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Abstract Under investigation is the higher-order non-
linear Schrödinger equation with the third-order dis-
persion (TOD), self-steepening (SS) and self-
frequency shift, which can be used to describe the
propagation and interaction of ultrashort pulses in the
subpicosecond or femtosecond regime. Through the
introduction of an auxiliary function, bilinear form
is derived. Bright one- and two-soliton solutions are
obtained with the Hirota method and symbolic com-
putation. From the one-soliton solutions, we present
the parametric regions for the existence of single- and
double-hump solitons, and find that they are affected
by the coefficients of the group velocity dispersion
(GVD) and TOD. Besides, propagation of the one
single- or double-hump soliton is observed. We analyt-
ically obtain the amplitudes for the single- and double-
hump solitons, and calculate the interval between the
two peaks for the double-hump soliton. Moreover,
soliton amplitudes are related to the coefficients of the
GVD, TOD and SS, while the interval between the
two peaks for the double-hump soliton is dependent
on the coefficients of the GVD and TOD. Interactions
are seen between the (i) two single-hump solitons,
(ii) two double-hump solitons, and (iii) single- and
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double-hump solitons. Those interactions are proved
to be elastic via the asymptotic analysis.

Keywords Higher-order nonlinear Schrödinger
equation · Optical fibers · Bright soliton solution ·
Soliton interaction · Hirota method · Symbolic
computation

1 Introduction

It has been theoretically predicted [1, 2] and experi-
mentally observed [3, 4] that the bright (dark) opti-
cal solitons can exist in the anomalous (normal) dis-
persion regime. Since then, optical solitons have at-
tracted some attention because of their potential appli-
cations in the optical communication systems and all-
optical switching devices [5]. Optical solitons can sta-
bly propagate over a long distance due to the balance
between the linear dispersion and nonlinear effects [5].
In the picosecond regime, the nonlinear Schrödinger
(NLS) equation with the group velocity dispersion
(GVD) and self-phase modulation (SPM) [5]

iUZ + αUT T + χ |U |2U = 0 (1)

can model the propagation and interaction of optical
solitons in the mono-mode fibers. Hereby, U is the
slowly varying envelope of the electric field, Z is the
normalized distance along the direction of propaga-
tion, T is retarded time, the subscripts represent the
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partial derivatives, the real parameters α and χ are, re-
spectively, related to the GVD and SPM [5].

In the subpicosecond or femtosecond regime,
Eq. (1) is inadequate since the optical solitons be-
come shorter [6–9]. Higher-order effects including
the third-order dispersion (TOD), self-steepening (SS)
and stimulated Raman scattering (SRS) need to be
considered for the ultrashort pulses [10–12]. Among
them, the TOD produces the asymmetrical temporal
broadening for the ultrashort pulses, the SS, which
is also called the Kerr dispersion, leads to the asym-
metrical spectral broadening for the ultrashort pulses,
and the SRS causes a self-frequency shift for the ul-
trashort pulse [10–14]. Besides, optical solitons with
the non-Kerr law nonlinearity or perturbation terms
have been considered in Refs. [15–24]. For exam-
ple, Refs. [15, 16] have, respectively, investigated two
variable-coefficient NLS equations with non-Kerr law
nonlinearity, and derived the bright and dark one-
soliton solutions when the coefficients are Riemann
integrable. Ref. [17] has discussed the adiabatic pa-
rameter dynamics of Gaussian optical solitons with
the local and non-local perturbation terms through
the collective variables method. Dynamics of opti-
cal solitons for the improved NLS equation with the
Kerr law, power law, parabolic law, dual-power law
or log law nonlinearity has been investigated [18, 19].
Ref. [20] has studied the NLS equation with the power
law nonlinearity and Hamiltonian perturbation terms,
and obtained the bright and dark one-soliton solutions.
Ref. [21] has researched the Schrödinger–Hirota equa-
tion with the power law nonlinearity in the dispersive
optical, and derived the soliton solutions and com-
plexitons. Ref. [22] has discussed the dynamics of
dark solitons for the variable-coefficient NLS equation
with the power law nonlinearity. Ref. [23] has consid-
ered the dynamics of the dark solitons for the gener-
alized NLS equation with the parabolic law and dual-
power law nonlinearities. Lie symmetry approach has
been used to obtained the stationary one-soliton solu-
tions for the NLS equation with the Kerr law, power
law, parabolic law or the dual-power law nonlinear-
ity [24].

