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Abstract The Bäcklund transformation from the Ric-
cati form of inverse method is presented for the
Perturbed Nonlinear Schrödinger Equation. Conse-
quently, the exact solutions for Perturbed Nonlinear
Schrödinger equation can be obtained by the AKNS
class. The technique developed relies on the construc-
tion of the wave functions which are solutions of the
associated AKNS; that is, a linear eigenvalues prob-
lem in the form of a system of PDE. Moreover, we
construct a new soliton solution from the old one and
its wave function.
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1 Introduction

In the recent years, there has made noticeable progress
in the construction of the exact solutions for nonlin-
ear partial differential equations, which has long been
a major concern for both mathematicians and physi-
cists.

The effort in finding exact solutions to nonlinear
differential equation (NPDE), when they exist, is very
important for the understanding of most nonlinear
physical phenomena. For instance, the nonlinear wave
phenomena observed in fluid dynamics, plasma and
optical fibres are often modelled by the bell shaped
sech solutions and the kink shaped tanh solution.
Many powerful methods for finding soliton solutions
such as the Darboux transformation [13], Hirota bilin-
ear method [14], Lie group method [15], the homoge-
neous balance method [16].

Nonlinear partial differential integrable by the in-
verse scattering transform (IST) method form a wide
class of soliton solutions. The Bäcklund transforma-
tion (BT) technique is one of the direct methods to
generate a new solution of a nonlinear evolution equa-
tion from a known solution of that equation [11, 15–
17]. These BTs explicitly express the new solutions
in terms of the known solutions of the nonlinear par-
tial differential equations and the corresponding wave
functions which are problem in the form of a system
of first-order partial differential equations (PDEs). The
basic aim of this paper is to construct the exact solu-
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tions for a Perturbed Nonlinear Schrödinger Equation
(PNLSE):

i
∂q

∂t
+ 1

2

∂2q

∂x2
+ |q|2q

+ iε

(
β1

∂3q

∂x3
+ β2|q|2 ∂q

∂x
+ β3q

∂|q|2
∂x

)
= 0, (1)

where q represents a normalised complex amplitude
of the pulse envelope, t is a normalised distance
along the fibre, x is the normalised retarded time, ε

is a small parameter and β1, β2, β3 are the real nor-
malised parameters which depend on the fibre char-
acteristics (β1 is the coefficient of the linear higher-
order dispersion effect and β2, β3 are overlap inte-
grals [2]). A new model, to include saturation effects
of the Kerr nonlinearity, has been recently derived
[3], in which the governing equation is a combina-
tion of the exponential nonlinear Schrödinger equa-
tion and the derivative one. For ε = 0 in Eq. (1)
we obtain the standard nonlinear Schrödinger equa-
tion (NLSE), which is one of the complete integrable
nonlinear partial differential equations (NLPDEs).
Its solutions can be obtained by different methods,
e.g., by the inverse scattering transform [4], the Lie
group theory [5]. To the best of our knowledge for
arbitrary parameters β1, β2, β3 Eq. (1) is not com-
pletely integrable, but for an appropriate choice of
the these parameters it can be integrated by the IST.
Thus the cases when β1:β2:β3 = 0:1:1 (the deriva-
tive nonlinear Schrödinger equation (NLSE) type I)
was solved in [6], β1:β2:β3 = 0:1:0 (the derivative
nonlinear Schrödinger equation (NLSE) type II) was
solved in [7], β1:β2:β3 = 1:6:0 (the Hirota equation)
was solved in [8] and β1:β2:β3 = 1:6:3 was solved
in [9], [10]. With choice β2 = 6β1 and β3 = 0, we
have

i
∂q

∂t
+ 1

2

∂2q

∂x2
+ |q|2q + iεβ1

(
∂3q

∂x3
+ 6|q|2 ∂q

∂x

)
= 0.

(2)

The article is organised as follows: this introduction
in Sect. 1. In Sect. 2, the Ablowitz–Kaup–Newell–
Segur (AKNS) system and the general form of the
Bäcklund transformations (BTs) for the nonlinear evo-
lution equations (NLEEs) are illustrated. In Sect. 3,
a new exact solution class from a known constant
solution is obtained for (2). In Sect. 4, a new exact

soliton solution class from a known solution (simple
function) for (2). In Sect. 5, a new exact soliton solu-
tion class from a known solution of a travelling wave
for (2).

