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Abstract In this paper we numerically investigate
the fractional-order sliding-mode control for a novel
fractional-order hyperchaotic system. Firstly, the dy-
namic analysis approaches of the hyperchaotic system
involving phase portraits, Lyapunov exponents, bifur-
cation diagram, Lyapunov dimension, and Poincaré
maps are investigated. Then the fractional-order gen-
eralizations of the chaotic and hyperchaotic systems
are studied briefly. The minimum orders we found
for chaos and hyperchaos to exist in such systems
are 2.89 and 3.66, respectively. Finally, the fractional-
order sliding-mode controller is designed to control
the fractional-order hyperchaotic system. Numerical
experimental examples are shown to verify the theo-
retical results.
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1 Introduction

The hyperchaotic system is a higher-dimensional
chaotic system. Having more than one positive Lya-
punov exponents causes the system to show behav-
iors with a high degree of disorder and randomness. It
has the virtue of wide bandwidths and exhibits more
complex and richer dynamical behaviors. So it has
great potential in technological applications, such as
secure communication, lasers, neural networks, bio-
logical system, and so on [1–7].

In recent years, there is increasing interest in frac-
tional calculus, which allows one describe a real object
more accurately and more adequately than the integer
methods [8–12] because of the unlimited memory of
a fractional-order operator [13, 14]. It has been found
that many physical systems can be properly described
by using the fractional-order system theory [15–18].
During the past several years, a large number of vari-
ous fractional-order systems have been proposed, such
as the fractional-order Chua system, the fractional-
order Rossler equation, the fractional-order Chen sys-
tem, and the fractional-order Liu system [19–23].

The effective dimension is defined as the sum of
orders of all involved derivatives. The minimum order
has been numerically calculated for various systems,
such as the fractional-order Chua system of order as
low as 2.7 can produce a chaotic attractor, chaos can
exist in the fractional-order Rossler equation with or-
der as low as 2.4, and hyperchaos can also exist in the
fractional-order hyperchaotic Rossler system with or-
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der as low as 3.8 [20], the lowest order to have chaos in
fractional-order Chen system is 0.3, and so on. In this
article we will numerically calculate the minimum or-
ders of the fractional-order chaotic and hyperchaotic
systems.

In 1988, Oustaloup proposed the idea of designing
a fractional-order controller, called CRONE, which
is a robust fractional-order control scheme [24–26].
Then some fractional-order control strategies are
proposed one after another, such as the fractional-
order PID controller[27], sliding-mode controllers
[28–31], optimal controllers [32, 33], adaptive con-
trollers [34–37], and so on.

The sliding-mode control (SMC) technique as one
of the most attractive robust nonlinear control methods
has been widely applied for both linear and nonlinear
systems [38–44]. SMC is an effective robust control
strategy with the feature of switching the control law
to force the state trajectories of the system from the
initial states onto some predefined sliding manifold.
In Ref. [40], the authors have proposed a sliding-mode
nonlinear PI control scheme. Wang et al. [41] design
the sliding-mode controller of the uncertain chaotic
system that contains sector nonlinearity and dead zone
inputs, to achieve stabilization for the equilibrium
points. Particularly, in order to determine the conver-
gence rate, a class of proportional integral switching
surface is introduced in Ref. [42]. The authors pro-
posed an observer-based fuzzy neural sliding mode
control scheme for interconnected unknown chaotic
systems [43]. In Ref. [44], to solve the constraint of the
maximum admissible values of the control inputs, the
authors introduced the time-varying sliding-mode con-
trol that does not violate environmental and technical
constraints by selecting the switching line parameters,
to obtain the best possible control quality. In recent
years, some works have been done dealing with the
fractional-order sliding-mode control that combine the
merits of fractional-order controllers and sliding-mode
controllers [31, 45–47]. Tavazoei and Haeri [46] pro-
posed an active SMC to synchronize fractional-order
chaotic systems. In Ref. [47], the authors designed a
SMC to control a class of fractional-order chaotic sys-
tems. In Ref. [31], based on the stability theorems for
fractional-order linear systems, an active sliding-mode
controller that has the integer-order sliding-mode sur-
face is proposed to consider the modified projective
synchronization for two different fractional-order sys-
tems. In this article a fractional-order sliding manifold,

which is the combination of fractional calculus theory
and the SMC technique, is designed. The system on
the fractional-order sliding manifold has desired prop-
erties such as good stability, disturbance rejection abil-
ity, and tracking capability.