In this paper, we will only take the TOD, SS
and SRS into account, and investigate the following
higher-order NLS (HNLS) equation [25–33]:

iuz + α1utt + α2|u|2u
+ i

[
α3uttt + α4

(|u|2u)
t
+ α5u

(|u|2)
t

] = 0, (2)

where u is the slowly varying envelope of the elec-
tric field, z is the normalized distance along the di-
rection of propagation, t is retarded time, the real pa-
rameters α1, α2, α3, α4 and α5 are relevant to the
GVD, SPM, TOD, SS and SRS, respectively. Equa-
tion (2) can be used to describe the propagation and
interaction of ultrashort pulses in optical fibers [10–
14, 25]. Specially, when α3 = α4 = α5 = 0, Eq. (2)
reduces to Eq. (1) [5]; when α3 = α5 = 0, to the mod-
ified NLS equation [25, 34]; when 3α2α3 = α1α4 and
α4 + α5 = 0, to the Hirota equation [25, 35]; when
3α2α3 = α1α4 and α4 + 2α5 = 0, to the Sasa–Satsuma
equation [25, 31].

Equation (2) has been investigated analytically in
some aspects [26–33]: Painlevé analysis, Lax pair and
soliton solutions have been investigated for Eq. (2),
with the discussion on the all-soliton communication
links [26]; one-soliton solutions have been obtained
for Eq. (2) with α1 = α2 = α3 = 1 and 3α4 + 2α5 > 0
[27]; dark soliton solution for Eq. (2) has been dis-
cussed and derived through the coupled amplitude-
phase formulation [28], and dark one- and two-soliton
solutions for Eq. (2) with α1 = −1, α2 = 2, α3 = −1,
α4 = 6 and α5 = −6 (α5 = −3) have been con-
structed [29]; a class of soliton solutions has been
derived for Eq. (2) with α1 = 1, α2 = 2, α3 = −1,
α4 = −6 and α5 = 3, and those solitons have been
found to be stable in a certain domain of the param-
eter [30]; via the inverse scattering transform, one-
soliton solutions have been explicitly given for Eq. (2)
with α1 = 1/2, α2 = 1, α3 = 1, α4 = 6 and α5 = −3,
and propagation of the one soliton with the double
humps has been observed [31]; N -soliton solutions for
Eq. (2) with 3α2α3 = α1α4 and α4 +α5 = 0 have been
presented through the Darboux transformation, with
the indication that the interaction between neighboring
solitons can be restrained to some extent, helping to
increase the bit-rate in optical telecommunication sys-
tems [32]; bilinear form and one-soliton solutions have
been obtained for Eq. (2) with α1 = α2 = 0, α3 = 1,
α4 = 6 and α5 = −3 [33].

However, to our knowledge, propagation and inter-
action of the bright single- and double-hump solitons
have not been investigated for Eq. (2) with 3α2α3 =
α1α4 and α4 + 2α5 = 0. Therefore, in this paper, we
will obtain the bilinear form through an auxiliary func-
tion, and construct the bright hump one- and two-
soliton solutions with the Hirota method [36] and sym-
bolic computation [37–40]. In Sect. 3, based on those
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solutions, we will investigate the propagation and in-
teraction of bright single- and double-hump solitons
analytically and graphically. For the one-soliton solu-
tions, we will give the parametric regions for the ex-
istence of single- and double-hump solitons. For the
two-soliton solutions, we will find that the interac-
tions can exist between (i) two single-hump solitons,
(ii) two double-hump solitons, and (iii) one single-
hump and one double-hump solitons. Besides, we will
carry out the asymptotic analysis on the two-soliton
solutions to prove that the interaction are elastic. Our
conclusions will be listed in Sect. 4.

2 Bilinear form and bright soliton solutions

2.1 Bilinear form

Introducing the dependent variable transformation,

u = g

f
, (3)

where g is the complex differentiable function with
respect to z and t , and f is a real one, we transform
Eq. (2) with 3α2α3 = α1α4 and α4 + 2α5 = 0 into the
following form:

i
Dzg · f

f 2
+ α1

(
D2

t g · f
f 2

− g

f

D2
t f · f
f 2

)

+ α1α4

3α3

g

f

gg∗

f 2

+ i

(
α3

D3
t g · f
f 2

− 3α3
Dtg · f

f 2

D2
t f · f
f 2

+ 3α4

2

Dtg · f
f 2

gg∗

f 2
+ α4

2

Dtg
∗ · f

f 2

g2

f 2

)
= 0, (4)

with ∗ as the complex conjugate, while Dz and Dt be-
ing the Hirota operators [36] defined as

Dm
z Dn

t a(z, t) · b(z, t)

=
(

∂

∂z
− ∂

∂z′

)m(
∂

∂t
− ∂

∂t ′

)n

× a(z, t)b
(
z′, t ′

)∣∣
z′=z,t ′=t

,

where a(z, t) and b(z, t) are the differentiable func-
tions, z′ and t ′ are the independent variables, and m

and n are the nonnegative integers.

