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Abstract This paper presents an adaptive terminal
sliding mode control method for anti-synchronization
of uncertain chaotic systems. By fusion of the termi-
nal sliding mode control and the adaptive control tech-
niques, a robust controller is designed so that the states
tracking error can reach the terminal sliding mode sur-
face and converge to zero in a finite time. Finally, some
simulation results are included to demonstrate the ef-
fectiveness and the feasibility of the proposed anti-
synchronization scheme.
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1 Introduction

The phenomenon of chaos is very common in nature,
the fundamental characteristic of a chaotic system is
its sensitive dependence on initial conditions, that is, a
small shift in the initial states can lead to extraordinary
perturbation in the system states [1]. Over the past two
decades, many chaotic systems have been found, such
as the Lorenz system [2], the Lur’e system [3], the
Duffing-Holmes system [4], the Genesio system [5],
the Rössler system [6], Chua’s circuit [7], and so on.
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Since the discovery of chaos synchronization [8],
chaos synchronization has received increasing atten-
tion in nonlinear science. One of the reasons is that
chaotic behaviors have been discovered in many en-
gineering systems such as information processing,
chemical reactions, power converters, biological sys-
tems, secure communication, and so on. For chaos
synchronization there are two chaotic systems called
the master (or drive) and the slave (or response) sys-
tem, the objective of the designed controller for syn-
chronization is to make the output of the master sys-
tem follow the output of the slave system asymptoti-
cally. Diverse methods have been proposed to achieve
chaos synchronization, for instance, backstepping
control [9, 10], adaptive backstepping control [11],
active control [12, 13], PI observe design [14], dy-
namic surface control [15], variable structure control
[16, 17], robust control [18], and impulsive control
[19] et al. In [19], a novel dual-stage impulsive control
was proposed for the robust exponential synchroniza-
tion problem of a class of chaotic delayed neural net-
works with different parametric uncertainties, which
provides a more practical framework for the synchro-
nization of multi-perturbation delayed chaotic sys-
tems. In the past few years, synchronization in com-
plex networks has been discussed extensively [20].
In [21], the synchronization in an inter-neuronal net-
works was studied and the effects of long inhibitory
synaptic delays were specifically considered. Addi-
tionally, synchronization transition has been reported
in some neuronal networks [22]. In [23–25], Wang
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et al. studied synchronization transitions on neuronal
networks for the information transmission delays. Re-
cently, Wang and Szolnoki et al. studied the evolution
games on inter-dependent networks which are con-
nected by means of a utility function [26, 27]. It is
shown that the stronger the bias in the utility function
is, the higher the level of the public cooperation.

On the other hand, anti-synchronization is a no-
ticeable phenomenon in periodic oscillators [28, 29],
which is defined as vanishing of the sum of rele-
vant variables, and has important application signifi-
cance. Using anti-synchronization for lasers [30] and
particle separation [31], some control methods, for
instance, adaptive backstepping control [32], linear
feedback control [33], active control [34], linear slid-
ing mode control (LSMC) [35], have been applied
to anti-synchronization chaotic systems. However, in
real physical systems, due to the existence of exter-
nal disturbances and model uncertainties, the anti-
synchronization errors cannot often converge to zero
in a finite time.

As is well known, variable structure control (VSC)
with sliding mode control was first proposed and elab-
orated in the early 1950s in the Soviet Union by
Emelyanov [35] and Utkin [36]. Since then, VSC has
developed into a general design method being exam-
ined for a wide spectrum of system types including
single-input and single-output (SISO) nonlinear sys-
tems [37–39], multi-input and multi-output (MIMO)
nonlinear systems [40], discrete-time systems [41],
stochastic systems [42], large-scale systems [43], and
so forth. Sliding mode control has become one of the
most important approaches to handle systems with
large uncertainties, nonlinearities, and bounded exter-
nal disturbances.