In the present paper, we will numerically inves-
tigate the hyperchaotic system, the minimum orders
of the fractional-order systems, and the fractional-
order SMC for the fractional-order hyperchaotic sys-
tem. The rest of the paper is organized as follows. In
Sect. 2, we introduce the basic dynamical properties
of a novel hyperchaotic system in detail. Section 3 is
on the minimum orders of the fractional-order chaotic
and hyperchaotic systems. In Sect. 4, the design pro-
cedure of the fractional-order sliding mode approach
is presented. Section 5 concludes this paper with some
additional remarks.

2 A novel hyperchaotic system

Consider the following simple three-dimensional (3D)
quadratic smooth autonomous system:
⎧
⎪⎨

⎪⎩

dx
dt

= a(y − x),

dy
dt

= bx + lxz,

dz
dt

= −hx2 − ky2 − cz,

(1)

where [x, y, z]T ∈ R3 is the state vector, and a, b, c,

h, k, and l are positive constant parameters of the sys-
tem.

Adding an additional state w to the 3D chaotic sys-
tem(1),a novel hyperchaotic system can be generated.
The differential equations are shown as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx
dt

= a(y − x),

dy
dt

= bx + lxz + ew,

dz
dt

= −hx2 − ky2 − cz − nw,

dw
dt

= −dx.

(2)

When a = 10, b = 40, c = 2.5, d = 10, e = 1, h =
2, k = 2, l = 1, and n = 1, system (2) has two hy-
perchaotic strange attractors as shown in Figs. 1
and 2, where the initial values are appointed as
(0.3,0.6,0.9,1).

By calculation, the unique equilibrium point of the
system is O(0,0,0,0). The Jacobian matrix is

J =

⎡

⎢
⎢
⎣

−a a 0 0
b + lz 0 lx e

−2hx −2ky −c −n

27 − d 0 0 0

⎤

⎥
⎥
⎦
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Fig. 1 Three-dimensional (x, y, z) view

Fig. 2 Phase plane strange attractors

=

⎡

⎢
⎢
⎣

−10 10 0 0
40 0 0 1
0 0 −2.5 −1

−10 0 0 0

⎤

⎥
⎥
⎦ . (3)

Then letting |J − λI | = 0, the eigenvalues corre-
sponding to O(0,0,0,0) are

λ1 = −2.5, λ2 = −25.71,

λ3 = 15.46, λ4 = 0.25.
(4)

Here λ1,2 < 0 are negative roots, and λ3,4 > 0 are pos-
itive roots. Therefore, the equilibrium O(0,0,0,0) is
a saddle.

Then we analyze the Poincaré mapping of this non-
linear system. As we can see in Fig. 3, the Poincaré
mappings are in confusion at these points.

Fig. 3 Poincaré map of the x–y plane of the system

Fig. 4 Bifurcation diagram versus b

The bifurcation diagram of x with increasing b is
given in Fig. 4, and it shows abundant and complex
dynamical behaviors.

In general, the hyperchaotic system has two posi-
tive Lyapunov exponents. According to the chaos the-
ory, the Lyapunov exponents measure the exponential
rates of convergence and divergence of the nearby tra-
jectories in the phase space of the system. This implies
that the dynamics of the hyperchaotic system are ex-
panded in several different directions simultaneously.