2 The AKNS system and the BTs for the NLEEs

Consider the AKNS eigenvalues problem defined in
the form

Φx = PΦ,

Φt = QΦ,
(3)

where Φ = [ ϕ1
ϕ2

]
, P and Q are two 2 × 2 null-trace

matrices

P =
[
η q

r −η

]
, Q =

[
A B

C −A

]
, (4)

where η is a parameter, independent of x and t while
q and r are functions of x and t .

The integrability condition reads

Pt − Qx + PQ − QP = 0 (5)

or in component form

−Ax + qC − rB = 0, (6)

qt − Bx − 2Aq + 2ηB = 0, (7)

rt − Cx − 2ηC + 2Ar = 0, (8)

where A, B and C are functions of η, q and r .
Konno and Wadati [1], introduced the function

Γ = ϕ1

ϕ2
. (9)

Equations (3) are reduced to the Riccati equations:

∂Γ

∂x
= 2ηΓ + q − rΓ 2, (10)

∂Γ

∂t
= B + 2AΓ − CΓ 2 (11)

we construct a transformation Γ ′ satisfying the same
equation as with a potential q ′(x) and, for any of the
NLEE, derived a BTs with the following form:

q ′(x) = q(x) + F(Γ,η), (12)
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where q is the old solution and q ′ is the a new solution
of the corresponding NLEEs. In the following section,
we expound the new form A,B,C and r .

Consider

P =
[

η q

−q∗ −η

]
, Q =

[
A B

C −A

]
, (13)

where

A = i

2
|q|2 + εβ1

(
qq∗

x − qxq
∗) − 2εβ1η|q|2

+ iη2 − 4εβ1η
3, (14)

B = i

2
qx − εβ1

(
2|q|2q + qxx

) − 2εβ1ηqx

+ iηq − 4εβ1η
2q, (15)

C = i

2
q∗
x + εβ1

(
2|q|2q∗ + q∗

xx

) − 2εβ1ηq∗
x

− iηq∗ + 4εβ1η
2q∗ (16)

substitute from Eqs. (13)–(16) into Eqs. (6)–(8), then
Eq. (8) gives a perturbed nonlinear Schrödinger equa-
tion (PNLSE) (2). To derive the new solution q ′ from
the known solution q , Eq. (10) becomes

∂Γ

∂x
= 2ηΓ + q + q∗Γ 2. (17)

If we choose Γ ′ and q ′ as

Γ ′ = 1

Γ ∗ (18)

q ′(x) = q(x) + 2
Γ 2( ∂Γ ∗

∂x
) − ( ∂Γ

∂x
)

1 − |Γ |4 (19)

then Γ ′ with q ′(x) satisfies Eq. (17) for real η. Equa-
tion (19) reduces to the following BTs form:

q ′(x) = −q(x) − 4η
Γ

1 + |Γ |2 . (20)

3 The know solution is a constant

Let q = 0 be a solution of Eq. (2), then, the matrices
P and Q take the following form:

P =
[
η 0
0 −η

]
,

Q =
[
iη2 − 4εβ1η

3 0
0 −(iη2 − 4εβ1η

3)

]
.

(21)

From Eqs. (3)–(4)

dΦ = Φx dx + Φt dt = (P dx + Qdt)Φ, (22)

from Eq. (21), we get

Q = (
iη − 4εβ1η

2)P, (23)

substitute from Eq. (23) into Eq. (22), we get

dΦ = PQdρ, (24)

where

ρ = x + kt; k = iη − 4εβ1η
2. (25)

By solving Eq. (24), we obtain the following solution:

Φ = Φ0e
Pρ

=
[
I + ρP + 1

2!ρ
2P 2 + 1

3!ρ
3P 3 + · · ·

]
Φ0, (26)

Φ =
[

coshηρ + sinhηρ 0
0 coshηρ − sinhηρ

]
Φ0,

(27)

Φ =
[
eηρ 0
0 e−ηρ

]
Φ0, (28)

where Φ0 is a constant column vector, now we choose
Φ0 = (1,1)T in Eq. (28), we obtain