Through the exchange formula [36], we can derive
(
Dtg

∗ · f )
g2 = (Dtg · f )gg∗ − (

Dtg · g∗)gf. (5)

Via Expression (5), Eq. (4) becomes as follows:

(iDz + α1D
2
t + iα3D

3
t )g · f

f 2

− 3α3D
2
t f · f − 2α4gg∗

f 2

(
α1g

3α3f
+ i

Dtg · f
f 2

)

− g

f

(3iα3α4Dt + 2α1α4)g · g∗

6α3f 2
= 0. (6)

Setting

3α3D
2
t f · f − 2α4gg∗ = 0, (7)

we have

(iDz + α1D
2
t + iα3D

3
t )g · f

f 2

− g

f

(3iα3α4Dt + 2α1α4)g · g∗

6α3f 2
= 0. (8)

Note that Eq. (8) is not a bilinear form but a trilin-
ear one. Therefore, we need to introduce one auxiliary
function and obtain the bilinear form for Eq. (2) as fol-
lows:
(
iDz + α1D

2
t + iα3D

3
t

)
g · f − gh = 0, (9a)

(3iα3α4Dt + 2α1α4)g · g∗ − 6α3f h = 0, (9b)

3α3D
2
t f · f − 2α4gg∗ = 0, (9c)

with h as an auxiliary function of z and t to be deter-
mined.

2.2 Bright soliton solutions

In order to obtain the bright soliton solutions, g, f and
h are expanded with respect to a formal parameter ε as
follows:

g = εg1 + ε3g3 + ε5g5 + ε7g7 + · · · , (10a)

f = 1 + ε2f2 + ε4f4 + ε6f6 + ε8f8 + · · · , (10b)

h = ε2h2 + ε4h4 + ε6h6 + ε8h8 + · · · , (10c)

where gj ’s (j = 1,3,5, . . .), fk’s and hk’s (k =
2,4,6, . . .) are the differentiable functions with re-
spect to z and t . Substituting Expressions (10a)–(10c)
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into Bilinear Form (9a)–(9c) and collecting the co-
efficients of each order of ε yield the recursion re-
lations for gj ’s (j = 1,3,5, . . .), fk’s and hk’s (k =
2,4,6, . . .), through which the bright soliton solutions
for Eq. (2) can be derived.

2.2.1 Bright one-soliton solutions

To obtain the bright one-soliton solutions, we truncate
Expressions (10a)–(10c) as g = εg1 + ε3g3, f = 1 +
ε2f2 + ε4f4 and h = ε2h2 + ε4h4. Setting that

g1 = ekt+wz+η, (11)

where k and η are two complex parameters and w is
a complex one to be determined, and through Bilinear
Form (9a)–(9c), we have

f2 = βeθ+θ∗
, h2 = γ eθ+θ∗

, g3 = δe2θ+θ∗
,

f4 = ζe2θ+2θ∗
, h4 = ϑe2θ+2θ∗

,

θ = kt + wz + η,

w = iα1k
2 − α3k

3, ζ = δδ∗, ϑ = 0,

β = α4

3α3(k + k∗)2
, γ = α4[2α1 + 3iα3(k − k∗)]

6α3
,

δ = γ

2(3iα3k + α1)(k + k∗)2
.

(12)

Without loss of generality, with ε = 1 and Expres-
sion (3), the bright one-soliton solutions for Eq. (2)
are

u = g1 + g3

1 + f2 + f4
. (13)

2.2.2 Bright two-soliton solutions

Similarly, we truncate Expressions (10a)–(10c) as g =
εg1 + ε3g3 + ε5g5 + ε7g7, f = 1 + ε2f2 + ε4f4 +
ε6f6 + ε8f8 and h = ε2h2 + ε4h4 + ε6h6 + ε8h8. Set-
ting that

g1 = eθ1 + eθ2 , θj = kj t + wjz + ηj ,

wj = iα1k
2
j − α3k

3
j ,

(14)

where kj ’s and ηj ’s are complex parameters (j =
1,2), and through Bilinear Form (9a)–(9c), we have