The Lyapunov exponents of this system are respec-
tively obtained from Fig. 5 as

λL1 = 1.0406, λL2 = 0.1847,

λL3 = 0.0164, λL4 = −13.7416.
(5)

The Lyapunov dimension of system (2) is

DL = j + 1

λj+1

j∑

i=1

λi

= 3 + 1

λL4
(λL1 + λL2 + λL3) = 2.91. (6)

We fix the parameters at a = 10, c = 2.5, d = 10,
e = 1, h = 2, k = 2, l = 1, n = 1, and let b vary. Then
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Fig. 5 Time evolution of Lyapunov exponents for b = 40

Fig. 6 Lyapunov exponents of the system for varying b

we get the evolution of the Lyapunov exponents as
shown in Fig. 6.

The designed circuit, which is shown in Fig. 7,
consists of operational amplifiers, multipliers, resis-
tors, and capacitors. Op-Amps is AD741, and we se-
lect AD633 for multipliers C1 = C2 = C3 = C4 = 1μ,
R13 = R18 = R19 = 1k, R5 = R6 = R12 = 1k, R7 =
R16 = 40k, R21 = 2.5k, R1 = R3 = R9 = R14 = 100k,
R2 = R4 = R8 = 10k, R10 = R11 = R15 = 10k, and
R17 = R20 = R22 = 10k. The four state variables x,

y, z, and w are respectively obtained from the voltage
outputs of Vc1, Vc2, Vc3, and Vc4.

The circuit is simulated using Pspice. The phase di-
agrams are shown in Fig. 8. It is in agreement with the
numerical simulations in Matlab environment, which
are mentioned above.

3 The fractional-order chaotic and hyperchaotic
systems

In fractional calculus, aD
α
t denotes a noninteger-order

differ-integral operator. It is a notation for taking both
the fractional derivative and integral in a single expres-
sion and is defined by

aD
α
t =

⎧
⎨

⎩

dα

dtα
, α > 0,

1, α = 0,
∫ t

a
(dτ )−α, α < 0.

(7)

There exist some different definitions for frac-
tional derivatives [16]. Riemann–Liouville, Caputo,
and Grunwald–Letnikov definitions are commonly
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Fig. 7 Analog electronic implementation of the hyperchaotic system Op-Amps: AD741, Multiplier: AD633

used. The well-known Riemann–Liouville definition
of the fractional differential operator is given as

dαf (t)

dtα
= 1

Γ (n − α)

dn

dtn

∫ t

0

f (τ)

(t − τ)α−n+1
dτ, (8)

where n − 1 < α < n, i.e., n is the first integer which
is not less than α, and Γ is the gamma function. An-
other alternative definition of the Riemann–Liouville
function was reported by Caputo as follows:

dαf (t)

dtα
= 1

Γ (n − α)

∫ t

0

f (n)(τ )

(t − τ)α−n+1
dτ . (9)

In this paper, the operator Dα is used to denote the
Caputo fractional derivative of order α.

To obtain the minimum order for the fractional-
order chaotic system, the following lemma is pre-
sented.

Lemma 1 For a given fractional-order linear sys-
tem DαX(t) = AX(t), X(0) = X0, where 0 < a < 1,

X(t) ∈ Rn, and A ∈ Rn×n, the equilibrium points are
asymptotically stable for α1 = α2 = · · · = αn ≡ α if
all the eigenvalues λi (i = 1,2, . . . , n) of the Jacobian
matrix J = ∂f/∂x, where f = [f1, f2, . . . , fn]T is eval-
uated at the equilibrium, satisfy the following condi-
tion [48]: |arg(λi(A))| > απ/2 (i = 1,2, . . . , n). The
stable and unstable regions for 0 < a < 1 are shown
in Fig. 9.

