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Abstract The galloping of tall structures excited
by steady and unsteady wind may be periodic or
quasiperiodic (QP) with amplitudes having the same
order of magnitude. While the onset of periodic and
QP galloping was studied, their control on the other
hand has received less attention. In this paper, we con-
duct analytical study on the effect of a fast harmonic
excitation on the onset of periodic and QP galloping in
the presence of steady and unsteady wind. We consider
the cases where the unsteady wind activates either ex-
ternal excitation, parametric one or both. A perturba-
tion analysis is performed to obtain close expressions
of QP solution and the corresponding modulation en-
velopes. We show that at various loading situations,
the periodic and QP galloping onset is significantly
influenced by the amplitude of the fast external exci-
tation. In the case where the unsteady wind activates
parametric excitation, the QP galloping occurs with
higher frequency modulation compared to the case
where the unsteady wind activates external excitation.
In the case where external and parametric excitations
are activated simultaneously, fast harmonic excitation
eliminates bistability in the amplitude response and
gives rise to a new small QP modulation envelope.

M. Belhaq (B) · I. Kirrou · L. Mokni
Laboratory of Mechanics, University Hassan II,
Casablanca, Morocco
e-mail: mbelhaq@yahoo.fr

Keywords Quasiperiodic galloping · Wind effect ·
Structural dynamics · Perturbation analysis · Control ·
Fast excitation

1 Introduction

Dynamic analysis of tall structures under unsteady
(turbulent) wind excitation has been a major concern
in constructing and designing stable buildings. Indeed,
wind-induced vibrations of such buildings may cause
galloping above a certain threshold of the wind speed
[1–5]. In this context, considerable efforts have been
done to control the amplitude of such wind-induced
vibrations; see, for instance, [6] in which a review of
the main classes of semiactive control devices is given
and their full-scale implementation to civil infrastruc-
ture applications is presented.

The effect of unsteady wind on periodic gallop-
ing of tall prismatic structures has been studied con-
sidering a lumped single degree of freedom (sdof)
model [4]. The multiple scales method (MSM) was
applied and the response of the system examined near
primary and secondary resonances. The results shown
that the unsteady wind decreases the wind speed onset
(the critical wind speed above which galloping occurs)
near the primary resonance and has no significant in-
fluence near secondary resonances. This study [4] has
been extended to analyze the effect of self- and exter-
nal or/and parametric excitations on periodic gallop-
ing of a tower near the primary resonance [7]. Using
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the MSM, the effect of unsteady wind on Hopf bifur-
cation was analyzed and the influence of steady wind
speed on QP response was reported based on numeri-
cal simulation.

In tall structures subjected to steady wind, Hopf bi-
furcation may occur at a critical wind speed. However,
when a structure is under steady and unsteady wind,
the induced motion of the structure may be periodic or
QP [7]. The periodic galloping usually occurs around
the resonance, while the QP one appears away from
the resonance resulting from the interaction between
self- and external or/and parametric excitations [8–
11]. In this situation, the existence of periodic and QP
responses may lead to frequency-locking (or synchro-
nization) between the frequency of the unsteady force
and the frequency of the self excitation. Such a mech-
anism is produced by the disappearance of a slow flow
limit cycle through a homoclinic or heteroclinic bifur-
cation [12–15].

Due to the fact that the amplitude of QP galloping
of a tower is found to be of the same order of magni-
tude as that of the periodic response [7], the effect of
wind speed on the onset of QP galloping should not
be ignored and has to be taken into consideration and
analyzed carefully. For instance, it was shown numer-
ically using 3D model that wind-excited large stress
tower develops QP response rather than periodic os-
cillations [16]. Recently, the effect of wind speed on
the onset of QP galloping has been examined analyti-
cally [17] and it was shown that QP galloping can oc-
cur even for small values of the wind velocity with
amplitude having the same order of magnitude as that
of periodic galloping.

In this paper, we extends the previous studies
[4, 7, 17] by focusing principally on the effect of exter-
nal fast harmonic excitation (FHE) on the periodic and
QP galloping onset. Specifically, we conduct analyti-
cal treatment to approximate the QP response and its
modulation envelope. Then we examine the effect of
FHE on the onset of periodic and QP galloping in the
presence of unsteady wind. The QP solutions and the
modulation envelopes are obtained using the method
of three stage perturbation analysis (TSPA) [18, 19],
which consists of applying the method of direct parti-
tion of motion (DPM) [20–22] followed by two stages
of MSM [23].

The paper is organized as follows: In Sect. 2, the
equation of motion is given and the DPM followed by
a first MSM are applied to derive the modulation equa-
tions of the slow dynamic near the primary resonance.