f2 = β1e
θ1+θ∗

1 + β2e
θ1+θ∗

2 + β3e
θ2+θ∗

1 + β4e
θ2+θ∗

2 ,

h2 = γ1e
θ1+θ∗

1 + γ2e
θ1+θ∗

2 + γ3e
θ2+θ∗

1 + γ4e
θ2+θ∗

2 ,

g3 = δ1e
2θ1+θ∗

1 + δ2e
2θ1+θ∗

2 + δ3e
2θ2+θ∗

1 + δ4e
2θ2+θ∗

2

+ δ5e
θ1+θ2+θ∗

1 + δ6e
θ1+θ2+θ∗

2 ,

f4 = ζ1e
2θ1+2θ∗

1 + ζ2e
2θ1+2θ∗

2 + ζ3e
2θ2+2θ∗

1

+ ζ4e
2θ2+2θ∗

2 + ζ5e
θ1+θ2+θ∗

1 +θ∗
2 + ζ6e

θ1+θ2+2θ∗
1

+ ζ7e
θ1+θ2+2θ∗

2 + ζ8e
2θ1+θ∗

1 +θ∗
2 + ζ9e

2θ2+θ∗
1 +θ∗

2 ,

h4 = ϑ1e
θ1+θ2+θ∗

1 +θ∗
2 + ϑ2e

θ1+θ2+2θ∗
1 + ϑ3e

θ1+θ2+2θ∗
2

+ ϑ4e
2θ1+θ∗

1 +θ∗
2 + ϑ5e

2θ2+θ∗
1 +θ∗

2 ,

g5 = μ1e
2θ1+θ2+θ∗

1 +θ∗
2 + μ2e

θ1+2θ2+θ∗
1 +θ∗

2

+ μ3e
2θ1+θ2+2θ∗

1 + μ4e
θ1+2θ2+2θ∗

1

+ μ5e
2θ1+θ2+2θ∗

2 + μ6e
θ1+2θ2+2θ∗

2 ,

f6 = ι1e
θ1+2θ2+θ∗

1 +2θ∗
2 + ι2e

θ1+2θ2+2θ∗
1 +θ∗

2

+ ι3e
2θ1+θ2+θ∗

1 +2θ∗
2 + ι4e

2θ1+θ2+2θ∗
1 +θ∗

2 ,

h6 = κ1e
θ1+2θ2+θ∗

1 +2θ∗
2 + κ2e

θ1+2θ2+2θ∗
1 +θ∗

2

+ κ3e
2θ1+θ2+θ∗

1 +2θ∗
2 + κ4e

2θ1+θ2+2θ∗
1 +θ∗

2 ,

g7 = λ1e
2θ1+2θ2+θ∗

1 +2θ∗
2 + λ2e

2θ1+2θ2+2θ∗
1 +θ∗

2 ,

f8 = χe2θ1+2θ2+2θ∗
1 +2θ∗

2 ,

h8 = ρe2θ1+2θ2+2θ∗
1 +2θ∗

2 ,

(15)

where the corresponding parameters in Expressions
(15) can be seen in the Appendix. Without loss of gen-
erality, with ε = 1 and Expression (3), the bright two-
soliton solutions for Eq. (2) are

u = g1 + g3 + g5 + g7

1 + f2 + f4 + f6 + f8
. (16)

3 Soliton propagation and interactions

Based on Solutions (13) and (16), we will discuss
the propagation and interaction of the bright single-
and double-hump solitons analytically and graphi-
cally. More on the solitonic interaction can be seen,
e.g., in Refs. [41–45].
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3.1 Soliton propagation

On the basis of Solutions (13), we have

|u|2 =
∣∣∣∣

g1 + g3

1 + f2 + f4

∣∣∣∣

2

= eθ+θ∗ [1 + (δ + δ∗)eθ+θ∗ + δδ∗e2θ+2θ∗ ]
(1 + βeθ+θ∗ + ζe2θ+2θ∗

)2
,

= eθ+θ∗ [1 + (δ + δ∗)eθ+θ∗ + δδ∗e2θ+2θ∗ ]
(1 + βeθ+θ∗ + δδ∗e2θ+2θ∗

)2
, (17a)

(|u|2)
t
= (k + k∗)eθ+θ∗

(1 − δδ∗e2θ+2θ∗
)

(1 + βeθ+θ∗ + δδ∗e2θ+2θ∗
)3

× [
1 + (

2δ + 2δ∗ − β
)
eθ+θ∗ + δδ∗e2θ+2θ∗]

.

(17b)

Via Expression (12), we derive

(
2δ + 2δ∗ − β

)2 − 4δδ∗

= −3α2
4[α2

1 + 3iα1α3(k − k∗) − 3α2
3(k2 − kk∗ + k∗2)]

4(k + k∗)2(α1 + 3iα3k)2(α1 − 3iα3k∗)2
.