Over the past decades, in order to design sliding
mode control systems, a linear sliding mode (LSM)
switching surface was first defined [44], and a LSM
controller was then designed to drive the system
state variables to reach the sliding mode surface, and
asymptotically converge to zero. However, the sys-
tem states in the sliding mode surface cannot con-
verge to zero in a finite time. In order to get fast con-
vergence on the sliding mode surface, terminal slid-
ing mode control (TSMC) was first proposed in [45]
and [46]. The terminal sliding mode switching surface
is formed by inserting a nonlinear term of the system
states in the linear sliding mode switching surface. It is
shown that a TSMC robust controller can drive the sys-
tem state variables to reach the sliding mode surface

and converge to zero in a finite time [45, 46]. TSMC
was further investigated for SISO linear systems [47],
MIMO linear systems [48], and nonlinear systems
[46, 49–51]. However, the terminal sliding mode con-
trol has a singularity problem in [46] (see [52]). Soon
after, [50] and [51] proposed a non-singular terminal
sliding manifold and avoided the singularity problem.
Then another approach was proposed to avoid the sin-
gularity by switching from the terminal to the linear
sliding manifold [48].

In this paper, we will adopt adaptive terminal slid-
ing mode control for anti-synchronization of uncertain
chaotic system. A non-singular terminal sliding mode
controller is designed to drive the track error to reach
the terminal sliding mode surface and converge to zero
in a finite time. The main contributions of this paper
are listed as follows.

(1) Combining terminal sliding mode control and
adaptive control, a robust controller is designed
for the investigated system.

(2) By selecting the control law in the different case,
the singularity problem on terminal sliding mode
can be avoided.

(3) The boundary layer control law was used to elim-
inate the effect of chattering.

(4) The anti-synchronization errors can converge to
zero in a finite time.

The rest of this paper is organized as follows. Sec-
tion 2 presents problem formulation and preliminar-
ies. In Sect. 3, the adaptive terminal sliding mode
controller for Duffing-Holmes chaotic system is de-
signed. In Sect. 4, the design of the controller for anti-
synchronization of different chaotic system is given.
Simulation results are included in Sect. 5. Section 6
gives the conclusions.

2 Problem formulation and preliminaries

Consider a chaotic system formulated by the following
equations:

ẋi = xi+1, i = 1, . . . , n − 1

ẋn = f (x)
(1)

where x = [x1, . . . , xn]T is the states variable of the
system, f : is a continuous function including nonlin-
ear terms. We take system (1) as the master system.
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On the other hand, the slave system is given by

ẏi = yi+1, i = 1, . . . , n − 1

ẏn = g(y) + z(y)u + �(t)
(2)

where y = [y1, . . . , yn]T is the state variable of the
system, g is a continuous function including nonlinear
terms, function z(y) �= 0, u ∈ R is the control input,
�(t) is the uncertainty of the parameter disturbances
and external noise perturbations applied to the chaotic
system.

Assumption 1 Without loss of generality, we assume
�(t) is bound and satisfies |�(t)| ≤ ξ .

The anti-synchronization of the master-slave sys-
tem is achieved for any initial condition xi(0) and
yi(0) if the following equation holds:

lim
t→∞

∥
∥ei(t)

∥
∥ = lim

t→∞
∥
∥yi(t) + xi(t)

∥
∥ = 0 (3)

Hence the error system becomes

ėi = ei+1

ėn = f (x) + g(y) + z(y)u + �(t)
(4)

To design a control system with the error converg-
ing in a finite time, the following hierarchical terminal

sliding mode structure is defined [47]:

s1 = e1

si+1 = ṡi + βis
qi/pi

i , i = 1, . . . , n − 1
(5)

where βi > 0,pi > qi and pi, qi are positive odd inte-
gers [47, 52].

Remark 1 If a terminal sliding mode controller is de-
signed such that snṡn < 0 is satisfied, namely sn can
reach to zero in a finite time, then sn−1, . . . , s1 can
converge to zero in finite time sequentially and errors
variable can reach zero in a finite time. The time for
the error system state e1 to reach zero is

t = t1 +
n−1
∑

i=1

1

βi

pi

pi − qi

si(tn−i )
pi−qi/pi (6)

where ti is the reaching time of the terminal sliding
mode sn−i+1 for i = 1, . . . , n.

Remark 2 Firstly, by choosing pi > qi , then 1 −
qi/pi > 0. Secondly, in order to make si(tn−i )

pi−qi/pi

> 0, then, pi and qi are selected as positive odd inte-
gers [52].

One uses a sliding mode controller

u =
{

− 1
z(y)

sign(sn)(|f (x) + g(y) + ∑n−1
i=1 βi

dn−i

dtn−i (s
qi/pi

i )| + ξ + k̂) for sn �= 0 and si �= 0

0 for sn = 0 or (sn �= 0 and si = 0)
(7)

Remark 3 It is easy to see that, at the point e1 �= 0 with

si = 0, the control signal
∑n−1

i=1 βi
dn−i

dtn−i (s
qi/pi

i ) can
generate an unbounded value. To deal with this prob-
lem, by choosing u = 0, thus, the singularity problem
can also be overcome [46].