In Sect. 3, we analyze the effect of the FHE amplitude
on the periodic galloping onset in the cases where the
unsteady wind activates either an external excitation,
a parametric one or both. In Sect. 4, we apply a sec-
ond MSM on the modulation equations to approximate
the QP solutions and the QP modulation envelopes.
A careful analysis is conducted to examine the effect
of the FHE on QP galloping onset in the case of var-
ious loading situations. A summary of the results is
provided in the concluding section.

2 Equation of motion and slow flow

A single mode approach of the structure motion is con-
sidered and modeled by a sdof lumped mass system [4,
7]. It is assumed that the tower is under steady and
unsteady wind flow and suppose that a FHE can be
introduced to excite the structure. In this case, the di-
mensionless sdof equation of motion can be written in
the form [7]

ẍ + x + [
ca(1 − Ū ) − b1u(t)

]
ẋ + b2ẋ

2

+
[
b31

Ū
+ b32

Ū2
u(t)

]
ẋ3

= η1Ūu(t) + η2Ū
2 + Y cosνt (1)

where the dot denotes differentiation with respect to
the nondimensional time t . Equation (1) contains, in
addition to the elastic, viscous, and inertial linear
terms, quadratic and cubic components in the velocity
generated by the aerodynamic forces. The steady com-
ponent of the wind velocity is represented by Ū and
the turbulent wind flow is approximated by a periodic
force, u(t), which is assumed to include the two first
harmonics, u(t) = u1 sinΩt + u2 sin 2Ωt , where u1,
u2 and Ω are, respectively, the amplitudes and the fun-
damental frequency of the response. We shall analyze
the case of external excitation (u1 �= 0, u2 = 0), the
case of parametric one (u1 = 0, u2 �= 0), and the case
where external and parametric excitations are present
simultaneously. The coefficients of Eq. (1) and numer-
ical values of parameters are given in Appendix A
and Y , ν are the amplitude and the frequency of the
fast excitation, respectively. Notice that the case of two
towers linked by a nonlinear viscous device submitted
to turbulent wind flow has been considered in [24].

The introduction of a FHE as a possible control
strategy was motivated by a previous experimental
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work done for vibrating testing purpose of a full
size tower [25]. The mechanical vibration exciter sys-
tem used in such an experiment consists of a pair of
counter-rotating eccentric weights so arranged that a
rectilinear sinusoidally varying horizontal inertia force
is generated. The two weights rotate about a common
vertical shaft, and are driven in opposite directions by
a chain-drive system. This vibration exciter is placed
on the top of the structure and debits a harmonic force
able to excite the structure. Here, we assume that the
generated frequency of the vibration exciter is rela-
tively higher than the natural frequency of the first
mode of the tower such that the other lower modes of
the tower cannot be activated.

Equation (1) includes a slow dynamic due to the
steady and unsteady wind and a fast dynamic induced
by the FHE. To examine the influence of the FHE
on periodic and QP galloping, we first perform the
method of DPM, which consists in introducing two
different time scales, a fast time T0 = νt and a slow
time T1 = t , and splitting up x(t) into a slow part z(T1)

and a fast part φ(T0, T1) as

x(t) = z(T1) + μφ(T0, T1) (2)

where z describes the slow main motions at time-scale
of oscillations, μφ stands for an overlay of the fast mo-
tions and μ indicates that μφ is small compared to z.
Since ν is considered as a large parameter, we choose
μ ≡ ν−1 for convenience. The fast part μφ and its
derivatives are assumed to be 2π -periodic functions of
fast time T0 with zero mean value with respect to this
time, so that 〈x(t)〉 = z(T1) where 〈〉 ≡ 1

2π

∫ 2π

0 () dT0

defines time-averaging operator over one period of the
fast excitation with the slow time T1 fixed. Averaging
procedure gives the following equation governing the
slow dynamic of motion:

z̈ + z +
[
ca(1 − Ū ) − b1u(t)

+ H

(
b31

Ū
+ b32

Ū2
u(t)

)]
ż + b2ż

2

+
[
b31

Ū
+ b32

Ū2
u(t)

]
ż3

= −G + η1Ūu(t) + η2Ū
2 (3)

where H = 3Y 2

2ν2 and G = − b2Y
2

2ν2 . Details on the av-
eraging procedure and the derivation of the slow dy-
namic (3) are given in Appendix B. Note that the case

without fast excitation (Y = 0 or H = G = 0) was
considered in [7]. To obtain the modulation equations
of the slow dynamic (3) near primary resonance, the
MSM was performed by introducing a bookkeeping

parameter ε, scaling as z = ε
1
2 z, b1 = εb1, b2 = ε

1
2 b2,

η1 = ε
3
2 η1, η2 = ε

3
2 η2, and assuming that Ū = 1 + εV

(V stands for the mean wind velocity) and the reso-
nance condition Ω = 1 + εσ where σ is a detuning
parameter [7]. Scaling also H = εH , a two-scale ex-
pansion of the solution is sought in the form

z(t) = z0(t0, t1) + εz1(t0, t1) + O
(
ε2) (4)

where ti = εi t (i = 0,1). In terms of the variables ti ,
the time derivatives become d

dt
= d0 + εd1 + O(ε2)

and d2

dt2 = d2
0 +2εd0d1 +O(ε2), where d

j
i = ∂j

∂j ti
. Sub-

stituting Eq. (4) into Eq. (3), equating coefficients of
the same power of ε, we obtain the two first orders

d2
0z0 + z0 = −G (5)

d2
0z1 + z1 = −2d0d1z0 + (

caV + b1u(t0)

