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Abstract Under investigation is the higher-order non-
linear Schrédinger equation with the third-order dis-
persion (TOD), self-steepening (SS) and self-
frequency shift, which can be used to describe the
propagation and interaction of ultrashort pulses in the
subpicosecond or femtosecond regime. Through the
introduction of an auxiliary function, bilinear form
is derived. Bright one- and two-soliton solutions are
obtained with the Hirota method and symbolic com-
putation. From the one-soliton solutions, we present
the parametric regions for the existence of single- and
double-hump solitons, and find that they are affected
by the coefficients of the group velocity dispersion
(GVD) and TOD. Besides, propagation of the one
single- or double-hump soliton is observed. We analyt-
ically obtain the amplitudes for the single- and double-
hump solitons, and calculate the interval between the
two peaks for the double-hump soliton. Moreover,
soliton amplitudes are related to the coefficients of the
GVD, TOD and SS, while the interval between the
two peaks for the double-hump soliton is dependent
on the coefficients of the GVD and TOD. Interactions
are seen between the (i) two single-hump solitons,
(ii) two double-hump solitons, and (iii) single- and
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double-hump solitons. Those interactions are proved
to be elastic via the asymptotic analysis.
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1 Introduction

It has been theoretically predicted [1, 2] and experi-
mentally observed [3, 4] that the bright (dark) opti-
cal solitons can exist in the anomalous (normal) dis-
persion regime. Since then, optical solitons have at-
tracted some attention because of their potential appli-
cations in the optical communication systems and all-
optical switching devices [5]. Optical solitons can sta-
bly propagate over a long distance due to the balance
between the linear dispersion and nonlinear effects [5].
In the picosecond regime, the nonlinear Schrodinger
(NLS) equation with the group velocity dispersion
(GVD) and self-phase modulation (SPM) [5]

iUz +aUrr + x|UPU =0 (1

can model the propagation and interaction of optical
solitons in the mono-mode fibers. Hereby, U is the
slowly varying envelope of the electric field, Z is the
normalized distance along the direction of propaga-
tion, T is retarded time, the subscripts represent the
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partial derivatives, the real parameters « and y are, re-
spectively, related to the GVD and SPM [5].

In the subpicosecond or femtosecond regime,
Eq. (1) is inadequate since the optical solitons be-
come shorter [6-9]. Higher-order effects including
the third-order dispersion (TOD), self-steepening (SS)
and stimulated Raman scattering (SRS) need to be
considered for the ultrashort pulses [10-12]. Among
them, the TOD produces the asymmetrical temporal
broadening for the ultrashort pulses, the SS, which
is also called the Kerr dispersion, leads to the asym-
metrical spectral broadening for the ultrashort pulses,
and the SRS causes a self-frequency shift for the ul-
trashort pulse [10-14]. Besides, optical solitons with
the non-Kerr law nonlinearity or perturbation terms
have been considered in Refs. [15-24]. For exam-
ple, Refs. [15, 16] have, respectively, investigated two
variable-coefficient NLS equations with non-Kerr law
nonlinearity, and derived the bright and dark one-
soliton solutions when the coefficients are Riemann
integrable. Ref. [17] has discussed the adiabatic pa-
rameter dynamics of Gaussian optical solitons with
the local and non-local perturbation terms through
the collective variables method. Dynamics of opti-
cal solitons for the improved NLS equation with the
Kerr law, power law, parabolic law, dual-power law
or log law nonlinearity has been investigated [18, 19].
Ref. [20] has studied the NLS equation with the power
law nonlinearity and Hamiltonian perturbation terms,
and obtained the bright and dark one-soliton solutions.
Ref. [21] has researched the Schrodinger—Hirota equa-
tion with the power law nonlinearity in the dispersive
optical, and derived the soliton solutions and com-
plexitons. Ref. [22] has discussed the dynamics of
dark solitons for the variable-coefficient NLS equation
with the power law nonlinearity. Ref. [23] has consid-
ered the dynamics of the dark solitons for the gener-
alized NLS equation with the parabolic law and dual-
power law nonlinearities. Lie symmetry approach has
been used to obtained the stationary one-soliton solu-
tions for the NLS equation with the Kerr law, power
law, parabolic law or the dual-power law nonlinear-
ity [24].