Suppose that a 3D chaotic system has the unstable
eigenvalues λ1,2 = a1,2+ib1,2 of equilibrium points.
According to Lemma 1, if the condition for commen-
surate derivative order is

α >
2

π
atan(bj /aj ), j = 1,2, (10)

the system will exhibit double-scroll attractors. In
other words, a necessary condition for fractional-
order systems to remain chaotic is keeping at least
one eigenvalue λ in the unstable region. We can use
this condition to determine the minimum order for a
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Fig. 8 Phase plane of hyperchaotic system using Pspice

Fig. 9 Stability regions of the fractional order system

chaotic system. Consider a fractional-order general-

ization of the 3D chaotic system. Here, the conven-

tional derivative is replaced by a fractional derivative
as follows:

⎧
⎪⎨

⎪⎩

dαx
dtα

= a(y − x),

dαy
dtα

= bx + lxz,

dαz
dtα

= −hx2 − ky2 − cz.

(11)

By calculation, the unique equilibrium points of the

system are P1(0,0,0), P2(

√
bc

lh+lk
,

√
bc

lh+lk
,− b

l
), and

P3(−
√

bc
lh+lk

,−
√

bc
lh+lk

,− b
l
). Let a = 10, b = 40, c =

2.5, d = 10, h = 2, k = 2, and l = 1. Then we get
P1(0,0,0), P2(5,5,−40), and P3(−5,−5,−40).

Jacobian matrix is

J =
⎡

⎣
−10 10 0

40 + z 0 x

−4x −4y −2.5

⎤

⎦ . (12)

The eigenvalues corresponding to P2(5,5,−40)

and P3(−5,−5,−40) are λ1 = −13.8776 and λ2,3 =
0.6888 + 11.9851i. So, we have min(|arg(λi)|) =
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Fig. 10 Stability regions of the fractional-order system

Fig. 11 x–y phase plane for α = 0.97

Fig. 12 Time evolutions of x for α = 0.97

1.5134. As it has been mentioned, the criterion of in-
stability for the system is

α > 2
∣
∣arg(λ)

∣
∣/π = 0.9635. (13)

Then we get that the minimum order of the 3D chaotic
system is 2.89 as shown in Fig. 10.

When α = 0.97, the x–z phase plane and the time
evolutions of x are shown in Figs. 11 and 12. System
(11) still presents the chaotic state.

When α = 0.95, system(11) is stable at the equilib-
rium point P2(5,5,−40). Figures 13 and 14 show the
x–z phase plane and the time evolutions of x.

Fig. 13 x–y phase plane for α = 0.95

Fig. 14 Time evolutions of x for α = 0.95

Next, we consider the fractional generalization of
the hyperchaotic system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dαx
dtα

= a(y − x),

dαy
dtα

= bx + lxz + ew,

dαz
dtα

= −hx2 − ky2 − cz − nw,

dαw
dtα

= −dx.

(14)

To our knowledge, there is no better theoreti-
cal method to calculate the minimum order of the
fractional-order hyperchaotic systems. Since a hyper-
chaotic attractor is typically defined as chaotic behav-
ior with at least two positive Lyapunov exponents, we
use the predictor–corrector method to carry on the
value simulation. The bifurcation diagram of α with
α ∈ (0.8,1) is given. As shown in Fig. 15, when α

is around 0.9, a chaos occurs in the fractional-order
hyperchaotic system.

As shown in Figs. 16, 17, and 18, the simulation
results demonstrate that:

(1) When α = 0.9, the system is in a periodic state.
(2) When α = 0.91, the system is in the period-

doubling bifurcation state.
(3) When α = 0.915, the system is in a hyperchaotic

state.
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Fig. 15 Bifurcation diagram of the fractional-order hyper-
chaotic system versus α

Fig. 16 Phase plane strange attractors

The hyperchaos exists in the fractional-order hyper-
chaotic system with order as low as 3.66.