− H
(
b31 + b32u(t0)

))
(d0z0)

− b2(d0z0)
2

− (
b31 + b32u(t0)

)
(d0z0)

3

+ η1u(t0) + η2 (6)

A solution to the first order of system (5) is given by

z0 = A(t1) exp(it0) + Ā(t1) exp(−it0) − G (7)

where i is the imaginary unit and A is an unknown
complex amplitude. Equation (6) can be solved for the
complex amplitude A by introducing its polar form
as A = 1

2aeiφ . Substituting the expression of A into
Eq. (6) and eliminating the secular terms, the modula-
tion equations of the amplitude a and the phase φ can
be extracted as
⎧
⎪⎪⎨

⎪⎪⎩

ȧ = [
S1 − S3 sin(2φ)

]
a + [−S2 + 2S4 sin(2φ)

]
a3

− β cos(φ)

aφ̇ = [
σ − S3 cos(2φ)

]
a + [

S4 cos(2φ)
]
a3

+ β sin(φ)

(8)

where S1 = 1
2 (caV − Hb31), S2 = 3

8b31, S3 = 1
4 (b1 −

Hb32)u2, S4 = b32
8 u2, and β = η1u1

2 . It is interesting to
observe from the latter expressions that the FHE influ-
ences the dynamic of the tower through the parameter
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H (= 3Y 2

2ν2 ) introduced into the coefficients S1 and espe-
cially S3 which is related to the parametric excitation
u2.

3 Periodic galloping

In this section, we report on the effect of the amplitude
of the FHE on the galloping of tower. To be consistent
with previous results, the numerical values used here
are picked from [7]. Periodic solutions of Eq. (3) cor-
responding to equilibria of the slow flow (8) are given
by setting ȧ = φ̇ = 0 in (8). We obtain a trivial solution
a = 0 and a nontrivial one

a =
√

4(caV − Hb31)

3b31
(9)

which corresponds to the periodic galloping amplitude
of the tower. Figure 1 shows the galloping amplitude
a versus the wind velocity V in the absence of the un-
steady wind (u1 = 0, u2 = 0) and for different values
of the FHE amplitude Y . Hereafter, the frequency of
the FHE will be fixed, ν = 8. This value of the fre-
quency is chosen such that other modes of the tower
are not excited. Figure 1 shows that increasing the am-
plitude of the FHE retards substantially the galloping
onset. Instead, in the absence of FHE increasing the
amplitude of the unsteady wind component decreases
rapidly the galloping onset [4, 7].

In the case of turbulent wind with external excita-
tion (u1 �= 0, u2 = 0), the amplitude-response equation
obtained from the slow flow (8) reads

S2
2a6 − 2S1S2a

4 + (
S2

1 + σ 2)a2 − β2 = 0 (10)

In Fig. 2, we show the effect of the amplitude Y on the
galloping amplitude, as given by Eq. (10), for given
values of the excitation u1. The solid line corresponds
to the stable branch, while the dashed line corresponds
to the unstable one. The results of numerical simu-
lations (circles) are obtained using the fourth-order
Runge–Kutta method. One observes in Fig. 2a that the

Fig. 1 Effect of the amplitude Y on galloping onset in the
absence of turbulent wind (u1 = 0, u2 = 0). Solid line: stable;
dashed line: unstable

Fig. 2 Effect of Y on galloping amplitude; (a) u1 = 0.1, σ = 0, (b) u1 = 0.033, V = 0.117. Solid line: stable; dashed line: unstable;
circle: numerical simulation
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Fig. 3 Effect of Y on the galloping amplitude; (a) u2 = 0.1, σ = 0, (b) u2 = 0.1, V = 0.167. Solid line: stable; dashed line: unstable;
circle: numerical simulation

Fig. 4 Effect of Y on the periodic galloping; V = 0.11, u1 = 0.1, u2 = 0.1. Solid line: stable; dashed line: unstable; circle: numerical
simulation

FHE increases the critical wind speed by shifting the
galloping amplitude toward higher wind velocities re-
sulting in a decrease of the corresponding amplitude
for a given wind velocity V . Figure 2b shows the effect
of the amplitude Y on the galloping versus σ indicat-
ing effectively that the galloping amplitude decreases
with increasing Y .