(18)

When

α2
1 + 3iα1α3

(
k − k∗) − 3α2

3

(
k2 − kk∗ + k∗2) ≥ 0,

(19)

we find that

(
2δ + 2δ∗ − β

)2 − 4δδ∗ ≤ 0. (20)

From Expressions (17a), (17b) and (20), we conclude
that |u|2 has only one maximum value at

eθ+θ∗ = 1/|δ|. (21)

Substituting Expression (21) into (17a), we derive

|u|2 = δ + δ∗ + 2|δ|
(β + 2|δ|)2

. (22)

When

α2
1 + 3iα1α3

(
k − k∗) − 3α2

3

(
k2 − kk∗ + k∗2) < 0 ,

(23)

we find that

(
2δ + 2δ∗ − β

)2 − 4δδ∗ > 0. (24)

From Expressions (17a), (17b) and (24), we conclude
that |u|2 has two equal maximum values at

eθ+θ∗ = β − 2δ − 2δ∗ ± √
(2δ + 2δ∗ − β)2 − 4δδ∗
2δδ∗ .

(25)

Substituting Expression (25) into (17a), we obtain

|u|2 = 1

4(β − δ − δ∗)
. (26)

Therefore, parametric regions for the existence of
single- and double-hump solitons are presented as fol-
lows:

Single-hump soliton:

α2
1 + 3iα1α3

(
k − k∗) − 3α2

3

(
k2 − kk∗ + k∗2) ≥ 0,

(27a)

Double-hump soliton:

α2
1 + 3iα1α3

(
k − k∗) − 3α2

3

(
k2 − kk∗ + k∗2) < 0.

(27b)

Moreover, by virtue of Expressions (22) and (26), am-
plitudes for the single- and double-hump solitons are,
respectively, expressed as

ΔS =
√

δ + δ∗ + 2|δ|
β + 2|δ| and ΔD = 1

2
√

β − δ − δ∗ .

(28)

Besides, the interval between the two peaks for the
double-hump soliton is

L = ln
β − 2δ − 2δ∗ + √

(β − 2δ − 2δ∗)2 − 4δδ∗

β − 2δ − 2δ∗ − √
(β − 2δ − 2δ∗)2 − 4δδ∗ .

(29)

Substituting Expressions (12) into (28) and (29), we
find that the amplitudes ΔS and ΔD are related to the
coefficients of the GVD, TOD and SS (i.e., α1, α3 and
α4), while the interval L is dependent on the coeffi-
cients of the GVD and TOD (i.e., α1 and α3).

With the different coefficients of the GVD, i.e.,
α1 = 2 in Fig. 1(a), while α1 = 0.5 in Fig. 1(b), the
single- and double-hump solitons can both propagate
stably, and the interval between the two peaks for the
double-hump soliton keeps invariant during the propa-
gation. Moreover, we can derive the single- or double-
hump soliton when the coefficients of the GVD and
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Fig. 1 (a) Single-hump
soliton via Solutions (13)
with α1 = 2, α3 = 1,
α4 = 6, k = 1 and η = 0;
(b) double-hump soliton via
Solutions (13) with
α1 = 0.5, α3 = 1, α4 = 6,
k = 1 and η = 0

Fig. 2 Double-hump solitons via Solutions (13) at z = 0 with (a) α1 = 0.5 (α1 = 0.1), α3 = 1, α4 = 6, k = 1 and η = 0 for the solid
(dashed) line; (b) α1 = 0.5, α3 = 1 (α3 = 0.6), α4 = 6, k = 1 and η = 0 for the solid (dashed) line

TOD (i.e., α1 and α3) satisfy Condition (27a) or (27b).
From Fig. 2, we find that adjusting the coefficients of
the GVD and TOD (i.e., α1 and α3) will lead to the
change of the interval between the two peaks for the
double-hump soliton.

3.2 Soliton interactions

In order to investigate the soliton interactions, we will
carry out the asymptotic analysis on Solutions (16):

Before the interaction (z → −∞):

u1− → eθ1 + δ1e
2θ1+θ∗

1

1 + β1e
θ1+θ∗

1 + ζ1e
2θ1+2θ∗

1
,

(
θ1 + θ∗

1 ∼ 0, θ2 + θ∗
2 → −∞)

, (30a)

u2− → μ3e
θ2 + λ2e

2θ2+θ∗
2

ζ1 + ι4e
θ2+θ∗

2 + χe2θ2+2θ∗
2
,

(
θ2 + θ∗

2 ∼ 0, θ1 + θ∗
1 → +∞)

, (30b)

where u1− and u2− denote the asymptotic expressions
for the two solitons before the interaction, respectively.

