of the Hamiltonian, which is conserved.

3 Computational techniques

Generally, in a Hamiltonian system of N degrees of
freedom an orbit in the 2N -dimensional phase space
has initial conditions (x1(0), x2(0), . . . , x2N(0)). In
order to compute the SALI for that orbit, one has to
follow simultaneously the time evolution of the or-
bit itself as well as the two deviation vectors v1(t)

and v2(t), which initially point in two arbitrary direc-
tions. The evolution of the deviation vectors is given
by the variational equations (5). Moreover, taking into
account that in this case we are only interested in the
directions of these two deviation vectors, we normal-
ize them at every time step of the numerical integration
by setting

v̂i = vi(t)

‖vi(t)‖ , i = 1,2 (7)

thus keeping always their norm equal to unity. By ap-
plying this technique, we manage to control the ex-
ponential growth of the norm of the deviation vectors
and we also avoid overflow malfunctions. Especially,

when we deal with chaotic orbits the normalized devi-
ation vectors point always to the very same direction
and therefore, become equal or opposite in sign. Thus,
SALI can be obtained as [27]

SALI(t) = min
(∥∥v1(t)+v2(t)

∥∥,
∥∥v1(t)−v2(t)

∥∥)
, (8)

where of course t is the time, while ‖.‖ denotes the
Euclidean norm. By definition applies that SALI(t) ∈
[0,

√
2] and when SALI = 0 the two normalized devi-

ation vectors are equal or opposite, nevertheless point-
ing to the same direction.

It is the unique properties of the time evolution of
the SALI that allow us to distinguish fast and safely
between regular and chaotic motion as follows: in the
case of regular orbits the SALI exhibits small fluc-
tuations around a non-zero value, while on the other
hand, in the case of chaotic orbits after a small tran-
sient period it tends exponentially to zero approaching
the limit of the accuracy of the computer (10−16). The
time evolution of a regular (R) and a chaotic (C) or-
bit for a time period of 104 time units is presented in
Fig. 2. Generally speaking, two different initial devia-
tion vectors become tangent to different directions on
the torus, thus producing different sequences of vec-
tors leading the SALI always to fluctuates around pos-
itive values. On the contrary, for chaotic orbits, any
two initially different deviation vectors in time always
tend to align in the direction defined by the maximal
Lyapunov Characteristic Exponent (mLCE). There-
fore, they either coincide with each other or become
opposite, which forces the SALI to decrease rapidly
to zero. Thus, we can exploit this completely different
behavior of the SALI in order to discriminate between
regular and chaotic motion in Hamiltonian systems of
any dimensionality.

In order to decide whether an orbit is regular or
chaotic, one may use the usual method according to
which we check after a certain and predefined time in-
terval of numerical integration, if the value of SALI
has become less than a very small threshold value.
In the current research work, we define this value to
be equal to 10−8. The horizontal, blue, dashed line
in Fig. 2 corresponds to that threshold value which
separates regular from chaotic motion. However, de-
pending on the particular location of each orbit, this
threshold value can be reached more or less fast, as
there are phenomena that can hold off the final classi-
fication of the orbit (i.e. there are special orbits called
“sticky” orbits, which behave as regular for long time
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Fig. 2 Evolution of the
SALI of a regular orbit
(green color—R), a sticky
orbit (orange color—S) and
a chaotic orbit (red
color—C) in our model for
a time period of 104 time
units. The horizontal, blue,
dashed line corresponds to
the threshold value 10−8

which separates regular
from chaotic motion. The
chaotic orbits needs only
about 120 time units in
order to cross the threshold
value, while on the other
hand, the sticky orbit
requires a vast integration
time of about 8000 time
units so as to reveal its
chaotic nature (Color figure
online)

periods before they finally drift away from the regular
regions and starting to wander in the chaotic domain
thus, revealing fully their true chaotic nature. A char-
acteristic example of a sticky orbit (S) in our galactic
system can be seen in Fig. 2, where we observe that
the chaotic character of the particular sticky orbit is
revealed after a considerable long integration time of
about 8000 time units.