Φ =
[
ϕ1

ϕ2

]
=

[
eηρ

e−ηρ

]
. (29)

By using Eqs. (9) and (29), then the Bäcklund transfor-
mations (20) gives the new solution of the PNLSE (2)
corresponding to the know constant PNLSE solution
q = 0 as follows:

q ′(x) = −2ηe2iη2t sech
[
2η(ρ − iηt)

];
ρ = x + (

iη − 4εβ1η
2)t. (30)

4 The know solution q = q(x, t) is a simple
function

In this case, Eqs. (3)–(4) cannot be solved for the vec-
tor Φ as a whole, but it can be solved in the com-
ponents ϕ1, ϕ2 separately. After substituting for the
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known solution q(x, t) of the PNLSE into the corre-
sponding matrices P and Q, we will have the follow-
ing system for the unknowns ϕ1, ϕ2:

ϕ1x = ηϕ1 + qϕ2, (31)

ϕ2x = rϕ1 − ηϕ2, (32)

ϕ1t = Aϕ1 + Bϕ2, (33)

ϕ2t = Cϕ1 − Aϕ2. (34)

These equations are compatible under the conditions
of the assumed values of matrices P and Q connected
with the PNLSE under consideration. Solve for ϕ1

from Eq. (32), we get

ϕ1 = 1

r
(ϕ2x + ηϕ2). (35)

Substituting from Eq. (35) of ϕ1 and Eq. (8) into Eq.
(34), we get

Cϕ2x − rϕ2t = 1

2
(Cx − rt )ϕ2. (36)

Equation (36) is a linear first-order partial differential
equation with ϕ2 and we can be solved by the method
of characteristics. After, occurrence ϕ2 from Eq. (36)
and substituting it into Eq. (35), we will obtain ϕ1.
Thus we have obtained two general solutions ϕ1 and
ϕ2, which contain an arbitrary function F . This arbi-
trary function can be determined by substitution for
ϕ1, ϕ2 into Eqs. (31) or (33) which will yield a second-
order linear ordinary differential equation with func-
tion F as its unknown. If we can solve for the function
F , we will obtain the two particular solutions ϕ1 and
ϕ2. Finally, by applying (9) and the Bäcklund trans-
formations for the PNLSE (20), we shall obtain a new
solution of the PNLSE, we will apply this technique
for the following example:

Example Let

q(x, t) = a0 exp
[
i
√

2a0
(
x − 4εβ1a

2
0 t

) + a3
]

(37)

be a solution of the perturbed nonlinear Schrödinger
equation (2), substituting from Eq. (37) into (36) with
Eqs. (13)–(16), we obtain

hϕ2x + ϕ2t = − i
√

2

2
a0

(
h − 4εβ1a

2
0

)
ϕ2, (38)

where

h =
√

2

2
a0 + 2

√
2iεβ1a0η − iη + 4εβ1η

2, (39)

Equation (39) has the following system of ordinary
differential equations (ODEs) as its characteristic
equations:

dx

dt
= h, (40)

dϕ2

dt
= − i

√
2

2
a0

(
h − 4εβ1a

2
0

)
ϕ2. (41)

Solving the two Eqs. (40), (41) gives the general solu-
tion of ϕ2, which reads

ϕ2 = F(ξ) exp

[
− i

√
2

2
a0

(
h − 4εβ1a

2
0

)
t

]
, (42)

ξ = x − ht, (43)

where F(ξ) is an arbitrary function. Substituting
Eqs. (37), (42) and (43) into (35) gives the general
solution of ϕ1, which reads

ϕ1 = − 1

a0

(
F ′ + ηF

)
eγ (44)

where

γ = i
√

2a0
(
x − 2εβ1a

2
0 t

) − i
√

2

2
ha0t + a3. (45)

To determine the arbitrary function F(ξ), we substi-
tute from Eqs. (37), (42), (43) and (44) into (31); then
F(ξ) must satisfy the following second-order linear
ODE:

F ′′ + 2αF ′ + β2F = 0, (46)

where “′” denotes to d
dξ

and

α = i
√

2

2
a0, β2 = a2

0 + i
√

2a0η − η2. (47)

