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Abstract In this paper, we propose and analyze an
ecological system consisting of pest and its natural en-
emy as predator. Here we also consider the role of
infection to the pest population and the presence of
some alternative source of food to the predator pop-
ulation. We analyze the dynamics of this system in a
systemic manner, study the dependence of the dynam-
ics on some vital parameters and discuss the global be-
havior and controllability of the proposed system. The
investigation also includes the use of pesticide control
to the system and finally we use Pontryagin’s maxi-
mum principle to derive the optimal pest control strat-
egy. We also illustrate some of the key findings using
numerical simulations.

Keywords Eco-epidemic · Hopf bifurcation ·
Transcritical bifurcation · Global stability · Optimal
control

1 Introduction

All types of vegetables as well as crops are our main
source of food but the land for planting those resources
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is limited. So we do not have the liberty to destroy
even a single mole of food. But in nature many small
insects, weeds, and animals are involved in maximum
loss of the production of those invaluable crops. Fur-
ther there are also so many fungi, bacteria, viruses etc.
which cause harm by parasitizing the livestock of trees
and plants. So it is easy to understand why the control
of the pest is one of the biggest world wide problems.
Most of the current pest control methods focused on
chemical insecticides. According to Uboh et al. [1],
the application of chemical insecticides is an attempt
to control pest directly at low cost. However, research
works have shown that these chemicals have many en-
vironmental effects that include chemical resides in
crops and in the agricultural ecosystems. However, ef-
fective control of these pests can be obtained through
the use of living organisms, making them less abun-
dant.

It has been observed that there are so many animals
and birds whose food are those pests but these crea-
tures can not hamper the agriculture. Hence these pop-
ulations can be used as one of the biological controls
for the pest. Use of predator populations for the pur-
pose of removing pest can be found in the research
work [2–8] and references therein. Further the pest
may be affected due to the infection of some viral or
bacterial diseases. For an example baculovirus usually
grows in plants and these virus has not any direct effect
on the production of crops but they can be involved to
reduce the pest population. When a baculovirus enters
in the crop’s body it is not only causes its death but also
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make other pest infected during the contact with the in-
fected pest (see [9–12]). Interactions among crop, pest,
infection and the predator of pests were also studied
in [13–15]. In their work, Anderson and May [16, 17]
discussed the interactions between host and parasites.
Tan and Chen [18] described the control of pest by
introducing infected pest. Wang and Song [19] also
used mathematical models to control a pest population
by infected pests. Thus infection to the pest popula-
tion is one of the ways which can be successfully used
to eliminate them from agriculture. Further there are
some theoretical works on prey–predator models with
disease in the prey populations (see [20–27] and refer-
ences therein) and these works are also very helpful to
describe the dynamics of pest and its natural enemy.
Some more theoretical works on pest control prob-
lem can also be formed in Wang et al. [28], Wang and
Chen [29], Guo and Chen [30] and references there
in.

In southern portion of India, both of coconut and
oil palm trees are two of the most economically bene-
ficial agricultural trees. But both trees are being heav-
ily affected by the insect Oryctes rhinoceros. Central
Plantation Crops Research Institute (CPCRI) found
a virus namely BaculoVirus Oryctes (BVO) which
can be used to destroy those pest populations (Gopal
et al. [31]). So this BVO can be treated as one of
the biological controls of the pest Oryctes rhinoceros.
Hence it can be concluded that simultaneous use of
pesticide control, the infection for the pest, and the use
of biological predator population would be mostly ef-
fective strategy to control pest. But it is evident that the
viral infection which spread within the pest also can be
spread among the predators. On the other hand if the
pest population is the only source of food to the preda-
tor then pest control may reduce the predator and even
predator population may go extinct. So there must be
an alternative source of food to the conserve the preda-
tor population.

Alternative source of food to the predator popula-
tion in a prey–predator system plays an important role
(see [32–36] etc.). However, to control pest, the effect
of alternative food draws more attention than the or-
dinary predator–prey dynamics in the context of bio-
logical conservation. Alternative source of food must
be given to the natural enemy of the pest for both the
conservation of the predator and reduction of the pest.
Srinivasu et al. [35] considered the use of alternative
food as parallel source of food to the predator and it

can choose either prey or that additional food. In our
work, we are also interested to consider the influence
of the alternative food to the predator population and
here we want to consider both of pest and the alter-
native food as a double way to consume food i.e., a
predator can consumes food from pest and the alterna-
tive source simultaneously.