After the interaction (z → +∞):

u1+ → μ6e
θ1 + λ1e

2θ1+θ∗
1

ζ4 + ι1e
θ1+θ∗

1 + χe2θ1+2θ∗
1
,

(
θ1 + θ∗

1 ∼ 0, θ2 + θ∗
2 → +∞)

, (31a)

u2+ → eθ2 + δ4e
2θ2+θ∗

2

1 + β4e
θ2+θ∗

2 + ζ4e
2θ2+2θ∗

2
,

(
θ2 + θ∗

2 ∼ 0, θ1 + θ∗
1 → −∞)

, (31b)

where u1+ and u2+ denote the asymptotic expressions
for the two solitons after the interaction, respectively.

Similarly, by virtue of the procedure to obtain the
amplitudes for the single- and double-hump solitons
in Sect. 3.1, and through some calculations, we have

Δ1−
S = Δ1+

S =
√

δ1 + δ∗
1 + 2|δ1|

β1 + 2|δ1| , (32a)

Δ2−
S = Δ2+

S =
√

δ4 + δ∗
4 + 2|δ4|

β4 + 2|δ4| , (32b)

Δ1−
D = Δ1+

D = 1

2
√

β1 − δ1 − δ∗
1

, (32c)

Δ2−
D = Δ2+

D = 1

2
√

β4 − δ4 − δ∗
4

, (32d)

where Δ1−
S (or Δ1−

D ) and Δ2−
S (or Δ2−

D ), respectively,
are the amplitudes for two single-hump (or double-
hump) solitons before the interaction, and Δ1+

S (or
Δ1+

D ) and Δ2+
S (or Δ2+

D ), after the interaction, β1,
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Fig. 3 (a) Interaction
between the two
single-hump solitons via
Solutions (16) with
α1 = 0.5, α3 = 1, α4 = 6,
k1 = 1 + i, k2 = 1 + 1.5i

and η1 = η2 = 0;
(b) corresponding
trajectories of (a) at:
z = −3 (solid line) and
z = 3 (dashed line)

Fig. 4 (a) Interaction
between the two
double-hump solitons via
Solutions (16) with
α1 = 0.5, α3 = 1, α4 = 6,
k1 = 1, k2 = 1.5 and
η1 = η2 = 0;
(b) corresponding
trajectories of (a) at:
z = −7 (solid line) and
z = 7 (dashed line)

Fig. 5 (a) Interaction
between the single- and
double-hump solitons via
Solutions (16) with
α1 = 0.5, α3 = 1, α4 = 6,
k1 = 1 + i, k2 = 1 and
η1 = η2 = 0;
(b) corresponding
trajectories of (a) at:
z = −10 (solid line) and
z = 10 (dashed line)

β4, δ1 and δ4 can be seen in the appendix. Expres-
sions (32a)–(32d) indicate that the interaction between
the two solitons is elastic.

From Figs. 3, 4, 5, for the given α1 and α3, the in-
teractions can exist between the (i) two single-hump
solitons when k1 and k2 both satisfy Condition (27a),
(ii) two double-hump solitons when k1 and k2 both
satisfy Condition (27b), and (iii) single- and double-
hump solitons when k1 and k2, respectively, satisfy
Conditions (27a) and (27b). Besides, we find that the
amplitudes and velocities for two solitons after the in-
teractions do not change except for some phase shifts,
i.e., those interactions in Figs. 3–5 are all elastic.
Moreover, from Conditions (27a), (27b), we know that

the single- and double-hump solitons are affected by
the coefficients of the GVD and TOD (i.e., α1 and α3),
and therefore, the three types of the interactions be-
tween the two solitons will be also affected by the co-
efficients of the GVD and TOD (i.e., α1 and α3), e.g.,
the interaction might change from the one between the
two single-hump solitons to the one between the two
double-hump solitons when we adjust α1 and α3.