Proof Define a Lyapunov function

V = 1

2
s2
n + 1

2γ
k̃2 (8)

where k represent the control input gain, since k is un-
known, so we need to estimate k, and we will use the
notation k̂ to denote the estimation of k, k̃ = k − k̂,
˙̃
k = −˙̂

k.

Differentiating V with respect to time, we have

V̇ = snṡn − 1

γ
k̃
˙̂
k

= sn

(

ėn +
n−1
∑

i=1

βi

dn−i

dtn−i

(

s
qi/pi

i

)

)

− 1

γ
k̃
˙̂
k (9)

Using (7) in (9), we get

V̇ ≤ −k̂|sn| − 1

γ
k̃
˙̂
k = −k̂|sn| − k̃|sn| + k̃|sn| − 1

γ
k̃
˙̂
k

= −k|sn| + k̃

(

|sn| − 1

γ

˙̂
k

)

(10)
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Fig. 1 Duffing–Holmes system state space trajectory

by choosing ˙̂
k = γ |sn|, we get

V̇ = −k|sn| < 0 (11)

where k > 0. �

3 Anti-synchronization of two-dimensional
Duffing–Holmes systems

Firstly, we consider the following Duffing–Holmes
equation as the master (or drive) system:

{

ẋ1 = x2

ẋ2 = −p1x1 − p2x2 − x3
1 + q1 cos(w1t)

(12)

in the case that p1 = −1, p2 = 0.25, q1 = 0.3, w1 = 1
system (1) exhibits a chaotic behavior [38], as shown
in Fig. 1.

By using a controller input u(t) and considering
�f (x, y) as uncertainty term on the Duffing–Holmes
system (12) as slave (or response) system:

⎧

⎪⎨

⎪⎩

ẏ1 = y2

ẏ2 = −p1y1 − p2y2 − y3
1 + q1 cos(w1t)

+ �f (y1, y2) + u

(13)

where xi (i = 1,2) and yi (i = 1,2) are states vari-
able on the master and slave systems, respectively, the
u(t) ∈ R is the control input, �f (y1, y2) is the un-
certainty of parameter disturbances and external noise
perturbations applied to the chaotic system. In general

it is assumed that �f (y1, y2) is bounded by

�f (y1, y2) ≤ σ = 0.3 + 0.8
∥
∥(y1, y2)

∥
∥ (14)

The synchronization error system between system
(12) and system (13) is defined as

ė1 = e2

ė2 = ẋ2 + ẏ2

(15)

The following first-order terminal sliding variable is
defined:

s = e2 + βe
q/p

1 (16)

where β > 0,p and q are positive odd integers and
p > q .

Using a sliding mode controller

u =
{−(k̂1 + η) sign(s), s �= 0 and e1 �= 0

0, (s �= 0 and e1 = 0) or s = 0
(17)

where

η =
∣
∣
∣
∣
−p1e1 − p2e2 − (

x3
1 + y3

1

)

+ 2q1 cos(w1t) + β
q

p
e
q/p−1
1 e2

∣
∣
∣
∣
+ σ (18)

and the control input gain estimate k̂1 is

˙̂
k1 = 1

γ
|s| (19)

Proof Define a Lyapunov function

V = 1

2
s2 + γ

2
k̃2

1 (20)

Differentiating V with respect to time, we have

V̇ = sṡ + γ k̃1k̇1

= s

(

ė2 + β
q

p
e
q/p−1
1 ė1

)

− γ k̃1
˙̂
k1

= s

(

−p1e1 − p2e2 − (

x3
1 + y3

1

) + 2q1 cos(w1t)

+ �f + u + β
q

p
e
q/p−1
1 e2

)

− γ k̃1
˙̂
k1

≤ |s|η + su − γ k̃1
˙̂
k1 = −|s|k̂1 − γ k̃1

˙̂
k1
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= −|s|k̂1 − |s|k̃1 + |s|k̃1 − γ k̃1
˙̂
k1

= −|s|k1 + k̃1
(|s| − γ

˙̂
k1

) = −|s|k1 < 0 (21)

�

Remark 4 Because the control input u is discontinu-
ous across the sliding mode surfaces, it may excite un-
desired high frequency dynamics. To eliminate the ef-
fects of the chattering, we use the following boundary
layer control law in place of the discontinuous control
law in expression (17) [46]:

u =

⎧

⎪⎨

⎪⎩

−(k̂1 + η) sign(s) for |s| ≥ ε1 and e1 �= 0

−(k̂1 + η) s
ε1

for |s| < ε1 and e1 �= 0

0 for s = 0 or (s �= 0 and e1 = 0)

(22)

where ε1 > 0.