Now we construct our mathematical model on the
basis of the following assumptions:

(A1) At any time t , the pest populations are divided
into two classes namely the susceptible pest S(t) and
the infected pest I (t). Hence S(t) + I (t) is the total
biomass of prey populations. Also let us assume that
P(t) is the total biomass of the predator populations.

(A2) Between the two classes of pest, the susceptible
pest population S is only able to reproduce follow-
ing logistic law of growth with intrinsic growth rate r

and environmental carrying capacity K . Therefore the
change of biomass of S can be written as the following
differential equation:

dS

dt
= rS

(
1 − S + ηI

K

)
. (1)

Here η is the impact of a predator individual on the
per capita growth rate of a pest individual relative to
the impact of a pest individual on its own per capita
growth rate (see [19, 37, 38]).

(A3) Disease spread within the susceptible pest due
to their direct contact with the infected pest and let
α be the force of infection. The predator population
consumes both the susceptible as well as infected pest
but the infected pests are much more vulnerable to the
predator as they are weak and so easy to catch whereas
some handling time is required for the predation of the
susceptible pests (see Kar et al. [8]). So we assume that
the predator predates susceptible pests at a rate with
Holling type II functional response βS/(a + S) where
β is the maximum capturing rate and a is the half satu-
ration constant, and infected pests with Holling type I
functional response γ I where γ is the maximum cap-
turing rate. Further we assume that the death rate of
infected pest is σ . Therefore the rate of change of sus-
ceptible and infected pest can be separated as follows:

dS

dt
= rS

(
1 − S + ηI

K

)
− αSI − βSP

a + S
,

dI

dt
= αSI − γ IP − σI.

(2)
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(A4) Let l and m be the respective contributions of
predator populations from the susceptible pest and in-
fected pest. Further we assume that there is a nega-
tive effect nγ I (n ≥ 0) to the biomass of predator pop-
ulations due to the infection from the infected pests.
Also the natural death rate of the predator is μ and it
has density dependent mortality rate δ. Therefore the
rate of change for the predator population is as fol-
lows:

dP

dt
= lβSP

a + S
+ (m − n)γ IP − μP − δP 2. (3)

(A5) The predator population is supplied some al-
ternative source of food and the growth rate due to
this food is d (see [32]). Thus the final differen-
tial equation for the predator population is as fol-
lows:

dP

dt
= lβSP

a + S
+ (m − n)γ IP + d

(
1 − S + ηI

K

)
P

− μP − δP 2. (4)

Combining all of above assumptions we construct our
final eco-epidemic system as follows:

dS

dt
= rS

(
1 − S + ηI

K

)
− αSI − βSP

a + S
,

dI

dt
= αSI − γ IP − σI,

dP

dt
= lβSP

a + S
+ (m − n)γ IP + d

(
1 − S + ηI

K

)
P

− μP − δP 2,

(5)

subject to the initial conditions

S(0) ≥ 0, I (0) ≥ 0, P (0) ≥ 0. (6)

The rest of the paper is organized as follows. In
Sect. 2, we describe the dynamical behavior of the
system theoretically and numerical illustrations are
given in Sect. 3. In Sect. 4, we formulate and solve
an optimal control problem with the help of time
dependent pesticide control. Using the Runge–Kutta
fourth order procedure we solve the optimal con-
trol problem numerically in Sect. 5. Finally, Sect. 6

presents the main conclusions and discusses their im-
plications.

2 Dynamical behavior of the system

2.1 Boundedness of the system

The system (5) is uniformly bounded. Mathematical
details are given in Appendix A.

2.2 Equilibria of the system

The system has the following equilibria:

(i) The trivial equilibrium E0(0,0,0).
(ii) The boundary equilibrium E1(K,0,0).