In this paper, we will only take the TOD, SS
and SRS into account, and investigate the following
higher-order NLS (HNLS) equation [25-33]:

iu, + oy —|—a2|u|2u

+ilosu +as(jul’u), +asu(jul?),]=0, ()

@ Springer

where u is the slowly varying envelope of the elec-
tric field, z is the normalized distance along the di-
rection of propagation, ¢ is retarded time, the real pa-
rameters oy, a2, o3, o4 and os are relevant to the
GVD, SPM, TOD, SS and SRS, respectively. Equa-
tion (2) can be used to describe the propagation and
interaction of ultrashort pulses in optical fibers [10—
14, 25]. Specially, when a3 = o4 = a5 = 0, Eq. (2)
reduces to Eq. (1) [5]; when a3 = a5 = 0, to the mod-
ified NLS equation [25, 34]; when 3ap03 = o oe4 and
a4 + a5 = 0, to the Hirota equation [25, 35]; when
3apa3 = a4 and o4 + 2a5 = 0, to the Sasa—Satsuma
equation [25, 31].

Equation (2) has been investigated analytically in
some aspects [26—-33]: Painlevé analysis, Lax pair and
soliton solutions have been investigated for Eq. (2),
with the discussion on the all-soliton communication
links [26]; one-soliton solutions have been obtained
for Eq. (2) with @) =a» = a3 =1 and 304 + 205 > 0
[27]; dark soliton solution for Eq. (2) has been dis-
cussed and derived through the coupled amplitude-
phase formulation [28], and dark one- and two-soliton
solutions for Eq. (2) with o1 = —1, a0 =2, a3 = —1,
o4 =6 and a5 = —6 (a5 = —3) have been con-
structed [29]; a class of soliton solutions has been
derived for Eq. (2) with o1 =1, ap =2, a3 = —1,
o4 = —6 and os = 3, and those solitons have been
found to be stable in a certain domain of the param-
eter [30]; via the inverse scattering transform, one-
soliton solutions have been explicitly given for Eq. (2)
witho; =1/2, 00 =1, 03 =1, 24 =6 and a5 = -3,
and propagation of the one soliton with the double
humps has been observed [31]; N-soliton solutions for
Eq. (2) with 33 = a4 and o4 + o5 = 0 have been
presented through the Darboux transformation, with
the indication that the interaction between neighboring
solitons can be restrained to some extent, helping to
increase the bit-rate in optical telecommunication sys-
tems [32]; bilinear form and one-soliton solutions have
been obtained for Eq. (2) with o1 = a2 =0, a3 =1,
aq4 =6 and as = —3 [33].

However, to our knowledge, propagation and inter-
action of the bright single- and double-hump solitons
have not been investigated for Eq. (2) with 3oz =
ar1oq and g + 2a5 = 0. Therefore, in this paper, we
will obtain the bilinear form through an auxiliary func-
tion, and construct the bright hump one- and two-
soliton solutions with the Hirota method [36] and sym-
bolic computation [37-40]. In Sect. 3, based on those
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solutions, we will investigate the propagation and in-
teraction of bright single- and double-hump solitons
analytically and graphically. For the one-soliton solu-
tions, we will give the parametric regions for the ex-
istence of single- and double-hump solitons. For the
two-soliton solutions, we will find that the interac-
tions can exist between (i) two single-hump solitons,
(i1) two double-hump solitons, and (iii) one single-
hump and one double-hump solitons. Besides, we will
carry out the asymptotic analysis on the two-soliton
solutions to prove that the interaction are elastic. Our
conclusions will be listed in Sect. 4.