For the study of our models, we need to define the
sample of orbits whose properties (chaos or regular-
ity) we will identify. The best method for this purpose,
would have been to choose the sets of initial condi-
tions of the orbits from a distribution function of the
models. This, however, is not available so, we define,
for each set of values of the parameters of the poten-
tial, a grid of initial conditions (x0, ẋ0) regularly dis-
tributed in the area allowed by the value of the energy.
In each grid the step separation of the initial condi-
tions along the x and ẋ axis was controlled in such
a way that always there are at least 25000 orbits. For
each initial condition, we integrated the equations of
motion (4) as well as the variational equations (5) us-
ing a double precision Bulirsch–Stoer FORTRAN al-
gorithm [21] with a small time step of order of 10−2,
which is sufficient enough for the desired accuracy of
our computations (i.e. our results practically do not
change by halving the time step). In all cases, the en-

ergy integral (Eq. (6)) was conserved better than one
part in 10−10, although for most orbits it was better
than one part in 10−11.

Each three-dimensional orbit was integrated nu-
merically for a time interval of 104 time units (10 bil-
lion yr), which corresponds to a time span of the or-
der of hundreds of orbital periods but of the order of
one Hubble time. The particular choice of the total in-
tegration time is crucial especially in the case of the
sticky orbits, which usually appear to be regular if cal-
culated for relative small time, but show clear signs of
chaoticity when calculated for much longer time, that
is, of course, orbits whose diffusion time-scale is equal
to several Hubble times. However, such time intervals
are completely out of scope of our research and thus,
these orbits should not be counted as chaotic, even if
in the long run they may become so.

4 Numerical results

In this section, we shall present the results of our re-
search. We start our presentation from the results ob-
tained for the disk galaxy model, which are presented
in Sect. 4.1. Moreover, Sect. 4.2 is devoted to the re-
sults obtained for elliptical galaxy model. A simple
qualitative way for distinguishing between regular and
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chaotic motion in a Hamiltonian system is by plot-
ting the successive intersections of the orbits using a
Poincaré Surface of Section (PSS) [16]. This method
has been extensively applied to 2D models, as in these
systems the PSS is a two-dimensional plane. In 3D
systems, however, the PSS is four-dimensional and
thus the behavior of the orbits cannot be easily visu-
alized.

One way to overcome this issue is to project the
PSS to phase spaces with lower dimensions, following
the method used in [35, 37]. Let us start with initial
conditions on a 4D grid of the PSS. In this way, we
are able to identify again regions of order and chaos,
which may be visualized, if we restrict our investi-
gation to a subspace of the whole 6D phase space.
We consider orbits with initial conditions (x0, z0, ẋ0),
y0 = ż0 = 0, while the initial value of ẏ0 is always
obtained from the energy integral (6). In particular, we
define a value of z0, which is kept constant and then we
calculate the SALI of the 3D orbits with initial condi-
tions (x0, ẋ0), y0 = ż0 = 0. Thus, we are able to con-
struct again a 2D plot depicting the (x, ẋ) plane but
with an additional value of z0, since we deal with 3D
motion. All the initial conditions of the 3D orbits lie
inside the limiting curve defined by

f (x, ẋ; z0) = 1

2
ẋ2 + V (x,0, z0). (9)

For the disk galaxy model we use the energy value
−520, while for the elliptical galaxy model the energy
level is equal to −540. We chose for both disk and el-
liptical galaxy models such energy values which cor-
respond to xmax � 15 kpc when z0 = 1, where xmax

is the maximum possible value of the coordinate x on
the (x, ẋ) plane.

4.1 Disk galaxy model

In Fig. 3(a–d) we present the final SALI values ob-
tained from the selected grids of initial conditions for
four different values of λ when z0 = 1. The values of
all the other parameters are as in Fig. 1a. Each point
is colored according to its log10(SALI) value at the
end of the integration. In these SALI plots, the reddish
colors correspond to regular orbits, the blue/purple
colors represent the chaotic regions, while all the in-
termediate colors between the two represent the so-
called “sticky” orbits whose chaotic nature is revealed
only after long integration time. The outermost black