In the case of turbulent wind with parametric exci-
tation (u1 = 0, u2 �= 0), the amplitude-response equa-
tion is given by

(−S1a + S2a
3)2

(−S3a + 2S4a3)2
+ (−σa)2

(−S3a + S4a3)2
= 1 (11)

Figure 3a shows, for a given value of the excitation
u2, the effect of the amplitude Y on the galloping am-
plitude versus the wind velocity V , as given by (11).
A solid line corresponds to a stable branch and a dot-
ted line corresponds to unstable one. It can be seen
from this figure that in the absence of the fast excita-
tion (Y = 0) the parametric component shifts the sta-
ble branch right. As a result, the value of the wind ve-
locity V at which galloping occurs is decreased [4, 7].
Instead, a retarding effect of the galloping onset is
achieved for increasing values of the FHE ampli-
tude Y . Figure 3b shows the amplitude of the response
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versus σ for different values of Y and for fixed V and
u2 indicating a decrease of the galloping amplitude as
Y is increased.

In the case where the turbulent wind activates both
external and parametric excitations (u1 �= 0, u2 �= 0),
Figs. 4a, 4b show, respectively, the periodic ampli-
tude in the absence and presence of the FHE ampli-
tude Y . The comparison between the analytical pre-
dictions (solid lines) and the numerical simulations
(circles) shows a good agreement. These figures in-
dicate that increasing Y eliminates the bistability in-
dicated by a loop in the amplitude response, which
corresponds to the coexistence of two different ampli-
tudes of (periodic) oscillation.

4 Quasiperiodic galloping

To approximate periodic solutions of the slow flow (8)
corresponding to QP responses of the slow dynamic (3)
we perform the third step of the TSPA. To this end one
transforms the slow flow from the polar form (8) to the
following Cartesian system using the variable change
u = a cosφ and v = −a sinφ

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

du

dt
= (σ + S3)v − β

+ η{S1u − (S2u + S4v)(u2 + v2)

− 2S4u
2v}

dv

dt
= −(σ − S3)u

+ η{S1v − (S2v + S4u)(u2 + v2) − 2S4uv
2}

(12)

where η is a new bookkeeping parameter introduced
in damping and nonlinearity such that the unperturbed
system of Eq. (12) has a basic solution (Eq. (14)). Fol-
lowing [18, 26, 27] by using the MSM, a periodic so-
lution of the slow flow (12) can be sought in the fol-
lowing form:

u(t) = u0(T1, T2) + ηu1(T1, T2) + O
(
η2)

v(t) = v0(T1, T2) + ηv1(T1, T2) + O
(
η2)

(13)

where T1 = t and T2 = ηt . Introducing Di = ∂
∂Ti

yields d
dt

= D1 + ηD2 + O(η2), substituting (13)
into (12) and collecting terms, we get at different order
of η

D2
1u0 + λ2u0 = 0

αv0 = D1u0 + β
(14)

D2
1u1 + λ2u1

= α
[−D2v0 + S1v0 − (S2v0 + S4u0)

(
u2

0 + v2
0

)

− 2S4u0v
2
0

] − D1D2u0 + S1D1u0

− D1
[
(S2u0 + S4v0)

(
u2

0 + v2
0

) + 2S4u
2
0v0

]

αv1 = D1u1 + D2u0 − S1u0

+ (S2u0 + S4v0)
(
u2

0 + v2
0

) + 2S4u
2
0v0

(15)

where α = σ + S3 and

λ =
√

σ 2 − S2
3 (16)

defines the frequency of the periodic solution of the
slow flow (12) corresponding to the frequency of the
QP modulation. It should be noted that this frequency
λ depends on the parametric excitation u2 via the co-
efficient S3 given in (8) indicating that the frequency
of the QP modulation is influenced by the parametric
excitation of the unsteady wind.

The solution of the first-order system (14) is given
by

u0(T1, T2) = R(T2) cos
(
λT1 + θ(T2)

)

v0(T1, T2) = −λ

α
R(T2) sin

(
λT1 + θ(T2)

) + β

α

(17)

Substituting (17) into (15) and removing secular terms
gives the following autonomous slow slow flow system
on R and θ :
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dR

dt
=

(
S1 − 2

β2

α2
S2

)
R −

(
1

2
S2 + λ2

2α2
S2

)
R3

R
dθ

dt
=

(
3β2

2αλ
S4 − 3λβ2

2α3
S4

)
R

−
(

3λ3

8α3 S4 − 3α
8λ

S4

)
R3

Thus, an approximate periodic solution of the slow
flow (12) is given by

u(t) = R cos(φt)

v(t) = −λ

α
R sin(φt) + β

α

(18)
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Fig. 5 Periodic and QP galloping versus σ for V = 0.117 and u1 = 0.033. Solid lines: stable; dashed lines: unstable; circle: numerical
simulation

where the amplitude R obtained by setting dR
dt

= 0 is
given by

R =
√

2α2S1 − 4β2S2

S2(α2 + λ2)
(19)

and φ is given in Appendix B by Eq. (29).
Using (18) and (19), the modulated amplitude of

the QP oscillations is approximated by

a(t) =
{[

1

2
R2 + λ2

2α2
R2 + β2

α2

]
−

[
2λβ

α2
R sin(φ)