4 Anti-synchronization of three-dimensional
Lur’e and Genesio systems

In this section, we consider anti-synchronization of the
three-dimensional chaotic system.

Firstly, the Lur’e dynamic system has been selected
as the master system:

⎧

⎪⎨

⎪⎩

ẋ1 = x2

ẋ2 = x3

ẋ3 = a1x1 + a2x2 + a3x3 + 12ϕ(x1) + c sin(t)v(t)

ϕ(x1) =
{

kx1, |x1| < 1
k

sign(x1), otherwise
(23)

for a1 = −7.4, a2 = −4.1, a3 = −1, k = 3.6, c = 0,
the behavior of the system is chaotic [53], as shown in
Fig. 2.

Secondly, the Genesio chaotic system is chosen as
the slave (or response) response system. The dynamic
equation of the Genesio system is
⎧

⎨

⎩

ẏ1 = y2

ẏ2 = y3

ẏ3 = b1y1 + b2y2 + b3y3 + y2
1 + (0.5 + |y1|)u

(24)

for b1 = −5.6, b2 = −2.74, b3 = −1.1, u = 0, the dy-
namic behavior of the Genesio system is chaotic [9],
as shown in Fig. 3.

Fig. 2 Lur’e system state space trajectory

Fig. 3 Genesio system state space trajectory where xi

(i = 1,2,3) and yi (i = 1,2,3) are state variables on the mas-
ter and slave systems, respectively. u(t) ∈ R is the control input,
v(t) is a bounded continuous random process and |v| < N

The anti-synchronization error system between sys-
tems (23) and (24) is defined as

ė1 = e2

ė2 = e3

ė3 = ẋ3 + ẏ3

(25)

To design control system with the error converg-
ing in a finite time, the following hierarchical terminal
sliding mode structure is defined:

s1 = e1

s2 = ṡ1 + β1s
q1/p1
1

s3 = ṡ2 + β2s
q2/p2
2

(26)
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The control input is designed such that

u =

⎧

⎪⎨

⎪⎩

−1
0.5+|y1| (η1 + k̂2) sign(s3)

for s3 �= 0 and s2 �= 0 and e1 �= 0

0 for s3 = 0 or (s3 �= 0 and (e1 = 0 or s2 = 0))

(27)

η1 =
∣
∣
∣
∣
a1x1 + a2x2 + a3x3 + 12ϕ(x1) + b1y1

+ b2y2 + b3y3 + y2
1

+ β1
q1

p1

(
q1

p1
− 1

)

e
q1/p1−2
1 e2

2 + β1
q1

p1
e
q1/p1−1
1 e3

+ β2
q2

p2

(

e2 + β1e
q1/p1
1

)q2/p2−1

×
(

e3 + β1
q1

p1
e
q1/p1−1
1 e2

)∣
∣
∣
∣

+ ∣
∣c sin(t)N

∣
∣ (28)

and we have the adaptive law ˙̂
k2 = γ2|s3|.

Proof Define a Lyapunov function

V = 1

2
s2

3 + 1

2γ2
k̃2

2 (29)

Differentiating V with respect to time, we have

V̇ = s3ṡ3 + 1

γ2
k̃2

˙̃
k2

= s3

(

ė3 + β1
q1

p1

(
q1

p1
− 1

)

e
q1/p1−2
1 e2

2

+ β1
q1

p1
e
q1/p1−1
1 e3

+ β2
q2

p2

(

e2 + β1e
q1/p1
1

)q2/p2−1

×
(

e3 + β1
q1

p1
e
q1/p1−1
1 e2

))

+ 1

γ2
k̃2

˙̃
k2

= s3

(

a1x1 + a2x2 + a3x3 + 12ϕ(x1)

+ c sin(t)v(t) + b1y1 + b2y2 + b3y3 + y2
1

+ (

0.5 + |y1|
)

u

+ β1
q1

p1

(
q1

p1
− 1

)

e
q1/p1−2
1 e2

2 + β1
q1

p1
e
q1/p1−1
1 e3

+ β2
q2

p2

(

e2 + β1e
q1/p1
1

)q2/p2−1

×
(

e3 + β1
q1

p1
e
q1/p1−1
1 e2

))