solid line corresponds to the limiting curve defined by
Eq. (9). Figure 3a shows the SALI grid when λ = 0.2.
We observe a vast chaotic sea, which implies that the
majority of the orbits are chaotic. However, we can
identify several regions of regular motion. The two
large islands on either side of the x = 0 axis corre-
spond to 2:1 resonant orbits, while the set of the two
smaller islands confined to the outer parts of the grid
contains initial conditions producing 1:1 resonant or-
bits. Things are quite different in the grid depicted
in Fig. 3b where λ = 0.4. Here, the 1:1 resonance is
still present, while the 2:1 resonance has disappeared
completely. The four regions of stability observed in-
side the grid correspond to 3:2 resonant 3D orbits.
Moreover, proceeding to Fig. 3c and Fig. 3d where
λ = 0.6 and λ = 0.8 respectively, it is evident that only
the 1:1 resonance survives eventually. From the SALI
grids presented in Fig. 3, one may conclude that for
small values of the deviation parameter λ, our galactic
model exhibits several types of resonant orbits, which
are strongly affected by shifting the value of λ. Fur-
thermore, we should point out that as we increase the
value of λ approaching to axial symmetry (λ = 1)

the amount of chaos decreases. Similar results can be
obtained from the grids shown in Fig. 4(a–d) where
λ = 1.01,1.1,1.3,1.5. It is evident that when λ > 1
the 1:1 resonant orbits is the all-dominant type of reg-
ular 3D orbits. As the value of λ increases (this time
moving away from axial symmetry), the chaotic mo-
tion grows in percentage at the expense of the 1:1 res-
onant orbits.

We proceed now, investigating how the deviation
parameter λ influences 3D orbits with large values
of z0. We choose z0 = 10 as a fiducial value for
our sets of initial conditions of orbits. Figure 5(a–d)
shows the SALI grids of initial conditions when λ =
0.2,0.4,0.6,0.8. In Fig. 5a where λ = 0.2 we see
that the chaotic orbits are abundant producing a large
chaotic sea, while at the central parts of the grid there
is a substantial amount of sticky orbits corresponding
to intermediate colors of SALI. On the other hand, the
ordered motion is confined mainly at the outer upper
and lower parts of the grid. When λ = 0.4 we ob-
serve in Fig. 5b that the percentage of the sticky or-
bits has been decreased drastically and therefore, the
structure of the chaotic domain is much more solid
and well defined. Things, however, become very in-
teresting in Fig. 5c where λ = 0.6. Here, sticky or-
bits grow again in percentage and also two additional
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Fig. 3 SALI grids of initial conditions (x0, ẋ0) for the disk galaxy model when z0 = 1. (a—upper left): λ = 0.2, (b—upper right):
λ = 0.4, (c—lower left): λ = 0.6 and (d—lower right): λ = 0.8

regions of regular motion emerge. In Fig. 5d where
λ = 0.8 we observe that the initial conditions corre-
sponding to regular motion have inundated almost the
entire grid, thus confining chaotic orbits to the right
and left outer regions of the plane. It is worth notic-
ing that when z0 = 10 the available area inside the
(x, ẋ) plane is considerably less than that when z0 = 1.
What actually happens is that by shifting to higher
levels of z0, both the maximum possible value of the
x coordinate and the maximum possible value of the
ẋ velocity on the (x, ẋ) plane are constantly reduced
as can be seen in Fig. 7a where a plot of xmax (red
color) and ˙(xmax) (green color) versus z0 is presented.
Moreover, for large values of z0 we see that the out-
ermost limiting curve tends to be circular, because the

ratio ˙(xmax)/xmax tends asymptotically to unity with

increasing z0 (see Fig. 7b). Similar behavior applies in

the case of the elliptical galaxy. Thus, we could argue

that this fact justifies in a way, the swarming percent-

ages of regular orbits (see e.g., Fig. 5d). Quite similar

outcomes are obtained when λ > 1 and z0 = 10. Fig-

ure 6a shows the grid when λ = 1.01, that is, an al-

most axially symmetric model. As expected, the vast

majority of the computed orbits are regular, while the

small deviation from axially symmetry induces a low

percentage of chaos, which is confined at the left and

right regions of the grid. Moreover, as the value of the

deviation parameter λ increases, there is a constant in-

crease of the portion of the initial conditions of chaotic
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Fig. 4 Similar to Fig. 3(a–d). (a—upper left): λ = 1.01, (b—upper right): λ = 1.1, (c—lower left): λ = 1.3 and (d—lower right):
λ = 1.5

orbits, which penetrates deeper and deeper toward the
central region of the grid (see Figs. 6(b–d)).