(iii) The pest free equilibrium E2(0,0,P0), where
P0 = (d − μ)/δ. This equilibrium is feasible if
d > μ i.e., if the growth rate of predator pop-
ulation due to the alternative source of food is
greater than their natural death rate and reduces
to the trivial equilibrium E0 if d ≤ μ.

(iv) The infection free equilibrium E3(S1,0,P1),
where S1 is the positive root of the following
equation:

S3 + l1S
2 + l2S + l3 = 0, (7)

with

l1 = 2arδ − dβ − Krδ

rδ
,

l2 = arδ − a(dβ + 2Krδ) + βK(d + lβ − μ)

rδ
,

l3 = −aK(arδ + βμ − dβ)

rδ

and P1 = r
β
(1 − S1

K
)(a + S1).

Now the sufficient condition for which there is
a positive root of (7) is a > K +(dβ)/(rδ). More-
over if Eq. (7) has no positive solution for S then
the equilibrium E3 reduces to the equilibrium E2

provided d > μ.
(v) The predator free equilibrium E4(S2, I2,0),

where S2 = σ/α and I2 = r(αK − σ)/(α(Kα +
rη)). This equilibrium is feasible if σ < αK , oth-
erwise this equilibrium reduces to the boundary
equilibrium E1(K,0,0).

(vi) Lastly the interior equilibrium E∗(S∗, I ∗,P ∗),
whose feasibility criterion is given in Appendix B.
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2.3 Stability and bifurcation around different
equilibria

2.3.1 Local stability

In the following theorem we draw conclusions regard-
ing the asymptotic behavior of the trajectories of the
system (5).

Theorem 2.1 The system (5) has the following behav-
ior at different equilibria:

(i) The trivial equilibrium E0 is always unstable.
(ii) The boundary equilibrium E1(K,0,0) is lo-

cally asymptotically stable if σ > Kα and μ >

Klβ/(a + K).
(iii) The pest free equilibrium E2(0,0,P0) is locally

asymptotically stable if d > μ + arδ/β .
(iv) The infection free equilibrium E3(S1,0,P1) is lo-

cally asymptotically stable if σ +γP1 > αS1 and
(a+S1)

2{μK+(2r+d)S1}+P1K{a(β+2aδ)+
2δS1(2a + S1)} > (a + S1)K{(d + r)(a + S1) +
lβS1}.

(v) The predator free equilibrium E4(S2, I2,0) is
locally asymptotically stable if (αrηK)/(2rη +
αK) < σ < αK and I2 < I21/I22, where I21 =
aα{dσ + (μ−d)αK}+σ {αKμ+dσ −αK(d +
lβ)} and I22 = α(aα + σ){(m − n)γK − dη}.

Next we study the behavior of the system around its
interior equilibrium E∗, where all the three classes of
populations coexist. We have the following result con-
cerning the existence and local stability of the interior
equilibrium depending on the value of the parameter
α:

(i) There is a value of α, say, αmax such that E∗ does
not exist for α > αmax.

(ii) The system is locally asymptotically stable at
E∗ when α ∈ (0, αcr) and unstable for α ∈
(αcr, αmax].

(iii) The system undergoes a Hopf bifurcation at E∗
for α = αcr.

Detailed mathematical calculations of the above re-
sults are given in Appendix B.

2.3.2 Transcritical bifurcation

Theorem 2.2 The system (5) undergoes through a
transcritical bifurcation around E4(S2, I2,0) at σ =

Kα provided the following three conditions are sat-
isfied: (a) I2 < I21/I22, (b) σ >

αrηK
2rη+αK

and (c) μ >
Klβ
a+K

.

Proof The parametric conditions given in (a) and (b)
along with σ < Kα are the sufficient conditions for
the system (5) to be locally asymptotically stable
around E4. Again the parametric conditions given
in (c) along with σ > Kα are the sufficient conditions
for the system (5) to be locally asymptotically stable
around E1(K,0,0). Therefore we may conclude that
a change of stability occurs through a bifurcation from
equilibrium E4 to E1 for σ = Kα provided all the
three parametric conditions (a), (b) and (c) hold. This
type of bifurcation which occurs at E4 for σ = Kα is
known as a transcritical bifurcation (detailed mathe-
matical works are given in Guckenheimer and Holmes
[39], Kar and Mandol [40]). �

Note The biological interpretation which follows from
the above theorem is that, if the death rate of the in-
fected pest is greater than the maximum possible re-
cruitment of the infected pest at the carrying capac-
ity of the susceptible pest then the equilibrium E4

becomes infeasible and it reduces to the equilibrium
E1(K,0,0) provided all the three parametric condi-
tions (a)–(c) are satisfied.