4 Fractional-order sliding-mode control of the
novel fractional-order hyperchaotic system

The fractional-order hyperchaotic system (14) may be
expressed in the following matrix form:

DαX(t) = AX(t) + H
(
X(t)

)
, (15)

where X(t) ∈ Rn is the state vector of the four-
dimensional system, AX(t) represents the linear part,
and H(X(t)) is the nonlinear part of the system.

Fig. 17 Phase plane strange attractors

Fig. 18 Phase plane strange attractors

In order to stabilize the fractional-order hyper-
chaotic system to its unstable equilibrium point, we
add the control input u(t) to the state equation:

DαX(t) = AX(t) + H
(
X(t)

) + u(t). (16)

Then, our aim is changed to design a fractional-order
sliding-mode controller. The first step is constructing a
fractional-order sliding manifold that represents a de-
sired system dynamics, to be followed by developing
a switching control law such that a sliding mode ex-
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ists at every point of the sliding manifold. Any states
outside the manifold are driven to reach the plane in a
finite time.

The following control structure is considered:

u = BuSMC − H(X), (17)

where B = [b1, b2, b3, b4]T is the control gain vector,
and

uSMC = ueq + ur, (18)

where ueq is the equivalent control for system (15),
and ur is the switching control.

We choose the fractional-order sliding manifold of
the following form:

s(t) = CDα−1X(t), (19)

where C = [c1, c2, c3, c4] is the designed gain vec-
tor chosen so that the system dynamics have the de-
sired closed-loop behavior on the sliding manifold.
The equivalent control can make the system arrive at
the sliding manifold.

Based on the theory of sliding-mode control, to en-
sure that, regardless of the initial condition, the con-
troller would direct the trajectory to reach the sliding
manifold, the controlled system must satisfy the hit-
ting condition and existence condition, which can be
expressed as lims(t)→∞ s(t)ṡ(t) ≤ 0. Then, the equiv-
alent control ueq can be obtained by setting the deriva-
tive of Eq. (16) with respect to time to zero:

ṡ(t) = CDαX(t) = 0 (20)

The equivalent control can make the system arrive
at the sliding manifold:

ueq = −(CB)−1CAX(t). (21)

The switching control can keep the system within the
sliding manifold. To satisfy the sliding condition, the
discontinuous reaching law is chosen as follows:

ur = q sign(s), (22)

where q is the gain of the controller, and

sign(s) =
⎧
⎨

⎩

+1, s > 0,

0, s = 0,

−1, s < 0.

(23)

Next, we will discuss whether all the required con-
ditions, such as the reaching condition and stability
condition, are met.

First, to verify the sliding-mode reaching condition,
we find a Lyapunov function

VSMC = 1

2
s2. (24)

Its time derivative is

V̇SMC = sṡ

= sCDαX(t)

= sC
[
AX + H(X) + B

(
ueq + q sign(s)

)

− H(X)
]

= s
[
CAX(t) − CB(CB)−1CAX(t)

+ CBq sign(s)
]

= s sign(s)qCB. (25)

We can find V̇SMC < 0 for s(t) �= 0 because q < 0,
CB > 0, and s sign(s) > 0. In other words, the con-
trolled system satisfies the reaching condition.

Then, we will verify the sliding-mode stability con-
dition. When the system arrives at the sliding mode
manifold, we get

DαX(t) = AX + H(X) + B
(
ueq + q sign(s)

) − H(X)

= (
I − B(CB)−1C

)
AX + Bq sign(s). (26)

Let

ASMC = (
I − B(CB)−1C

)
A. (27)

The controlled fractional-order hyperchaotic sys-
tem is changed to a linear system with bounded in-
put (Bq for s > 0 and −Bq for s < 0 ). According to
the stability theory of the fractional-order system men-
tioned in the above chapter, the system is asymptoti-
cally stable when all the characteristic roots of ASMC

satisfy |arg(eig(ASMC))| > απ
2 . The controlled system

will be asymptotically stable at an unstable equilib-
rium point when we select appropriate matrixes B

and C.
In order to verify the effectiveness of the pro-

posed control scheme, we use the sliding-mode con-
troller mentioned above to make the controlled sys-
tem asymptotically stable. Assuming the same orders
of derivatives (α = 0.98) in system (14), we get a
commensurate-order system. The parameters of the
designed controller are obtained as follows.