2 Bilinear form and bright soliton solutions
2.1 Bilinear form

Introducing the dependent variable transformation,

g
7
where g is the complex differentiable function with
respect to z and ¢, and f is a real one, we transform
Eq. (2) with 3axa3 = aja4 and og + 205 = 0 into the
following form:

Dsf (D?g-f _gD%f-f)
f? f? for?
ajoy g 88*

3a3 f f?
D}g- Dig- f Df -
+i(a3 8-S 3, ’;fz f ’j{z f
3a4 Dig- f 88" s Dig*-f g
o B2 L) =0 @
22 22
with x as the complex conjugate, while D, and D; be-
ing the Hirota operators [36] defined as

3

u=

D} Dla(z,t) - b(z,1)

(9 a\"/d 3\"
“\dz 97 or ot

x a(z, t)b(z/, t')|

I=z,t'=t’

where a(z,t) and b(z,t) are the differentiable func-
tions, z’ and ¢’ are the independent variables, and m
and n are the nonnegative integers.

Through the exchange formula [36], we can derive

(Dig*- f)g* = (Dig- flgg* — (Dig-g*)ef. (5
Via Expression (5), Eq. (4) becomes as follows:
(iD,+ a1 D} +iasD})g - f
f2
33D} f - f —20ug8* ((@ig LiDis S
f? 3a3 f r?
_ 8 Giazay Dy +2a104)g - 8%
f 603 f2 B

Setting

0. ©6)

33D} f - f —20u4g8" =0, )
we have

(iD; +a1D? +iasD})g - f
f2
g Biazaa Dy +20104)8 - g
f 603 f2 a

Note that Eq. (8) is not a bilinear form but a trilin-
ear one. Therefore, we need to introduce one auxiliary
function and obtain the bilinear form for Eq. (2) as fol-
lows:

0. ®)

(iD, +a1D} +ia3D;)g - f — gh =0, (9a)
BiazayD; +20a104)g - g — 623 fh =0, (9b)
30[3D,2f - f —204g8" =0, (9c)

with & as an auxiliary function of z and ¢ to be deter-
mined.

2.2 Bright soliton solutions
In order to obtain the bright soliton solutions, g, f and

h are expanded with respect to a formal parameter ¢ as
follows:

g=egi+eg+egs+el g+, (10a)
f=1+e2p+etfutelfo+edfs+---,  (10b)
h=e’hy+ e*hy + %he + eBhg + - -, (10c)

where g;’s (j = 1,3,5,...), fi’s and hy’s (k =
2,4,6,...) are the differentiable functions with re-
spect to z and ¢. Substituting Expressions (10a)—(10c)
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into Bilinear Form (9a)—(9c) and collecting the co-
efficients of each order of ¢ yield the recursion re-
lations for g;’s (j =1,3,5,...), fi’s and hy’s (k =
2,4,6,...), through which the bright soliton solutions
for Eq. (2) can be derived.

2.2.1 Bright one-soliton solutions

To obtain the bright one-soliton solutions, we truncate
Expressions (10a)—(10c) as g = eg1 + 83g3, f=1+
e2fr+ e fyand h = e%hy + e*hy. Setting that

g1 = ekt+wz+n’ (11)
where k and 5 are two complex parameters and w is

a complex one to be determined, and through Bilinear
Form (9a)—(9¢c), we have

f2 — ﬂ€9+9*, /’l2 — )/€9+0*, g = 8629+6*,

fy = 200", hy = 920120

0=kt +wz+n,

w=iak? — a3k, ¢ =5868", 9=0 (2)
ay o420 + 3iaz(k — k*)]

g 6 |

5= v
2Biozk 4+ op) (k + k*)2°

Without loss of generality, with ¢ = 1 and Expres-
sion (3), the bright one-soliton solutions for Eq. (2)
are

_ g1+ 83 (13)
L+ 2+ fa

2.2.2 Bright two-soliton solutions

Similarly, we truncate Expressions (10a)-(10c) as g =
eg1 +eg3+e7gs+elgrn, f=1+e’fr+etfu+
e fo + &b foand h = £2hy + £*hy + %h + £¥hg. Set-
ting that

— 01 0> R . ;
g1=¢€l'+e?, 0 =kjt+w;z+n;j,

(14)

wj = ialki — Ol3k?,
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where k;’s and 7;’s are complex parameters (j =
1,2), and through Bilinear Form (9a)—(9c), we have