Thus, calculating from all the SALI grids the per-
centage of chaotic orbits (including also the sticky or-
bits, which if we integrate them using more time will
eventually reveal their chaotic nature), we are able to
follow how this fraction varies as a function of the de-
viation parameter λ. As it is clear from Fig. 8, the pat-
tern of the evolution of the chaotic percentage is quite
similar in both studied cases (z0 = 1 and z0 = 10). In
particular, we see that the amount of chaos decreases
sharply when 0.35 � λ < 1, while this tendency is re-
versed when λ > 1. For λ > 0.4 the chaotic percent-
age held always larger values when z0 = 1 than when
z0 = 10. Clearly, the minimum value of the chaotic
percentage is observed when the galactic model is axi-

ally symmetric (λ = 1). Specifically, in the case where
z0 = 10, the chaotic percentage tends asymptotically
to zero when λ = 1. On the contrary, chaos remains at
high levels around 25 % when z0 = 1, probably due to
the greater influence of the massive nucleus.

4.2 Elliptical galaxy model

We now turn our investigation to the elliptical galaxy
model. Once more, we define sets of initial conditions
and then we compute the SALI of the 3D orbits in an
attempt to construct grids thus distinguishing between
regular and chaotic motion. In Fig. 9(a–d) we present
such SALI grids of initial conditions for four different
values of λ when z0 = 1. The values of all the other pa-
rameters are as in Fig. 1b corresponding to the ellipti-
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Fig. 5 SALI grids of initial conditions (x0, ẋ0) for the disk galaxy model when z0 = 10. (a—upper left): λ = 0.2, (b—upper right):
λ = 0.4, (c—lower left): λ = 0.6 and (d—lower right): λ = 0.8

cal galaxy model. Figure 9a depicts the structure of the
(x, ẋ) plane when λ = 0.2. We see that a large unified
chaotic sea exists which, however, surrounds several
regions of regular motion. We identify three different
types of regular 3D orbits: (i) 1:1 resonant orbits pro-
ducing the set of the two islands of stability located at
the outer parts of the grid, (ii) 2:1 resonant orbits with
initial conditions inside the two big and distinct islands
and (iii) 3:1 resonant orbits, which produce the two
small islands near the center. Things are quite differ-
ent though according to Fig. 9b where λ = 0.4. Here,
the islands of the 1:1 resonance at the outer parts of
the grid have been increased in size, while the 2:1 res-
onance occupy now the central region replacing, in a
way, the 3:1 resonance. With a closer look, one may
also identify a set of four small islands of stability

above the 2:1 resonance. These islands correspond to
the 3:2 resonance. In Fig. 9c where λ = 0.6 we ob-
serve that the percentage of the 1:1 resonant orbits has
been increased significantly, while the central region
of the 2:1 resonant orbits has been shrank consider-
ably. Therefore, we may conclude that the increase of
the values of λ in the elliptical model causes the ex-
tinction of secondary resonances, while at the same
time reveals the predominance of the 1:1 orbits. In-
deed, when λ = 0.8 we see at Fig. 9d that the chaotic
domain has been confined mainly at the central parts of
the grid, while all the secondary resonances are absent
due to the growth of the percentage of the 1:1 orbits.

We continue our investigation presenting in
Fig. 10(a–b) four additional SALI grids when λ =
1.01,1.1,1.3,1.5. In Fig. 10a we see that even though
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Fig. 6 Similar to Fig. 5(a–d). (a—upper left): λ = 1.01, (b—upper right): λ = 1.1, (c—lower left): λ = 1.3 and (d—lower right):
λ = 1.5

Fig. 7 (a—left): Evolution of the maximum value of the x co-
ordinate xmax (red color) and the maximum value of the ẋ ve-
locity ˙(xmax) (green color) on the (x, ẋ) plane versus z0 and

(b—right): correlation between the ratio ˙(xmax)/xmax and the
z0 value in the λ = 1.5 disk galaxy model (Color figure online)
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Fig. 8 Evolution of the
percentage of chaotic orbits
in the disk galaxy models as
a function of the deviation
parameter λ. Green color
corresponds to z0 = 1,
while the red color
corresponds to z0 = 10
(Color figure online)

the model is not axially symmetric, since λ = 1.01,
however, the grid is covered entirely by initial condi-
tions corresponding to 1:1 regular orbits. Furthermore,
when λ = 1.1 we may identify only some nuggets
of chaos in Fig. 10b. Only when λ = 1.3 a well de-
fine and unified chaotic sea establishes in the grid, as
we can see in Fig. 10c. The extent of the chaotic sea
increases as we amplify the value of λ thus having
elliptical galaxy models away from axial symmetry.
Taking into account the numerical results presented in
Fig. 10(a–b) when λ > 1 we may draw the following
conclusions: (i) there is no evidence of secondary res-
onances, (ii) the 1:1 resonance is the dominant, if not
the only, type of regular motion and (iii) the increase
of the value of the deviation parameter has as results
the increase of the amount of chaos.