− 1

γ2
k̃2

˙̂
k2

≤ |s3|η1 + s3
(

0.5 + |y1|
)

u − 1

γ2
k̃2

˙̂
k2

= −k|s3| + k̃

(

|s3| − 1

γ2

˙̂
k2

)

= −k|s3| < 0 (30)

�

Remark 5 Likewise, we use the boundary layer con-
trol law in place of the discontinuous control law in
expression (27),

u =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−1
0.5+|y1| (η1 + k2) sign(s3)

for |s3| ≥ ε2 and e1 �= 0 and s2 �= 0
−1

0.5+|y1| (η1 + k2)
s3
ε2

for |s3| < ε2 and e1 �= 0 and s2 �= 0

0 for s3 = 0 or (s3 �= 0 and (e1 =0 or s2 =0))

(31)

where we have ε2 > 0.

Remark 6 The objective of this paper is to design
a non-singular robustness controller for an uncertain
chaotic system, finite time convergence and stability
of the closed loop system can be guaranteed.

Remark 7 The proposed method is different from the
impulsive control method in [19], where an efficient
impulsive control method was presented to deal with
the dynamical systems which cannot be controlled by
continuous control methods. In this paper, an adap-
tive terminal sliding mode control method is proposed
for anti-synchronization of two-dimensional identi-
cal chaotic systems and three-dimensional different
chaotic systems.

5 Simulation

The numerical simulation is presented in this section.
The following two methods are compared.

Firstly, we consider anti-synchronization of the
Duffing–Holmes chaotic system (12)–(13) as shown
in Figs. 4 and 5.
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Fig. 4 TSMC: the parameter values are p1 = −1, p2 = 0.25, q1 = 0.3, w1 = 1, p = 5, q = 3, β = 1, γ1 = 0.35, ε1 = 0.01,
x0 = [0.1;0.2], and y0 = [−0.5;0.5]. (a) The control input. (b) The system states. (c) Anti-synchronization errors
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Fig. 5 LSMC: the parameter values are p1 = −1, p2 = 0.25, q1 = 0.3, w1 = 1, p = 5, q = 3, β = 1, γ1 = 0.35, ε1 = 0.01,
x0 = [0.1;0.2], y0 = [−0.5;0.5]. (d) The control input. (e) The system states. (f) Anti-synchronization errors
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Fig. 6 TSMC: the parameter values are a1 = −7.4, a2 = −4.1,
a3 = −1, k1 = 3.6, c = 0.2, v = 10, b1 = −5.6, b2 = −2.74,
b3 = −1.1, q1 = 3, p1 = 5, q2 = 3, p2 = 5, β1 = 0.5, β2 =

0.57, γ2 = 1.4, ε2 = 0.01, we pick up the initial values of
x0 = [2.25;4;2.5] and y0 = [−3;−5;20]. (g) The control in-
put. (h) The system states. (i) Anti-synchronization errors
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Fig. 7 LSMC: the parameter values are a1 = −7.4, a2 = −4.1,
a3 = −1, k1 = 3.6, c = 0.2, v = 10, b1 = −5.6, b2 = −2.74,
b3 = −1.1, q1 = 3, p1 = 5, q2 = 3, p2 = 5, β1 = 0.5, β2 =

0.57, ε2 = 0.01, x0 = [2.25;4;2.5], y0 = [−3;−5;20]. (j) The
control input. (k) The system states. (l) Anti-synchronization er-
rors
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Next, we consider anti-synchronization of the Lur’e
and Genesio systems as shown in Figs. 6 and 7.

The simulation examples show that TSMC is su-
perior to LSMC. TSMC can converge to zero in a fi-
nite time, however, LSMC cannot converge to zero in
a finite time and the control input performs a high fre-
quency chattering.

6 Conclusions

In this paper, a new adaptive terminal sliding mode
control for anti-synchronization of uncertain chaotic
system has been proposed. Based on Lyapunov stabil-
ity theory, a robust controller is designed to drive the
track error to reach terminal sliding mode surface and
converge to zero in a finite time.

The future research will focus on the investigation
of the terminal sliding control of the synchronization
of chaotic systems with delay, as well as the limita-
tions and the relevant solutions in the terminal sliding
control.
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