The general solution of Eq. (46) for the arbitrary func-
tion F(ξ) is

F(ξ) = [
k3 cosh

(√
α2 − β2ξ

)

+ k4 sinh
(√

α2 − β2ξ
)]

e−αξ , (48)

where k3, k4 are arbitrary constants.
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Substituting Eq. (48) into Eqs. (42), (44) and by ap-
plying (9), we obtain

Γ = − 1

a0

[
d(logF)

dξ
+ η

]

× exp
[
i
√

2a0
(
x − 4εβ1a

2
0 t

) + a3
]
. (49)

Then substituting this Γ and (37) into BTs (20) gives
the new solution of the PNLSE corresponding to a
simple function (37):

q ′ = −a0

[
1 − 4η

d(logF)
dξ

+ η

a2
0 + [ d(logF)

dξ
+ η][ d(logF ∗)

dξ∗ + η]

]

× exp
[
i
√

2a0
(
x − 4εβ1a

2
0 t

) + a3
]
, (50)

where ξ∗ is the conjugate of ξ which is defined in
Eq. (43).

5 The know solution is a travelling wave

In this case we suppose that the components of q and
r of the matrix P are functions of ρ:

q = q(ρ), r = r(ρ), where ρ = x − kt. (51)

Then the components of A, B and C of the matrix Q

determined by Eqs. (6)–(8) are functions of ρ:

A = A(ρ), B = B(ρ) and C = C(ρ). (52)

We require the quantity

δ = (A + kη)2 + (B + kq)(C + kr) (53)

to be constant with respect to x and t . Solving
Eqs. (31)–(34) by applying the method of character-
istics. The partial differential equations (31)–(34) pos-
sesses the following characteristics equations:

dx

C
= dt

−r
= 2dϕ2

(Cx − rt )ϕ2
. (54)

Substituting from (51), (52) into (54), we get

dt

−r
= dρ

C + kr
= 2dϕ2

(C + kr)′ρϕ2
. (55)

These equations gives the following system of ODEs:

d(lnϕ2)

dρ
= (C + kr)′ρ

2(C + kr)
, (56)

dρ

dt
= −(C + kr)

r
. (57)

These two equations gives the general solutions

ϕ2 = k2(C + kr)1/2, (58)

−t + k1 =
∫

r dρ

(C + kr)
, (59)

where k1, k2 are integration constants.
Denoting

σ(ρ) =
∫

r dρ

(C + kr)
. (60)

Substituting from (60) into (59), we have

σ(ρ) + t = k1 (61)

and from (58) and (61), we obtain the general solution
of Eq. (36)

ϕ2 = F(ξ)(C + kr)1/2, (62)

ξ = σ(ρ) + t. (63)

Substituting (62) into (35) gives the solution for ϕ1:

ϕ1 = (C + kr)−1/2(F ′
ξ + (A + kη)F

)
. (64)

To determine the function F , we substitute Eqs. (62)
and (64) into (31), then F(ξ) must satisfy the follow-
ing second-order ODE:

F ′′
ξξ − δF = 0, (65)

where δ is a constant defined in (53). According to the
sign of δ, Eq. (65) have the following three different
solutions:

F(ξ) = c1ξ + c2,

when δ = 0, (66)

F(ξ) = c1 sinhω(ξ + c2),

when δ � 0, ω2 = δ, (67)

F(ξ) = c1 sinω(ξ + c2),

when δ ≺ 0, ω2 = −δ, (68)

where c1 and c2 are integrations constants. Substi-
tuting these solutions into (62) and (64), we obtain
the corresponding different solutions of system (3)
and (4):
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• when δ = 0

[
ϕ1

ϕ2

]
=

[
(C + kr)−1/2[(A + kη)(c1ξ + c2) + c1]

(C + kr)1/2(c1ξ + c2)

]
, (69)

• when δ � 0

[
ϕ1

ϕ2

]
=

[
c1(C + kr)−1/2[(A + kη) sinhω(ξ + c2) + ω coshω(ξ + c2)]

c1(C + kr)1/2 sinhω(ξ + c2)

]
, (70)

• when δ ≺ 0

[
ϕ1

ϕ2

]
=

[
c1(C + kr)−1/2[(A + kη) sinω(ξ + c2) + ω cosω(ξ + c2)]

c1(C + kr)1/2 sinω(ξ + c2)

]
. (71)

Equations (69)–(71) are satisfy for any NLEE con-
tained in the AKNS system (3) and (4), provided they
satisfy assumptions (51)–(53).