2.3.3 Global stability

First we give the sufficient condition for the equilib-
rium E2 to be globally asymptotically stable as it is
the most important equilibrium from economic point
of view.

Theorem 2.3 The system is globally asymptotically
stable around its pest free equilibrium if Fmin ≥ 0,
where

Fmin = inf
P

{
F(P )

}

and

F(P ) =
{
(P − P0)

2 − 1

δK

(
rKC11μ21

+ dP0(μ21 + ημ22)
)}

.
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Proof To prove the global stability of the system
around E2, let us construct the Lyapunov function as
follows:

V2(S, I,P ) = A1S + B1I + C1

∫ P

P0

P − P0

P
dP, (8)

where A1, B1, C1 are positive constants to be deter-
mined in the subsequent steps.

Now taking the time derivative of (8), we have

dV2

dt
= −C1δ(P − P0)

2

+ C1

(
lβS

a + s
+ (m − n)γ I − d

K
(S + ηI)

)

× (P − P0) + A1

[
rS

(
1 − S + ηI

K

)

− αSI − βSP

a + S

]
+ B1(αSI − γ IP − σI).

The above equation reduces to

dV2

dt
≤ α(B1 − A1)SI + γ

(
(m − n)C1 − B1

)
IP

+ (C1l − A1)
βSP

a + S
− S + ηI

K

(
C1d(P0 − P)

− A1rS
) + ArS − BσI − C1δ(P − P0)

2.

Now taking A1 = B1 = 1 and C1 = min {1/(m −
n),1/l} = 1/C11, (provided m > n) we have from the
above inequality,

dV2

dt
≤ S + ηI

K

(
d(P0 − P)

C11
− rS

)
+ (rS − σI)

− δ

C11
(P − P0)

2. (9)

From (9) it is clear that dV2/dt ≤ 0 if

F(P ) = (P − P0)
2

− 1

δK

(
rKC11μ21 + dP0(μ21 + ημ22)

)
≥ 0, (10)

i.e. if Fmin ≥ 0. Hence the theorem. �

To describe the global dynamics of system (5)
around the interior equilibrium E∗, we state and prove
the following theorem.

Theorem 2.4 The sufficient conditions for the sys-
tem (5) to be globally asymptotically stable around its
interior equilibrium E∗ are (i) F1(0) and F2(0) are
nonnegative and (ii) Kγn > dη + Kγn where

F1(S) = r

K
+ C∗d

2K
− β(2P ∗ + alC∗)

2(a + S)(a + S∗)
,

F2(S) = δ + C∗d
2K

− aβlC∗

2(a + S)(a + S∗)

with C∗ = Kγ/(α(Kγ (m − n) − dη)).

Proof To show the globally asymptotic stability of the
system around E∗, let us construct a Lyapunov func-
tion as follows:

V (S, I,P ) = A

∫ S

S∗
S − S∗

S
dS + B

∫ I

I∗
I − I ∗

I
dI

+ C

∫ P

P ∗
P − P ∗

P
dP, (11)

where A, B , C are positive constants to be determined
in the subsequent steps. Now taking the time derivative
of (11) we get

dV

dt
= A

S − S∗

S

dS

dt
+ B

I − I ∗

I

dI

dt
+ C

P − P ∗

P

dP

dt
,

which on simplification gives

dV

dt
= −A

(
r

K
− βP ∗

(a + S)(a + S∗)

)(
S − S∗)2

− δ
(
P − P ∗)2 −

(
Arη

K
+ Aα − αB

)

× (
S − S∗)(I − I ∗) −

(
Bγ − C(m − n)γ

+ Cdη

K

)(
I − I ∗)(P − P ∗)

+
[

Calβ

(a + S)(a + S∗)
− Aβ

a + S
− Cd

K

]

× (
S − S∗)(P − P ∗).