Our next step, is to determine how the deviation
parameter λ influences the regular or chaotic charac-
ter of the 3D orbits when z0 = 10. In Fig. 11(a–d)
we provide four SALI grids corresponding to λ =
0.2,0.4,0.6,0.8, respectively. When λ = 0.2 we see
that the vast majority of the grid is covered by initial
conditions producing regular orbits, while the chaotic
initial conditions are confined at the left and right outer
parts of the grid. Surprisingly enough, we observe in

Fig. 11b where λ = 0.4 that all the central initial con-
ditions have now changed their nature from regular to
chaotic. This interplay continues in reverse order in
Fig. 11c where λ = 0.6. Here, the same orbits with
initial conditions located at the central region of the
grid have changed once more their character this time
from chaotic to regular. Moreover, all the chaotic ini-
tial conditions are confined at the outer parts of the
grid. Things are quite similar when λ = 0.8. Thus, we
may conclude that for small values of λ there is an in-
terplay between regular and chaotic motion, while for
larger values tending to axial symmetry, almost all the
orbits are 1:1 regular orbits. In Fig. 12(a–b) we present
the structure of SALI grids when λ > 1. We see that, in
fact, the results are very similar to those discussed ear-
lier in Fig. 10(a–d). In particular, when λ = 1.01 the
entire grid is occupied only by initial conditions cor-
responding to regular orbits. However, the amount of
chaos is increasing slowly but steadily as we proceed
to models with larger values of deviation parameter
(see Fig. 12(b–d)).

Of particular interest is the evolution of the percent-
age of chaotic orbits in the elliptical galaxy models
as a function of the deviation parameter λ, which is
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Fig. 9 SALI grids of initial conditions (x0, ẋ0) for the elliptical galaxy model when z0 = 1. (a—upper left): λ = 0.2, (b—upper right):
λ = 0.4, (c—lower left): λ = 0.6 and (d—lower right): λ = 0.8

presented in Fig. 13. We observe that the basic pat-
tern of the evolution is the same in both cases (z0 = 1
and z0 = 10). In fact, we may distinguish three dif-
ferent regions at the curves: (i) for 0.2 < λ � 0.4
the chaotic percentage increases; (ii) for λ > 0.4 the
amount of chaos exhibits a rapid decrease until λ = 1
where chaos vanishes due to the axial symmetry of
the system and the two curves coincide; (iii) for λ > 1
the percentage of chaotic orbits increases following a
monotonic trend. Here, we should point out that when
z0 = 1 the amount of chaos is larger, while the changes
to the chaos evolution (increase of decrease) are more
sharp than when z0 = 10.

In all cases (disk and elliptical galaxy models), we
further classified the regular orbits into different fami-

lies, by using the technique of frequency analysis used
by [10, 20]. Initially, [4] proposed a technique, dubbed
spectral dynamics, for this particular purpose. Later
on, this method has been extended and improved by
[10], while the extraction of basic frequencies was
obtained with the frequency modified Fourier trans-
form which was refined by [26]. In general terms, this
method computes the Fourier transform of the coordi-
nates of an orbit, identifies its peaks, extracts the corre-
sponding frequencies and search for the fundamental
frequencies and their possible resonances. Thus, we
can easily identify the various families of regular or-
bits and also recognize the secondary resonances that
bifurcate from them. In Fig. 14(a–b) we present two
characteristic examples thus demonstrating the recon-
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Fig. 10 Similar to Fig. 9(a–d). (a—upper left): λ = 1.01, (b—upper right): λ = 1.1, (c—lower left): λ = 1.3 and (d—lower right):
λ = 1.5

struction of the orbital structure of the (x, ẋ) plane,
which enable us now to distinguish not only between
regular and chaotic motion but also between different
families of regular orbits. Figure 14a depicts the case
of an elliptical galaxy model with λ = 0.4 and z0 = 1,
while in Fig. 14b we see a similar grid for a disk galaxy
model with λ = 1.3 and z0 = 10. Here we should point
out that these two grids are in fact advanced versions
of the regular/chaotic SALI grids given in Fig. 10c and
Fig. 5b, respectively.