Now, we apply these results and the known travel-
ling wave solution of the perturbed nonlinear Schrödin-
ger equation (PNLSE) to find a new solution of the
corresponding (PNLSE) by using the BTs for the fol-
lowing example.

Example Let

q(x, t) = −2η exp
[
2iη2t

]
sech[2ηρ] (72)

where

ρ = x − kt; k = 4εβ1η
2 (73)

be a solution of the perturbed nonlinear Schrödinger
equation (2), substituting from (72) and (73) into
Eqs. (13)–(16) to find A,B,C and r , we get

A = η2(i − 4εβ1η)
(
2 sech2[2ηρ] + 1

)
,

B = 2η2[(i − 4εβ1η)
(
tanh[2ηρ] − 1

)

+ 4εβ1η
]

sech[2ηρ] exp
[
2iη2t

]
,

C = 2η2[(i − 4εβ1η)
(
tanh[2ηρ] + 1

)

− 4εβ1η
]

sech[2ηρ] exp
[−2iη2t

]
,

r = −q∗ = 2η exp
[−2iη2t

]
sech[2ηρ].

(74)

Substituting from Eq. (74) into (60)–(63), we obtain

A + kη = η2[i + 2(i − 4εβ1η) sech2[2ηρ]],
C + kr = 2η2[(i − 4εβ1η)

(
1 + tanh[2ηρ])

× sech[2ηρ]] exp
[−2iη2t

]
,

ξ = 1

η

∫
dρ

(i − 4εβ1η)(tanh[2ηρ] + 1)
+ t

= −1 + 4ηρ + (1 + 4ηρ) tanh[2ηρ]
8η2(i − 4εβ1η)(1 + tanh[2ηρ]) + t.

(75)

Substituting from (74) and (75) into Eqs. (69)–(71),
we have

• when δ = 0

Γ = exp[−2iη2t]
2η2[(i − 4εβ1η)(1 + tanh[2ηρ]) sech[2ηρ]]

×
[
η2[i + 2(i − 4εβ1η) sech2[2ηρ]]

+ 1

ξ + c

]
;

c = c2

c1
(76)

substituting Eq. (76) into the BTs (20) to find the
new solution q ′ of the PNLSE (2) corresponding to
the known solution (72):

q ′(x) = 2η exp
[
2iη2t

]
sech[2ηρ] − 4η

Γ

1 + |Γ |2 ,

(77)
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where Γ, ξ are defined into (76) and (75), respec-
tively.

• when δ � 0

Γ = exp[−2iη2t]
2η2[(i − 4εβ1η)(1 + tanh[2ηρ]) sech[2ηρ]]
× [

η2[i + 2(i − 4εβ1η) sech2[2ηρ]]
+ ω cothω(ξ + c2)

]; δ = ω2 (78)

substituting Eq. (78) into the BTs (20) to find the
new solution q ′ of the PNLSE (2) corresponding to
the known solution (72):

q ′(x) = 2η exp
[
2iη2t

]
sech[2ηρ] − 4η

Γ

1 + |Γ |2 ,

(79)

where Γ, ξ are defined into (78) and (75), respec-
tively.

• when δ ≺ 0

Γ = exp[−2iη2t]
2η2[(i − 4εβ1η)(1 + tanh[2ηρ]) sech[2ηρ]]
× [

η2[i + 2(i − 4εβ1η) sech2[2ηρ]]
+ ω cotω(ξ + c2)

]; δ = −ω2 (80)

substituting Eq. (80) into the BTs (20) to find the
new solution q ′ of the PNLSE (2) corresponding to
the known solution (72):

q ′(x) = 2η exp
[
2iη2t

]
sech[2ηρ] − 4η

Γ

1 + |Γ |2 ,

(81)

where Γ, ξ are defined into (80) and (75), respec-
tively.
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