−
(

1

2
R2 − λ2

2α2
R2

)
cos(2φ)

]} 1
2

(20)

and the QP envelope is delimited by amin and amax

given, respectively, by

amin = min

{[[
1

2
R2 + λ2

2α2
R2 + β2

α2

]

± 2λβ

α2
R ±

(
1

2
R2 − λ2

2α2
R2

)]}
(21)

amax = max

{[[
1

2
R2 + λ2

2α2
R2 + β2

α2

]

± 2λβ

α2
R ±

(
1

2
R2 − λ2

2α2
R2

)]}
(22)

Using (21) and (22), the critical detuning parameter σc

given by the conditions

{
σc = S3 ±

√
2β2S2

S1

σc = ±S3

(23)

defines the interval [−σc, σc] within which the gal-
loping amplitude is periodic. Outside this interval, the
galloping amplitude is QP. One observes that in the
case of external excitation (u2 = 0), S3 = 0 and in the
case of parametric one (u1 = 0), β = 0. These two
cases will be highlighted below.

4.1 Case of turbulent wind with external excitation

Next, we explore the QP modulation envelope and the
influence of the FHE on the QP galloping onset. When
the tower is under external excitation (u1 �= 0, u2 = 0),
Figs. 5a, 5b show the QP modulation envelope, as
given by Eqs. (21), (22), and the periodic amplitude
response, as given by Eq. (10), for given values of V

and u1 and for two different values of the FHE ampli-
tude Y . The comparison between the analytical predic-
tions (solid lines) and the numerical simulations ob-
tained by using Runge–Kutta method (circles) reveals
that the analytical approach predict well the envelope
of the QP modulation.

The effect of the amplitude Y on the QP enve-
lope is shown in Fig. 6. One can observe that as Y

is increased, the mean amplitude of the QP response
reduces substantially, while the modulation envelope
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moves away from the resonance region to disappear,
as shown in Fig. 7.

Figure 8 presents examples of time histories of the
slow dynamic z(t) obtained by performing numerical
simulation of Eq. (3) for some values of Y picked
from Figs. 5, 6, and 7. In the absence of the FHE
(Y = 0), Figs. 8a, 8b show, respectively, the periodic
response for σ = 0 and the QP one for σ = 5 × 10−4.
Figures 8c, 8d show, for Y = 0.12 and Y = 0.14,
respectively, a QP response with a small amplitude
and slight modulation (Fig. 8c) and a periodic re-
sponse with small amplitude (Fig. 8d), which is co-
herent with the analytical predictions shown in Figs. 6
and 7b.

Fig. 6 QP galloping envelope versus σ for the parameter values
of Fig. 5

Because the amplitude of the QP modulations is
found to be of the same order of magnitude as that of
the periodic response (Fig. 8), it is required that the QP
galloping onset should be analyzed carefully. Based
on Eq. (23), QP galloping may be expected mainly in
certain region away from the resonance, as depicted in
Figs. 5 and 7.

Figure 9a shows the QP envelope versus the wind
velocity V for a given value of u2 and in the absence of
the FHE (Y = 0). For very small values of V , a small
periodic response indicated by the horizontal line is
observed, meaning that the tower always performs a
small periodic oscillation due to the external excita-
tion. As V is increased slightly, a small modulation of
the periodic response appears (at the location where
the horizontal line meets the QP envelope) giving rise
to QP galloping onset. Increasing V further, the QP en-
velope delimited by amax and amin increases, as shown
by time histories of the slow dynamic z(t) inset Fig. 9a
obtained by numerical simulation of Eq. (3).

Figure 9b shows the QP galloping amplitude in the
presence of FHE. It can be seen that the FHE retards
significantly the onset of QP galloping, keeping the
tower oscillating periodically with small amplitude in
large interval of the wind velocity indicated by the
(thick) horizontal line. The boxes inset the figure show
time histories before and after the QP galloping on-
set.

In Fig. 10, we show in the parameter plane σc ver-
sus V (Fig. 10a) and σc versus Y (Fig. 10b) the curves
delimiting the regions of periodic (hatched) and QP
galloping (unhatched), as given by Eq. (23). One ob-

Fig. 7 Periodic and QP galloping versus σ for the parameter values of Fig. 5
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Fig. 8 Examples of time histories of the slow dynamics z(t) for the parameter values of Fig. 5. Values of Y and σ are picked from
Figs. 5, 6, and 7b

serves that in the absence of the FHE (Y = 0) the do-
main of periodic galloping decreases with increasing
V (Fig. 10a) and increases with Y (Fig. 10b), which is
coherent with Fig. 6.