We shall close this section by presenting in
Fig. 15(a–f) several characteristic examples of 3D or-
bits that are encountered in our galaxy model. All or-
bits were computed until t = 200 time units. The exact
type (resonance), the model used to produce each or-
bits and the initial conditions are given in Table 1. It

Table 1 Type, model and initial conditions for the 3D orbits
shown in Fig. 15(a–f). In all cases, y0 = ż0 = 0, while ẏ0 is
found from the energy integral given by Eq. (6)

Figure Type of orbit Model λ x0 z0 ẋ0

15a 1:1:0 disk 0.8 10.6 1 0.00

15b 1:0:1 elliptical 0.8 0.00 10 10.2

15c 0:1:1 disk 1.3 0.10 10 0.00

15d 1:2:0 disk 0.2 9.85 1 0.00

15e 2:3:0 disk 0.4 5.10 1 14.4

15f chaotic elliptical 0.6 1.50 10 0.00

is worth noticing that the 1:1 resonance is usually the
hallmark of loop orbits, both coordinates oscillating
with the same frequency in their main motion. Previ-
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Fig. 11 SALI grids of initial conditions (x0, ẋ0) for the elliptical galaxy model when z0 = 10. (a—upper left): λ = 0.2, (b—upper
right): λ = 0.4, (c—lower left): λ = 0.6 and (d—lower right): λ = 0.8

ously, we have seen that in general terms, the domi-
nant type of regular orbits is the 1:1 resonant orbits.
Our extensive numerical calculations indicate that the
1:1 resonance in our model appears in three different
forms, according to which axes the oscillations take
place. In particular, we see in Figs. 15(a–c) three dif-
ferent types of 1:1 resonant orbits. In Fig. 15a we have
the 1:1:0 resonance since the oscillations take place to
the x and y axes. On the other hand, in Fig. 15b we see
a 1:0:1 resonant orbit oscillating at x and z axes, while
in Fig. 15c the oscillations take place at the y and z

axis and therefore we have a 0:1:1 resonant 3D orbit.
The first type, that is, the case 1:1:0, is very common to
both disk and elliptical galaxy models with low values
of z. In galaxy models with large values of z0 (i.e.,
z0 = 10) the dominant resonance transforms to the

other two types (1:0:1 and 0:1:1). So, one may con-
clude that orbits possessing low values of z0 should
circulate horizontally (parallel with the galactic plane)
around the nucleus, while for 3D orbits having large
values of z0 we expect them to perform loop orbits
perpendicularly to the galactic plane.

5 Discussion

Astronomers build and use dynamical models in or-
der to represent and therefore study the structure and
the evolution of galaxies. The data needed for the con-
struction of these models, consist mainly of images
and spectra obtained using ground-based observations
as well as the Hubble Space Telescope (HST).
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Fig. 12 Similar to Fig. 11(a–d). (a—upper left): λ = 1.01, (b—upper right): λ = 1.1, (c—lower left): λ = 1.3 and (d—lower right):
λ = 1.5

Axially symmetric models for the central parts
of galaxies, containing a central black hole (BH)
were constructed by [13]. In their paper, the authors
combined ground-based data from the Michigan–
Dartmouth–MIT (MDM) observatory with similar in-
put from HST. In particular, the technique of numer-
ical orbit superposition was applied, in order to build
galactic models with distribution functions with three
isolating integrals of motion. Then, the mass of the
central BH, the mass to light ratio and also the orbital
structure of the system could be obtained from those
models.

Moreover, axially symmetric models, for oblate el-
liptical galaxies, with a distribution function depend-
ing on two integrals of motion were constructed by
[29]. In their work, the authors used high quality data

from the HST. Using the models, they managed to ob-
tain the dynamical mass to light ratio M/L and the
corresponding rotation rate of each galaxy. They also
found that the brightest galaxies rotate too slow to ac-
count for their flattening.

From all the above, it becomes clear that nearly
axially symmetric, triaxial and asymmetric galaxies
cannot be represented by axially symmetric models.
Therefore, it seems necessary to construct a new dy-
namical model in order to be able to describe the
properties of motion in non-axially symmetric galax-
ies.