Now let us choose B = 1/α, A = K/(rη + αK) =
A∗ and C = Kγ/(α(Kγ (m−n)−dη)) = C∗ and take
Kγn > dη + Kγn so that C∗ would be positive. For
these values of A, B , C and using arithmetic mean
always greater than or equal to the value with the geo-



672 S. Jana, T.K. Kar

metric mean, we have from the above equation,

dV

dt
≤ −AF1(S)

(
S − S∗)2 − F2(S)

(
P − P ∗)2

. (12)

From (12) it is clear that if both of F1(0) and F2(0)

are nonnegative then dV/dt would never be positive.
Therefore, if the above conditions hold then the sys-
tem (5) is globally asymptotically stable around its in-
terior equilibrium E∗. Hence the theorem. �

2.4 System with d = 0

When d = 0 i.e. when there is no alternative source
of food to the predator population then the system (5)
reduces to the following form:

dS

dt
= rS

(
1 − S + ηI

K

)
− αSI − βSP

a + S
,

dI

dt
= αSI − γ IP − σI,

dP

dt
= lβSP

a + S
+ (m − n)γ IP − μP − δP 2,

(13)

subject to the initial conditions

S(0) ≥ 0, I (0) ≥ 0, P (0) ≥ 0. (14)

Now it is easy to derive that except the pest free equi-
librium E2(0,0, (d − μ)/δ) the system (13) has the
same equilibria and same nature as that of (5). If there
is no alternative source of food then the main differ-
ence compare to the original system (5) is that in this
case there would be no pest free equilibrium i.e. our
original system confirms that predator populations are
able to survive even in the absence of pests. Further
during the process of controlling the pests, the preda-
tor also decreases due to the lack of food and even may
not survive. So to protect those biological predators it
is necessary to provide alternative source of food to
them.

3 Numerical simulation and its discussion

In this section we give some simulation works for the
validation of our analytical results. For this purpose we
take: r = 2.1, η = 1, K = 50, β = 0.36, a = 0.21, γ =
0.5, σ = 0.15, l = 0.5, m = 0.3, n = 0.15, d = 0.6,
μ = 0.21, δ = 0.11. Using this set of parameters, we

Fig. 1 Solution curve of the system around E∗ for
α = 0.3 < αcr

Fig. 2 Solution curve of the system (5) for α = 0.3 < αcr

get a critical value αcr = 0.4041 such that for α < αcr,
the system is locally asymptotically stable around the
interior equilibrium E∗ and there is another critical
value αmax = 4.1305 such that for α ∈ [αcr, αmax] the
system (5) is unstable around E∗ and is locally asymp-
totically stable around the pest free equilibrium E2.
Again for α > αmax, the interior equilibrium does not
exist and in this case the system is locally asymptot-
ically stable around E2. In Fig. 1, it is shown that
the system (5) is asymptotically stable around interior
equilibrium E∗ for α < αcr. Now for α = 0.3 with the
above parameter set we see that the system is glob-
ally asymptotically stable around E∗. In Fig. 2, we
plot the phase portrait of the system (5) to show the
global asymptotic stability around E∗. In Figs. 3, 4,
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Fig. 3 Oscillatory behavior for susceptible pest around E∗ for
α = 0.5 > αcr

Fig. 4 Oscillatory behavior for infected pest around E∗ for
α = 0.5 > αcr

Fig. 5 Oscillatory behavior for predator population around E∗
for α = 0.5 > αcr

5, and 6 it is shown that the system is unstable as α

passes through αcr through a Hopf bifurcation.
In Fig. 7, it is shown that the system has asymp-

totic stable nature around the pest free equilibrium E2

when the infection rate α ∈ [αcr, αmax] and in Fig. 8,

Fig. 6 Phase portrait of the system for α = 0.5 > αcr showing
the oscillatory behavior of the system around E∗

Fig. 7 System is asymptotically stable around E2 for
α = 0.5 > αcr

Fig. 8 System has infeasible interior equilibrium E∗ and
asymptotic stable nature at E2 for α = 4.5 > αmax
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Fig. 9 Change of biomass of pest and their predator as the force of infection increases

Fig. 10 Change of biomass of pest and their predator as n varies

it is shown that if α > αmax then the interior equilib-
rium does not exist but the system has stable behavior
around E2. However, it is quite difficult task to get the-
oretically the explicit values of both αcr and αmax.