4.2 Case of turbulent wind with parametric excitation

In the case of parametric excitation (u1 = 0, u2 �=0),
Figs. 11a, 11b show the periodic amplitude and
the envelope of the QP oscillations for two dif-
ferent values of the amplitude Y . The analytical
predictions (solid lines) and the numerical simula-
tions obtained by using Runge–Kutta method (cir-
cles) are plotted for validation. The effect of the am-
plitude Y on the QP envelope is shown in Fig. 11c.
One observes that the QP envelope and its mean
amplitude decrease substantially with increasing Y ,

while the interval of the QP response remains con-
stant.

Examples of time histories of the slow dynamic
z(t) are shown in Fig. 12 for some values of Y picked
from Fig. 11. Figures 12a, 12b show for σ = 0 and
σ = 0.001, respectively, the periodic and the QP re-
sponses in the absence of the FHE. The QP responses
are shown in Figs. 12c, 12d for two values of Y con-
firming the decreasing in the mean amplitude and in
the QP envelope, as indicated in Fig. 11c.

Figure 13a shows, in the absence of the FHE, the
QP galloping amplitude versus the wind velocity V for
a given value of the excitation u2. It can be seen that
as V is increased from zero, the QP galloping appears
directly from the rest position with a small modulation
and increases with the wind velocity. The small boxes
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Fig. 9 The QP envelope
versus V for the parameter
values of Fig. 5 with
σ = 0.0005

inset the figure show time histories of the slow dy-

namic z(t) for two different values of V . For Y = 0.12

and a given value of V , Fig. 13b depicts the QP gal-

loping amplitude and a time history inset the figure

showing that a significant retarding of the QP gallop-

ing onset can be achieved by increasing the amplitude

Y , as clearly shown in Fig. 14.

It is worth noticing that the frequency modulation

produced by the parametric excitation (see time histo-

ries inset Fig. 13) is higher than the frequency mod-

ulation produced by the external excitation (see inset

Fig. 9). This result is consistent with the expression of

the frequency λ of the QP modulation given by (16),

which depends effectively (to the leading order) on the
amplitude of the parametric excitation u2.

In Fig. 15, we show the curves delimiting the re-
gions of periodic (hatched) and QP galloping (un-
hatched), as given by (23). One observes that the
domain of periodic galloping remains constant with
increasing V (Fig. 15a) and almost constant as Y

increases (Fig. 15b), which is also coherent with
Fig. 11c.

Figure 16 illustrates the effect of the amplitude of
the FHE on the QP galloping domain in the parameter
plane u2 versus σc. The plots show that the QP gal-
loping domain decreases rapidly with u2 and slightly
with Y .
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Fig. 10 Periodic and QP galloping domains for u1 = 0.033

Figure 17 shows the effect of the unsteady wind
components u2 on the frequency λ of the QP mod-
ulation, as given by Eq. (16). Inspection of this fig-
ure indicates that in the case of parametric excitation
(u2 �= 0) the frequency λ decreases rapidly with u2.
The decreasing of λ is more pronounced as the ampli-
tude Y is increased. Notice that in the case of exter-
nal excitation (u1 �= 0), the frequency λ remains un-
changed (to the leading order) as shown in the figure
by the horizontal line.

To support the predicted results shown in Fig. 17,
examples of time histories of the slow dynamic z(t)

are given in Fig. 18 in the absence of the FHE for val-
ues of the unsteady components picked from Fig. 17.
Figures 18a, 18b show the QP response in the presence
of external excitation (u1 �= 0), while Figs. 18c, 18d il-
lustrate the QP response in the presence of parametric
excitation (u2 �= 0). It can be clearly seen the signifi-
cant influence of the parametric excitation on the fre-
quency of the modulation.

4.3 Case of turbulent wind with external and
parametric excitations

In the case where turbulent wind activates both ex-
ternal and parametric excitations (u1 �= 0, u2 �= 0),
Figs. 19a, 19b show the periodic amplitude and the
QP modulation envelope in the absence and presence
of the FHE, respectively. These figures indicate that

increasing the amplitude of the FHE Y eliminates
the loop in the amplitude response (as mentioned in
Sect. 3) and gives rise to a small new QP modula-
tion envelope emanating from the original QP enve-
lope. The effect of the amplitude Y on the original
QP envelope is illustrated in Fig. 19c showing that the
mean amplitude as well as the envelope of the QP re-
sponse decrease while the QP envelopes move away
from the resonance generating the new small QP mod-
ulation domain delimited by the two thick lines.