In this paper, we have presented a new dynamical
mass model for non-axially symmetric galaxies. The
model consists of two parts. The first part represents
the main body of the galaxy, while the second part rep-
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Fig. 13 Evolution of the
percentage of chaotic orbits
in the elliptical galaxy
models as a function of the
deviation parameter λ.
Green color corresponds to
z0 = 1, while red color to
z0 = 10 (Color figure
online)

Fig. 14 Orbital structure of the (x, ẋ) plane for (a—left): an elliptical galaxy model with λ = 0.4 and z0 = 1; (b—right): a disk galaxy
model with λ = 1.3 and z0 = 10

resents a massive and dense central nucleus. We made
this choice for a number of reasons. A first reason is
that in most galaxies, the axial symmetry is just an ap-

proximation in order to make the mathematical study
of galaxies more convenient. On the other hand, there
is no doubt that there are galaxies that are close to ax-
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Fig. 15 Characteristic examples of 3D orbits encountered in our disk/elliptical galaxy models. More details are given in the text

ial symmetry, as well as galaxies that are not axially
symmetric. Since our model covers a large variety of
types of galaxies, the model could be considered more
realistic. For a second reason, we can argue the fol-
lowing: As there is evidence that most galaxies host
massive objects [32], in their centers, we constructed
a model with a spherical massive nucleus. We believe
that with this additional massive nucleus, we describe
more precisely a real galaxy. A third reason is that the
dense and massive nucleus plays a vital role on the na-
ture of motion, that is, the regular or chaotic character
of orbits (see [6, 36] and references therein).

An additional advantage of the new dynamical
model is that it can describe motion in disk as well
as in elliptical galaxies. This is obtained by suitably
choosing the values of the parameters (α, b,h), while
the deviation from axial symmetry is regulated by the
quantity λ. Here we must make clear that we con-
sider that the dimensions of the new galaxy dynam-
ical model are taken such as the mass density is al-

ways positive inside the galaxy and zero elsewhere
(see Fig. 1a–b).

We would also like to remind the reader that we
have constructed this model in order to investigate the
regular or chaotic nature of orbits and to try to con-
nect it with the parameter λ. In order to obtain this, we
used the SALI method. Using the same technique, we
obtained interesting results on describing the different
families of regular orbits that are present in the model.
Our results referring to the dynamical properties of the
new galactic model can be summarized as follows:

(1) Taking into account that our dynamical model
is three-dimensional (3D), we had to find a way to de-
fine the sample of orbits whose properties (order or
chaos) would be examined. A very convenient tech-
nique, which is described in Sect. 4, was used and
thus, we were able to study 3D orbits with initial con-
dition in (x, ẋ) plane with an additional value of z0.
We then studied how the particular value of z0 con-
trols the amount of chaos in the system by choosing
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two different values of z0, leading to the conclusion
that z0 is a key element regarding the nature of orbits.

(2) We conducted a thorough investigation in sev-
eral cases, using different values of the parameter in
the range 0.2 < λ < 1.5. Our numerical results, indi-
cate that the parameter λ, which describes the devia-
tion from axially symmetry is indeed very influential
both in the disk and the elliptical galaxy models.

(3) When λ < 1 and z0 = 1 we found that in both
disk and elliptical galaxy models a lot of different
types of resonances appear. On the other hand, in
galaxy models with large values of z0, such as z0 = 10,
all the secondary resonances are suppressed and the
1:1 loop orbits is the dominant type.

(4) In the case where λ > 1 the percentage of sec-
ondary resonances is extremely low and the 3D 1:1
loop orbits are abundant both in elliptical and disk
galaxy models for all values of z0. However, the exact
structure of these orbits differ significantly according
to the value of z0. In fact, stars moving in 3D regular
orbits with low values of z0 circulate parallel to the
galactic plane, while for large values of z0 the 3D loop
orbits are performed vertically to the galactic plane.

(5) We found a very strong correlation between the
value of the deviation parameter λ and the fraction of
chaotic orbits both in disk and elliptical models. Ac-
cording to our numerical experiments, chaos turns out
to be dominant in galaxy models with sufficient de-
viation from axial symmetry. Moreover, the observed
amount of chaos in the disk galaxy models is signifi-
cantly larger than in elliptical models.
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