* * * *
fr=Bre" 7O 4 Bre 4 pae IO 4 et

* * * *
hy = Vi e@1+0] + ]/2691+92 + )/3892+91 + V4602+62 ,
g3 = 8120400 4 5,020 05 4 5, 20000 | 5, 200405

+ 35691+92+9{" + 5630] +02+0§"

fo = 0200 4 0 202 | s 20026}
205 | g OO e 1402420}
g P OH20] | OHOTHO o 202401465

hy = 01RO g k0220 | g 0102263
942 OS5 20007405

20146, +6] +65

5+ M2661+292+9'*+9; (15)

85 = M1€

201 +0,+20F

*
| + M4661+292+291

+ uze

201 +0,+20F

*
> 4+ M6e€1+292+292 ;

+ use

fo = 17 H2OTH203 | ) 01+20,4207 +05

+ [36291 +02+0; 4205 + L46261+62+29{‘+9;"

01+20,+07+2605

3 4 kpel1 200207 465

he =«k1e

20146, 0] +205

)+ K46291+92+29T+9; ,

+ Kk3e

g7 = A 22O 26T o 2026004267465

i = x 2120242074203

hg = pe20i+202+20+26;
where the corresponding parameters in Expressions
(15) can be seen in the Appendix. Without loss of gen-
erality, with ¢ = 1 and Expression (3), the bright two-
soliton solutions for Eq. (2) are

81+ 83+ 85+ 87

= . (16)
I+ L+ fa+fo+ fs

3 Soliton propagation and interactions

Based on Solutions (13) and (16), we will discuss
the propagation and interaction of the bright single-
and double-hump solitons analytically and graphi-
cally. More on the solitonic interaction can be seen,
e.g., in Refs. [41-45].
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3.1 Soliton propagation

On the basis of Solutions (13), we have
2

uf? = ‘ 81+83

L+ o+ f4
B e9+9*[1 + @+ 5*)60+9* +58*620+29*]
- (1 +ﬂ69+0* +§e20+29*)2 ’
B e@+9*[1 + (5 + 8*)€0+6* +88*620+29*]
- (1 + /3€9+0* +85*629+29*)2
) (k 4 k*)e(9+9*(1 _ 58*e20+29*)
(lu )t = 0+6* % £20426%)3
(14 Be + §6*e )
x [14 (26 +28% — B)e " 4 58%e20+27].
(17b)

. (17a)

Via Expression (12), we derive

(25 +28% — B)* — 455*

_ Boglof + 3icaz(k — k) = 305 (k7 — kk* +k*2)]
N 4k + k*)2 (g + 3iazk)2 () — 3iozk*)?2

(18)
When
af +3iaas(k — k*) — 303 (k* — kk* +k*2) > 0,
(19)
we find that
(26 +26% — ,8)2 —488* <0. (20)

From Expressions (17a), (17b) and (20), we conclude
that |«|? has only one maximum value at

T =178 Q1

Substituting Expression (21) into (17a), we derive

8+ 8% +2|8]
> = ——— . (22)
(B+2[8])

When

af +3iaras(k — k*) — 303 (k* — kk* +k*2) <0,
(23)

we find that

(28 +28* — B)” — 488* > 0. (24)

From Expressions (17a), (17b) and (24), we conclude
that |u|? has two equal maximum values at

gror B —28 —28% £,/(26 +28% — B)2 — 488+
e = '
288*

(25)

Substituting Expression (25) into (17a), we obtain

(S — (26)
4(B -8 —6%)

Therefore, parametric regions for the existence of
single- and double-hump solitons are presented as fol-
lows:

Single-hump soliton:

of + 3iajaz(k — k*) — 303 (k> — kk* + k) > 0,
(27a)

Double-hump soliton:

o + 3iajas(k — k*) — 303 (k* — kk* + k) <0.
(27b)

Moreover, by virtue of Expressions (22) and (26), am-
plitudes for the single- and double-hump solitons are,
respectively, expressed as

8+ 8% +215] i A 1
= — ans =
N EH N

(28)

Besides, the interval between the two peaks for the
double-hump soliton is

[ P28 =267+ V(B — 26— 257)% — 486

= In .