Figure 20 shows examples of time histories of the
slow dynamic z(t) for some values of Y picked from
Fig. 19. Figures 20a, 20b show for σ = 0 and σ =
0.001, respectively, the periodic and the QP responses
in the absence of the FHE (Y = 0). The QP response
corresponding to the new born small QP modulation
envelopes are shown in Figs. 20c, 20d for a given Y

and for two values of σ , confirming the birth of such a
new QP modulation envelope.

Figure 21a shows, in the absence of the FHE, the
(original and new) QP modulation envelopes versus
the wind velocity V for given values of excitations u1,
u2. One notices that as V is increased (Fig. 21b), the
original QP galloping onset increases with the wind
velocity while the small envelope persists prior to the
original QP galloping envelope QP as shown in the
left box inset Fig. 21b. Figure 22 clearly confirms the
significant retarding of the large original QP galloping
onset by increasing the amplitude Y . One notices that
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Fig. 11 Amplitude versus σ for V = 0.167 and u2 = 0.1

the presence of the new small QP modulation envelope
causes the tower to undergo small QP vibrations even
in the presence of small wind.

5 Conclusion

The effect of a FHE on the periodic and QP gallop-
ing of a tower subjected to steady and unsteady wind
was studied analytically near the primary resonance.
A lumped mass sdof model was considered and atten-
tion was focused on the case where the turbulent wind
activates either external excitation, parametric one or
both. The TSPA is performed to obtain explicit rela-

tionships of the QP responses and the QP modulation
envelopes.

In the case of steady wind, the FHE amplitude
causes the Hopf bifurcation location to shift toward
higher wind velocity, thereby retarding the periodic
galloping onset.

In the case of turbulent wind with external excita-
tion and in the absence of the FHE, the tower may ex-
perience small periodic response even for very small
values of wind velocity, and as the wind velocity in-
creases slightly, small modulation of the amplitude of
the periodic response appears causing QP galloping.
In the presence of FHE, the QP galloping onset can be
retarded keeping the tower oscillating periodically in a
large interval of the wind velocity.
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Fig. 12 Examples of time histories of the slow dynamics z(t) for the parameter values of Fig. 11 with σ = 0.0005. Values of parameters
Y and σ are picked from Fig. 11

Fig. 13 The QP envelope versus V for the parameter values of Fig. 11 with σ = 0.001

In the case where turbulent wind activates para-
metric excitation and in the absence of the FHE, the
envelope of the QP galloping with a small modu-

lation appears directly from the rest position which
increases with the wind velocity. As the FHE is
introduced, the QP galloping onset is significantly
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delayed. Moreover, in the case of parametric ex-
citation, the tower develops QP galloping with a
higher frequency modulation, compared to the case
for which the turbulent wind activates external excita-
tion.

In the case where both external and parametric ex-
citations are activated the FHE eliminates bistability
phenomenon, which is responsible for instability and
jumps in the amplitude response of the tower.

One can conclude from this work that the effect of
wind speed on the onset of QP galloping should not
be neglected. Indeed, QP galloping is more likely to
occur in large interval of frequencies and then its on-
set has to be taken into consideration in the design

Fig. 14 Effect of Y on the QP envelope for the parameter values
of Fig. 11 with σ = 0.001

process of tall buildings to enhance stability perfor-
mance.

The use of FHE may be viewed as a possible al-
ternative control strategy able to retarding the onset
of periodic and QP galloping of towers. Such a con-
trol can be exploited especially when other strategies,
such as mass tuned dampers and tuned liquid dampers,
which are often need large places to be installed, can-
not be implemented for preventing or retarding large
structural vibration.

Finally, it should be noted that the innovative idea
of using FHE for retarding galloping onset of tall

Fig. 16 Periodic and QP galloping domains in the parameter
plane u2 versus σc for V = 0.167

Fig. 15 Periodic and QP galloping domains for u2 = 0.1
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Fig. 17 Variation of the modulation frequency of the QP gal-
loping u1 and u2 for V = 0.167 and σ = 0.001

building comes essentially from a previous experimen-
tal work on vibrating testing of a full size tower [25].
The mechanical vibration exciter system used in such
an experiment was designed so that a sinusoidally
varying horizontal excitation can be generated and ap-
plied to the tower from the top.