The above two figures (Figs. 7–8) clearly indicate
that the system is locally asymptotically stable around
E2 for α > αcr and the interior equilibrium E∗ is not
feasible for α > αmax.

Next we examine the influence of the parameter α,
the force of infection to the pest and their predators. In
Fig. 9, we draw the effective changes of the biomass
of both the classes of pests and predator as the force
of infection varies. From the figure it is observed that
as the force of infection increases, initially the suscep-
tible pests reduces but the infected pest increases and
then after a threshold value of α it reduces. Initially the
predator population increases very fast as the force of
infection increases and then it starts to decrease slowly
due to unavailability of its main source of food (pest).
After a certain value of the force of infection, the sys-
tem would be pest free but even then there may be a
predator in the system due to the presence of an alter-
native source of food.

It is also clear from the Fig. 9, that for the above
said parameter set, when α ≥ 5, the system (5) would
be pest free forever and if the force of infection in-
creases more, then it has no effect on the system since
then the predator is entirely depends on the alternative
source of food. Further since the system becomes pest
free, it cannot grow unless it has emigrated from other
source.

Now we study the influence of the parameter n to
the system (5). In Fig. 10, we give the changes of
biomass of both types of the pest as well as their preda-
tor with respect to the parameter n, associated with
the effect of infection for the predator. It is seen that
both the susceptible pest and predator decreases but
the infected pest increases with n. These phenomena
happen due to the lower number of predator popula-
tion, infected pest are increased due to low predation
and susceptible to decrease due to higher infectious
pests present in the system. But the predator popula-
tion decreases as n increases and somewhere around
n = 0.526 predator population vanishes and after that
system would be predator free although the system is
not pest free. In Fig. 11 we represent the effect of in-
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Fig. 11 Change of biomass of predator with respect to the change of biomass of I for different m and n respectively

Fig. 12 Change of biomass of pest and their predator as d varies

fected pest on the predator population for different val-
ues of m and n.

In Fig. 12, we present the biomass of both the
classes of pests and their predator as the parameter
d changes for fixed α = 0.3. For this α = 0.3 both
the population coexist in the system but the preda-
tor population increases as d increases. Now if the
rate of infection becomes high, the pest population
may go extinct as d increases although predator pop-
ulations always exists in the system. In Fig. 13, it
is shown that for α = 5, the predator population in-
creases up to d ≤ 0.45 and thereafter it decreases
slightly since for d = 0.45 and α = 5 the system would
be pest free. But if d increases much (d ≥ 0.52) then
the predator population again started increasing due
to availability of a sufficient amount of alternative
food.

Fig. 13 Change of biomass of predator as d varies for α = 5

4 Formulation and application of optimal control
problem

Throughout the previous sections we have described
the dynamical behaviors of the system using only the
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biological control of pest, namely, the predator and in-
fected pest. But it is not always possible to control
the pest by using only such type of controls. So we
need some other control measures. In this situation
application of pesticides (both chemical and herbal)
are very useful. In their recent works Ghosh and Bhat-
tacharya [4], Kar et al. [8] also used pesticide controls
to reduce the quantity of pest.

In this regard we modify our system (5) on the ba-
sis of the assumption that u be the quantity of pesticide
controls that are used to the system and both the sus-
ceptible as well as infected pests are reduced by the
amount of ε1uS and ε2uI , respectively. Here we as-
sume that the pesticide control is more effective to the
infected one than the susceptible one and so we take
two different death rates namely ε1 and ε2 and gener-
ally the latter one is greater than the former. Further
since the pesticide is in general some type of poisons,
it affects, more or less, to the all creatures of the sys-
tem and hence the predator population also be affected
which is not considered in the work of Kar et al. [8].
We assume that due to the pesticide control u, the den-
sity of the predator population diminishes at a rate ε3.
Therefore the system (5) modified as follows:

dS

dt
= rS

(
1 − S + ηI

K

)
− αSI − βSP

a + S
− ε1uS,

dI

dt
= αSI − γ IP − σI − ε2uI,

dP

dt
= lβSP

a + S
+ (m − n)γ IP + d

(
1 − S + ηI

K

)
P

− μP − δP 2 − ε3uP,

(15)

subject to the initial conditions

S(0) ≥ 0, I (0) ≥ 0, P (0) ≥ 0. (16)