B —28 —28% — /(B — 25 — 26%)2 — 485*
(29)

Substituting Expressions (12) into (28) and (29), we
find that the amplitudes Ag and Ap are related to the
coefficients of the GVD, TOD and SS (i.e., o1, o3 and
a4), while the interval L is dependent on the coeffi-
cients of the GVD and TOD (i.e., o; and «3).

With the different coefficients of the GVD, i.e.,
o1 = 2 in Fig. 1(a), while o1 = 0.5 in Fig. 1(b), the
single- and double-hump solitons can both propagate
stably, and the interval between the two peaks for the
double-hump soliton keeps invariant during the propa-
gation. Moreover, we can derive the single- or double-
hump soliton when the coefficients of the GVD and
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Fig. 1 (a) Single-hump

soliton via Solutions (13)
witha; =2, a3 =1,

a4 =6,k=1and n=0;

(b) double-hump soliton via 1

. . 3K
Solutions (13) with [ul ”:‘i‘:‘:"“
a1 =05, a3=1,04 =6, o&‘&:}
k=1landn=0 &

(a)

XX :,
)
(X X

K
XX
KRR

S
XX

0’0’0’;"0
OBEX
XX
KRR
R KX XXX SN
AR ““o{oﬁ.:.:if‘:‘:::“ 4
X
X

XK XK %
o N N ettt cateretstatersss
“‘0‘0“‘&.‘:‘}}’““o‘:‘:‘:‘:"‘o’:‘:"
ORI
RIS
Q8
s

(b)

(b)

Fig. 2 Double-hump solitons via Solutions (13) at z =0 with (a) «; =0.5 (¢} =0.1), 3 =1, a4 =6, k = 1 and 1 = 0 for the solid
(dashed) line; (b) a1 = 0.5, a3 =1 (a3 =0.6), s =6, k =1 and n = 0 for the solid (dashed) line

TOD (i.e., @1 and «3) satisfy Condition (27a) or (27b).
From Fig. 2, we find that adjusting the coefficients of
the GVD and TOD (i.e., o1 and «3) will lead to the
change of the interval between the two peaks for the
double-hump soliton.

3.2 Soliton interactions

In order to investigate the soliton interactions, we will
carry out the asymptotic analysis on Solutions (16):
Before the interaction (z — —00):
691 + 816291+91*
1+ 1316914—9?( + ;—162914—29iF ?

(01 +6f ~0, 62+6;5 - —00), (30a)

u= —

*
” /J'3602 + )\26292+92
—

o+ [46924—9; + X€292+292* ’

(62465 ~0, 61 +6f — +00), (30b)

u

where u'~ and 1>~ denote the asymptotic expressions
for the two solitons before the interaction, respectively.
After the interaction (z — +00):

"
/L(,eGl + )\18291+91
Ca+ 0O 4y 20200

MH-
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(614 6f ~0, 62465 - +00), (31a)
692 +848292+9;
1+ /34692+9; + §4€202+28; ?

(62465 ~0, 6;+6f - —00), (31b)

u2+

where u'* and u** denote the asymptotic expressions
for the two solitons after the interaction, respectively.
Similarly, by virtue of the procedure to obtain the
amplitudes for the single- and double-hump solitons
in Sect. 3.1, and through some calculations, we have

_ V01 + 87 +2|81]
A=A =Y — 1 (32a)
B1 +2|81]
B 4+ 85 +2[84]
AT =A== "4 T (32b)
Ba + 2|84]
1
A} Sy L . — (32¢)
N T T 51
_ 1
AL = AL (32d)

T2 /Bi—b -0

where A_lq_ (or AID_) and A%‘ (or A%‘), respectively,
are the amplitudes for two single-hump (or double-
hump) solitons before the interaction, and A15+ (or
ARy and Aé* (or AZF), after the interaction, f,
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Fig. 3 (a) Interaction
between the two
single-hump solitons via
Solutions (16) with

a1 =05, a3=1,04 =6,
ki=1+i,kp=1+1.5i
and 71 =2 =0;

(b) corresponding
trajectories of (a) at:

7z = —3 (solid line) and
z =3 (dashed line)