Appendix A

The expressions of the coefficients of Eq. (1) are

ω = π

√
3EI

h�
√

m
, ca = ρA1bh�Ūc

2π
√

3EIm
,

b1 = ca, b2 = −4ρA2b�

3πm
,

b31 = −3πρA3b�
√

3EI

8hŪc

√
m3

Fig. 18 Examples of time histories of the slow dynamics z(t) for Y = 0, V = 0.167, and σ = 0.001
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Fig. 19 Amplitude versus σ for V = 0.11, u1 = 0.1, and u2 = 0.1. Thick lines: new QP modulation envelope

b32 = −b31, η1 = 4ρA0bh2�Ū2
c

3π3EI
,

η2 = η1

2
, U(t) = Ū + u(t),

where � is the height of the tower, b is the cross-
section wide, EI the total stiffness of the single story,
m is the mass longitudinal density, h is the interstory
height, and ρ is the air mass density. Ai, i = 0, . . . ,3
are the aerodynamic coefficients for the squared cross-
section. The dimensional critical velocity is given
by

Ūc = 4πξ
√

3EIm

ρbA1h�
(24)

Here, ξ is the modal damping ratio, depending on both
the external and internal damping

ξ = ηh2

24EI
ω + c

2mω
(25)

The following numerical values picked from [7] are
used for convenience: the height of the tower is � =
36 m, the cross-section is b = 16 m wide, the total
stiffness of the single story is EI = 115318000 N m2,
the mass longitudinal density is m = 4737 kg/m, the
damping ratio is ζ = 0.5 percent (corresponding to
η = 128513 N s, c = 34.8675 N s/m2 in Eq. (25)).
The interstory height is assumed h = 4m. The aero-
dynamic coefficients Ai, i = 0, . . . ,3 are taken from
[4] for the squared cross-section: A0 = 0.0297, A1 =
0.9298, A2 = −0.2400, A3 = −7.6770. The air mass
density is ρ = 1.25 kg/m3. The (dimensional) natu-
ral frequency of the rod is ω = 5.89 rad/s. The (di-
mensional) critical wind velocity assumes the value
Uc = 30 m/s.
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Fig. 20 Examples of time histories of the slow dynamics z(t) for the parameter values of Fig. 19. Values of parameters Y and σ are
picked from Fig. 19

Fig. 21 New and original QP envelopes versus V for the parameter values of Fig. 19 for σ = 0.001
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Fig. 22 Effect of Y on QP envelopes for the parameter values
of Fig. 19 with σ = 0.001

Appendix B

Introducing D
j
i ≡ ∂j

∂j Ti
yields d

dt
= νD0 + D1, d2

dt2 =
ν2D2

0 + 2νD0D1 + D2
1 and substituting Eq. (2) into

Eq. (1) gives

μ−1D2
0φ + D2

1z + 2D0D1φ + μD2
1φ

+ (
ca(1 − Ū ) − b1u(t)

)
(D1z + D0φ + μD1φ)

+ z + μφ + b2
(
(D1z)

2 + 2D1z(D0φ + μD1φ)

+ (D0φ)2 + 2μD0φD1φ + (μD1φ)2)

+
(

b31

Ū
+ b32

Ū2
u(t)

)(
(D1z)

3 + 3(D1z)
2

× (D0φ + μD1φ) + 3(D1z)(D0φ + μD1φ)2

+ (D0φ + μD1φ)3)

= η1Ūu(t) + η2Ū
2 + Y cos(νt) (26)

Averaging (26) leads to

D2
1z + (

ca(1 − Ū) − b1u(t)
)
D1z + z

+ b2
(
(D1z)

2 + 〈
(D0φ)2〉 + 〈

(2μD0φD1φ)
〉

+ 〈
(μD1φ)2〉) +

(
b31

Ū
+ b32

Ū2
u(t)

)(
(D1z)

3

+ 3D1z
(〈

(D0φ)2〉 + 〈
(2μD0φD1φ)

〉

+ 〈
(μD1φ)2〉))

= η1Ūu(t) + η2Ū
2 (27)

Subtracting (27) from (26) yields

μ−1D2
0φ + 2D0D1φ + μD2

1φ

+ (
ca(1 − Ū ) − b1u(t)

)
(D0φ + μD1φ)

+ μφ + b2
(
2D1z(D0φ + μD1φ) + (D0φ)2

− 〈
(D0φ)2〉 + 2μD0φD1φ + (μD1φ)2

− 〈
(μD1φ)2〉) +

(
b31

Ū
+ b32

Ū2
u(t)

)

× (
3(D1z)

2(D0 + μD1φ) + 3D1z(D0φ)2

− 3D1z
〈
(D0φ)2〉 + 6D1zμ(D0φD1φ)

+ 3D1z(μD1φ)2 − 3D1z
〈
(μD1φ)2〉 + (D0φ)3

+ 3μ(D0φ)2D1φ

+ 3D0φ(μD1φ)2 + μD1φ
)

= Y cos(T0) (28)

Using the inertial approximation [20], i.e., all terms
in the left-hand side of Eq. (28), except the first, are
ignored, one obtains

φ = −μY cos(T0) (29)

Inserting φ into Eq. (27), using that 〈cos2 T0〉 = 1/2,
and keeping only terms of orders three in z, give
the equation governing the slow dynamic of the mo-
tion (3).
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