Furthermore this pesticide control u should be time
dependent as it is used according to the necessity.
Though in this section our primary objective is to re-
duce the quantity of pest by using pesticide, we have
to keep in mind its harmful effect on the environment
as well as its cost. Moreover, if it is used more, it may
make the crops poisonous. Also some pesticides are so
poisonous that its deadly effects would remain present
to the crops for a long time even after the finish of
the application and thus it directly affects the human

body. So, to make the control of pests more economi-
cally and socially viable, it is required to use a proper
mixture of pesticide and biological control. We should
minimize the square of the applying pesticide so that
we are able to minimize not only the application cost
for the pesticide control but also the side effects of it
(see Joshi et al. [41]).

Thus we form the objective functional of our opti-
mal control problem as follows:

J (S, I,P,u) = min
u

∫ t1

0

(
v1S + v2I + v3u

2)dt (17)

subject to the system of differential equations (15)
along with the initial conditions (16).

The objective functional J is a continuously differ-
entiable function of state variables S, I,P and control
variable u. With the help of Pontryagin’s maximum
principle (Pontryagin et al. [42]), we get the necessary
criteria to determine a positive value of the control for
which the J is optimized. If this feasible control ex-
ists then it is known to be the optimal control (for fur-
ther details see Clark [43], Lenhart and Workman [44]
etc.).

Now our object is to find a control u∗ such that

J
(
u∗) = min

u∈Ω
J(u), (18)

where Ω = {u : is measurable and 0 ≤ u(t) ≤ 1 for t ∈
[0, t1]} is the set for the controls. Here all the three
weight factors v1, v2, and v3 balance out the rela-
tive importance of the three terms in the objective
functional and are known as the passive constants
(for details see Bodine et al. [45]). However, v1, v2

are the weights taken corresponding to the suscep-
tible and infected pest, respectively, and v3 is asso-
ciated with the square of the pesticide control. The
square of the control parameter is taken to remove the
harmful side effect of the pesticide (see Joshi [41],
Kar and Batabyal [46, 47] etc.). According to the ar-
ticles [46, 47], we may conclude that the nonnegative
bounded solutions of the optimal control problem ex-
ists and to solve it we form the Lagrangian of our prob-
lem as follows:

L(S, I,P,u) = v1S + v2I + v3u
2. (19)

To minimize the Lagrangian L let us now form the
Hamiltonian of the problem as:

H = L + Ψ1
dS

dt
+ Ψ2

dI

dt
+ Ψ3

dP

dt
, (20)
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where Ψi(t) for i = 1,2,3 are known as the adjoint
variables or the costate variables and they can be deter-
mined by solving the following system of differential
equations:

Ψ̇1 = −∂H

∂S
= −v1 +

[
αI − r

(
1 − 2S + ηI

K

)

+ aβP

(a + S)2
+ ε1u

]
Ψ1 − αIΨ2

+
(

dP

K
− laβP

(a + S)2

)
Ψ3,

Ψ̇2 = −∂H

∂I
= −v2 +

(
α + rη

K

)
SΨ1

+ (γ P − αS + σ + ε2u)Ψ2 (21)

+
(

dη

K
− (m − n)γ

)
PΨ3,

Ψ̇3 = −∂H

∂P
= βS

a + S
Ψ1 + γ IΨ2

+
[
μ + 2δP + ε3u − lβS

a + S
− (m − n)γ I

− d

(
1 − S + ηI

K

)]
Ψ3,

satisfying the transversality conditions

Ψi(t1) = 0, i = 1,2,3. (22)

We assume that Ŝ, Î , P̂ are the optimum value of S, I ,
P respectively. Also let Ψ̂1, Ψ̂2, Ψ̂3 be the solutions of
the system (21).