4 Conclusions

In this paper, we have investigated the higher-order
nonlinear Schrödinger equation [i.e., Eq. (2) with
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3α2α3 = α1α4 and α4 + 2α5 = 0], which can be used
to describe the propagation and interaction of the ul-
trashort pulses in the subpicosecond or femtosecond
regime. Via the Hirota method and an auxiliary func-
tion, we have derived Bilinear Form (9a)–(9c), and
constructed the bright hump one- and two-soliton so-
lutions [i.e., Solutions (13) and (16)]. Based on Solu-
tions (13), we have presented Conditions (27a), (27b),
through which people can see that the existence of
single- and double-hump solitons can be affected by
the coefficients of the GVD and TOD (i.e., α1 and α3).
We have observed the propagation of one single- or
double-hump soliton, as shown in Figs. 1 and 2, and
obtained the amplitudes for the single- and double-
hump solitons [i.e., ΔS and ΔD in Expression (28)]
and interval between the two peaks for the double-
hump soliton [i.e., L in Expression (29)]. Besides, we
have found that ΔS and ΔD are related to the coeffi-
cients of the GVD, TOD, and SS (i.e., α1, α3, and α4),
while L is dependent on the coefficients of the GVD
and TOD (i.e., α1 and α3). We have carried out the
asymptotic analysis on Solutions (16) to prove that the
interactions are elastic [i.e., Expressions (30a), (30b)–
(32a)–(32d)], and worked out that the elastic interac-
tions can exist between the (i) two single-hump soli-
tons, as shown in Fig. 3, (ii) two double-hump solitons,
as shown in Fig. 4, and (iii) single- and double-hump
solitons, as seen in Fig. 5.
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Appendix

The corresponding parameters in Expressions (15) are
as follows:

β1 = α4

3α3(k1 + k∗
1)2

,

γ1 = α4[2α1 + 3iα3(k1 − k∗
1)]

6α3
,

β2 = α4

3α3(k1 + k∗
2)2

,

γ2 = α4[2α1 + 3iα3(k1 − k∗
2)]

6α3
,

β3 = α4

3α3(k2 + k∗
1)2

,

γ3 = α4[2α1 + 3iα3(k2 − k∗
1)]

6α3
,

β4 = α4

3α3(k2 + k∗
2)2

,

γ4 = α4[2α1 + 3iα3(k2 − k∗
2)]

6α3
,

δ1 = γ1

2(3iα3k1 + α1)(k1 + k∗
1)2

,

δ2 = γ2

2(3iα3k1 + α1)(k1 + k∗
2)2

,

δ3 = γ3

2(3iα3k2 + α1)(k2 + k∗
1)2

,

δ4 = γ4

2(3iα3k2 + α1)(k2 + k∗
2)2

,

δ5 = γ1 + γ3

2[3iα3(k1 + k2) + α1](k1 + k∗
1)(k2 + k∗

1)

+ α4(k1 − k2)
2

3α3(k1 + k∗
1)2(k2 + k∗

1)2
,

δ6 = γ2 + γ4

2[3iα3(k1 + k2) + α1](k1 + k∗
2)(k2 + k∗

2)

+ α4(k1 − k2)
2

3α3(k1 + k∗
2)2(k2 + k∗

2)2
,

ζ1 = δ1δ
∗
1 , ζ2 = δ2δ

∗
3 ,

ζ3 = δ3δ
∗
2 , ζ4 = δ4δ

∗
4 ,

ζ5 = α4(δ5 + δ6 + δ∗
5 + δ∗

6) − 3α3β1β4(k1 − k2 + k∗
1 − k∗

2)2

3α3(k1 + k2 + k∗
1 + k∗

2)2

− 3α3β2β3(k1 − k2 − k∗
1 + k∗

2)2

3α3(k1 + k2 + k∗
1 + k∗

2)2
,



Bright hump solitons for the higher-order nonlinear Schrödinger equation in optical fibers 1061

ζ6 = α4(δ5 + δ∗
1 + δ∗

2) − 3α3β1β3(k1 − k2)
2

3α3(k1 + k2 + 2k∗
1)2

,

ζ7 = α4(δ6 + δ∗
3 + δ∗

4) − 3α3β2β4(k1 − k2)
2

3α3(k1 + k2 + 2k∗
2)2

,

ζ8 = α4(δ1 + δ2 + δ∗
5) − 3α3β1β2(k

∗
1 − k∗

2)2

3α3(2k1 + k∗
1 + k∗

2)2
,

ζ9 = α4(δ3 + δ4 + δ∗
6) − 3α3β3β4(k

∗
1 − k∗

2)2

3α3(2k2 + k∗
1 + k∗

2)2
,

ϑ1 = iα4

2

[(
δ5 − δ∗

5

)(
k1 + k∗

1

) + (
δ5 + δ∗

5

)(
k2 − k∗

2

)

+ (
δ6 + δ∗

6

)(
k1 − k∗

1

) + (
δ6 − δ∗

6

)(
k2 + k∗

2

)]

+ α1α4

3α3

(
δ5 + δ6 + δ∗

5 + δ∗
6

)