According to Eq. (16), we can define the controlled
system by
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⎡

⎢
⎢
⎢
⎢
⎣

dαx
dtα

dαy
dtα

dαz
dtα

dαw
dtα

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

−a a 0 0
b 0 0 e

0 0 −c −n

−d 0 0 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x

y

z

w

⎤

⎥
⎥
⎦

+

⎡

⎢
⎢
⎣

0
lxz

−hx2 − ky2

0

⎤

⎥
⎥
⎦ + u. (28)

Let

A =

⎡

⎢
⎢
⎣

−a a 0 0
b 0 0 e

0 0 −c −n

−d 0 0 0

⎤

⎥
⎥
⎦ and

H(x) =

⎡

⎢
⎢
⎣

0
lxz

−hx2 − ky2

0

⎤

⎥
⎥
⎦ .

In order to satisfy the condition in Lemma 1,
|arg(eig(ASMC))| > απ

2 , we select the matrixes B =
[1 1 0 0 ]T and C = [20 0 1 0 ]. Then, the eigenval-
ues of ASMC are λ1 = −10, λ2 = −7.216 × e−16,
λ3 = −0.2192, and λ4 = −2.2808, which satisfy the
condition |arg(eig(ASMC))| > 0.49π , so that the value
of |arg(eig(ASMC))| lies in the stable region.

Now, substituting the matrixes A, B , and C into
Eq. (21), we get the equivalent control

ueq = −(CB)−1CAX(t)

= ax − ay + cz/20 + nw/20. (29)

Then the total control law can be defined as follows:

u = B
(
ueq + q sign(s)

) − H(x)

= B
(
ax − ay + cz/20 + nw/20 + q sign(s)

)

− H(x). (30)

As shown in Figs. 19 and 20, there are three stages
of the controlled system. In the first 20 seconds, with-
out controller, the system is chaotic as we can see
in Fig. 18. In the second phase (known as reach-
ing phase), after t = 20 s, the fractional-order hyper-
chaotic system is forced toward the sliding manifold
by the sliding-mode controller. When the trajectory
touches the sliding plane, the system enters the 3rd
phase, which is called sliding-mode operation. In or-
der to maintained the trajectory on the sliding plane,
the system is controlled by the switching function,

Fig. 19 Stabilization of the fractional-order hyperchaotic sys-
tem with the controller started at t = 20 s

which is shown in Fig. 20, and moves toward the
desired equilibrium, finally stabilized to its unstable
equilibrium point O(0,0,0,0). It can be seen that state
variables x, y, z, and w are closer to zero in Fig. 19.

5 Conclusions

In this paper, a novel hyperchaotic system, its fraction-
al-order generalizations, and the fractional-order SMC
are investigated. First, some basic dynamical proper-
ties of the hyperchaotic system are studied. Then we
analyzed the minimum orders of the chaotic and hy-
perchaotic systems. Simulation results show that or-
ders as low as 2.89 and 3.66 can produce chaotic
and hyperchaotic attractors, respectively. Finally, a
fractional-order sliding-mode controller is designed
for the novel fractional-order hyperchaotic system.
A sliding manifold is determined using the SMC tech-
nique. The SMC law is derived to make the states
of the fractional-order hyperchaotic system asymptot-
ically stable. The designed control scheme is simple,
theoretically rigorous and robust against the system
uncertainty, and guarantees the property of asymptoti-
cal stability in the presence of an external disturbance.
The illustrative simulation results are given to demon-
strate the effectiveness of the proposed sliding-mode
control design.
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Fig. 20 The output of the sliding-mode controller uSMC
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