Fig. 4 (a) Interaction
between the two
double-hump solitons via
Solutions (16) with

a1 =05, a3=1,04 =6,
ki =1,k =1.5and
m=mn=0;

(b) corresponding
trajectories of (a) at:

z = —7 (solid line) and

z =17 (dashed line)

Fig. 5 (a) Interaction
between the single- and
double-hump solitons via
Solutions (16) with

a1 =05, a3=1,04 =6,
ky=141i,kr=1and
n=m=0;

(b) corresponding
trajectories of (a) at:

z = —10 (solid line) and
z =10 (dashed line)

Ba, 81 and 44 can be seen in the appendix. Expres-
sions (32a)—(32d) indicate that the interaction between
the two solitons is elastic.

From Figs. 3, 4, 5, for the given «; and a3, the in-
teractions can exist between the (i) two single-hump
solitons when ki and k> both satisfy Condition (27a),
(ii) two double-hump solitons when k; and k> both
satisfy Condition (27b), and (iii) single- and double-
hump solitons when k; and k», respectively, satisfy
Conditions (27a) and (27b). Besides, we find that the
amplitudes and velocities for two solitons after the in-
teractions do not change except for some phase shifts,
i.e., those interactions in Figs. 3-5 are all elastic.
Moreover, from Conditions (27a), (27b), we know that

z:3‘:\
= ‘:
0 .

-20
(b)
1.5

ul

(b)

(b)

the single- and double-hump solitons are affected by
the coefficients of the GVD and TOD (i.e., o1 and «3),
and therefore, the three types of the interactions be-
tween the two solitons will be also affected by the co-
efficients of the GVD and TOD (i.e., @1 and «3), e.g.,
the interaction might change from the one between the
two single-hump solitons to the one between the two
double-hump solitons when we adjust o1 and «3.

4 Conclusions

In this paper, we have investigated the higher-order
nonlinear Schrodinger equation [i.e., Eq. (2) with
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3ar03 = ajaq and a4 + 2a5 = 0], which can be used
to describe the propagation and interaction of the ul-
trashort pulses in the subpicosecond or femtosecond
regime. Via the Hirota method and an auxiliary func-
tion, we have derived Bilinear Form (9a)—(9c), and
constructed the bright hump one- and two-soliton so-
lutions [i.e., Solutions (13) and (16)]. Based on Solu-
tions (13), we have presented Conditions (27a), (27b),
through which people can see that the existence of
single- and double-hump solitons can be affected by
the coefficients of the GVD and TOD (i.e., @1 and «3).
We have observed the propagation of one single- or
double-hump soliton, as shown in Figs. 1 and 2, and
obtained the amplitudes for the single- and double-
hump solitons [i.e., Ag and Ap in Expression (28)]
and interval between the two peaks for the double-
hump soliton [i.e., L in Expression (29)]. Besides, we
have found that Ag and Ap are related to the coeffi-
cients of the GVD, TOD, and SS (i.e., @1, a3, and ay),
while L is dependent on the coefficients of the GVD
and TOD (i.e., oy and «3). We have carried out the
asymptotic analysis on Solutions (16) to prove that the
interactions are elastic [i.e., Expressions (30a), (30b)—
(32a)—(32d)], and worked out that the elastic interac-
tions can exist between the (i) two single-hump soli-
tons, as shown in Fig. 3, (ii) two double-hump solitons,
as shown in Fig. 4, and (iii) single- and double-hump
solitons, as seen in Fig. 5.
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Appendix

The corresponding parameters in Expressions (15) are
as follows:

_ aa[201 + 3iaz(ky — k)]

V1= 603 ’
o4
= et 1k
o420 4+ 3iaz(kp — k;)]
J/Z = k]
60[3
o4
P = st 1k
o420 + iz (ky — k7)1
J/3 = k]
63
o4
B

YT Bas ko + k)2
_au[2ay + 3iaz (ko — k3)]

Va

3

60[3
5 = Y1
2Biaszk; + ay) (kg +k>1k)2’
8y = V2
2Biazky +ay)(ky +k§)2’
V3
83 = 5— ~l
2(3iazky + o) (k2 +k7)
84 = )Z!
2@iazky + o) (ko + k35)%
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