− (β1γ4 + β2γ3 + β3γ2 + β4γ1),

ϑ2 = γ1γ3(k1 − k2)
2

2(α1 − 3iα3k
∗
1)(k1 + k∗

1)2(k2 + k∗
1)2

,

ϑ3 = γ2γ4(k1 − k2)
2

2(α1 − 3iα3k
∗
2)(k1 + k∗

2)2(k2 + k∗
2)2

,

ϑ4 = γ1γ2(k
∗
1 − k∗

2)2

2(α1 + 3iα3k1)(k1 + k∗
1)2(k1 + k∗

2)2
,

ϑ5 = γ3γ4(k
∗
1 − k∗

2)2

2(α1 + 3iα3k2)(k2 + k∗
1)2(k2 + k∗

2)2
,

μ1 = γ1γ2(k1 − k2)
2(4α1σ2 − 3iα3σ3)

2σ1(α1 + 3iα3k1)
,

μ2 = γ3γ4(k1 − k2)
2(4α1σ4 − 3iα3σ5)

2σ1(α1 + 3iα3k2)
,

σ1 = (
k1 + k∗

1

)2(
k1 + k∗

2

)2(
k2 + k∗

1

)2(
k2 + k∗

2

)2

× [
2α1 + 3iα3(k1 + k2)

][
2α1 − 3iα3

(
k∗

1 + k∗
2

)]
,

σ2 = k2
(
k2 + k∗

2

) + k∗
1

(
k2 + k∗

1

) − k∗
2

(
k∗

1 − k∗
2

)
,

σ3 = (
k∗

1 + k∗
2

)(
k∗

1 − k∗
2

)2 − (
k2 − k∗

1

)(
k2 + k∗

1

)2

− (
k2 − k∗

2

)(
k2 + k∗

2

)2
,

σ4 = k1
(
k1 + k∗

1

) + k∗
1

(
k∗

1 − k∗
2

) + k∗
2

(
k1 − k∗

2

)
,

σ5 = (
k∗

1 + k∗
2

)(
k∗

1 − k∗
2

)2 − (
k1 − k∗

1

)(
k1 + k∗

1

)2

− (
k1 − k∗

2

)(
k1 + k∗

2

)2
,

μ3 = δ1δ3(α1 + 3iα3k2)(k1 − k2)2[2α1 + 3iα3(k1 − k∗
1)]

(α1 − 3iα3k∗
1 )(k1 + k∗

1 )2[2α1 + 3iα3(k1 + k2)] ,

μ4 = δ1δ3(α1 + 3iα3k1)(k1 − k2)2[2α1 + 3iα3(k2 − k∗
1 )]

(α1 − 3iα3k∗
1)(k2 + k∗

1 )2[2α1 + 3iα3(k1 + k2)] ,

μ5 = δ2δ4(α1 + 3iα3k2)(k1 − k2)2[2α1 + 3iα3(k1 − k∗
2 )]

(α1 − 3iα3k∗
2)(k1 + k∗

2 )2[2α1 + 3iα3(k1 + k2)] ,

μ6 = δ2δ4(α1 + 3iα3k1)(k1 − k2)2[2α1 + 3iα3(k2 − k∗
2 )]

(α1 − 3iα3k∗
2)(k2 + k∗

2 )2[2α1 + 3iα3(k1 + k2)] ,

ι1 = α4μ6μ
∗
6

3α3δ4δ
∗
4(k1 + k∗

1)2
, ι2 = α4μ3μ

∗
5

3α3δ1δ
∗
2(k1 + k∗

2)2
,

ι3 = α4μ5μ
∗
3

3α3δ2δ
∗
1(k2 + k∗

1)2
, ι4 = α4μ2μ

∗
2

3α3δ3δ
∗
3(k2 + k∗

2)2
,

κ1 = ι1(k1 + k∗
1)2[2α1 + 3iα3(k1 − k∗

1)]
2

,

κ2 = ι2(k1 + k∗
2)2[2α1 + 3iα3(k1 − k∗

2)]
2

,

κ3 = ι3(k2 + k∗
1)2[2α1 + 3iα3(k2 − k∗

1)]
2

,

κ4 = ι4(k2 + k∗
2)2[2α1 + 3iα3(k2 − k∗

2)]
2

,

λ1 = 3α3δ2ι1(k1 − k2)
2[2α1 + 3iα3(k1 − k∗

1)]
α4[2α1 + 3iα3(k1 + k2)] ,

λ2 = 3α3δ3ι4(k1 − k2)
2[2α1 + 3iα3(k2 − k∗

2)]
α4[2α1 + 3iα3(k1 + k2)] ,

χ = ι1ι4

β1β4
, ρ = 0.
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