Now following the results in Lukes [48] and Chak-
raborty et al. [49], we state and prove the following
theorem.

Theorem 4.1 There is an optimal control u∗(t) for t ∈
[0, t1] such that

J
(
S(t), I (t), u∗(t)

) = min
u

J
(
S(t), I (t), u(t)

)

subject to the system of differential equations (15).

Proof Here the control variable u(t) is convex since
all the state and control variables are non negative.
Furthermore the control space Θ is also closed and
convex. Hence the optimal control is bounded and
therefore the existence of an optimal control u∗(t),
which minimizes (17) for t ∈ [0, t1] is established.

With the help of Pontryagin’s Maximum Principle
(see Pontryagin et al. [42]) and Theorem 4.1, we are
now ready to state and prove the following theorem. �

Theorem 4.2 The optimal control u∗ which minimizes
J over the region Θ is given by

u∗ = max
{
0,min(ū,1)

}

where ū = (Ψ1ε1S + Ψ2ε2I + Ψ3ε3P)/(vV3).

Proof According to the optimality condition we have
∂H/∂u = 0 and it gives us u = (Ψ1ε1S + Ψ2ε2I +
Ψ3ε3P)/(2v3). It is obvious that this control u should
be bounded; respective upper and lower bounds are 1
and 0. This means that u = 0, whenever ū ≤ 0 whereas
u = 1 whenever ū ≥ 1 and in the rest period of time
u = ū. Combining these results we have the theo-
rem. �

5 Numerical simulations for the optimal control
problem

Since our problem is not based on a case study, for the
simulation purposes, we take a simulated set of param-
eters as P1 = {r, η,K,α,β, a, ε1, γ, σ, ε2, l,m,n, d,

μ, δ, ε3} = {2.1,1,50,0.3,0.36,0.21,1,0.5,0.15,2,

0.5,0.3,0.15,0.84,0.21,0.11,0.01}. Furthermore
since in this problem our aim is to minimize pest, so
we take both the weights v1 and v2 as 1. Also we take
v3 as 0.1 unit as it associated with the cost for killing
a single pest which will be very low. We apply this
control in 100 units of time that may be either in days
or in weeks or even in months. Thus we set t1 as 100.
Next we take the initial guess for the susceptible pest,
infected pest and predator as 5, 3, and 2, respectively.

Now we solve the optimal control problem nu-
merically using Runge–Kutta fourth order iterative
method. For the state variables, first we solve the sys-
tem (15) by forward Runge-Kutta fourth order proce-
dure and then using those state values we solve the
system (21) by using backward fourth order Runge–
Kutta procedure (see [44, 50–53] etc.). In Fig. 14, we
represent the solution curves of the three state vari-
ables both in the presence and absence of the control.
It is observed that the application of optimal control
reduces a quite larger number of pests than in the ab-
sence of the control. Again from the figure it is easy
to see that the predator population also much affected
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Fig. 14 Variation of state variables both in the presence and
absence of control

Fig. 15 Variation of the optimal control

due to the use of the pesticide control. This is occur-
ring as the application of pesticide control reduces the
pest population significantly and the predator popula-
tion primarily depends on pest for their food. Thus we
may conclude that application of the optimal pesticide
control not only reduces the number of pest population
but also reduces the predator populations.

Figure 15 represents the variation of optimal con-
trol and in Fig. 16, we draw the variation of adjoint
variables in the presence control. From Fig. 15, it is
observed that the control would be optimal if it is used
at its highest level for almost first 95 units of time.

Figure 17 is obtained by increasing 40 % value of d

when the optimal control is applied. This is done as the
application of control reduces pest and hence reduces

Fig. 16 Variation of adjoint variables in the presence of control

Fig. 17 Variation of state variables (when control is applied
then amount of alternative food is 40 % greater than the without
control case)

predator, so for biological conservation it is necessary
to supply more additional food to predator.

6 Discussion and conclusions

In recent agro-ecosystems, pest control is a world wide
problem because of the increasing human population.
In addition today there is no proper method for con-
trolling pest population. Therefore effective pest con-
trol strategy has a high impact on society. In this
paper we make systematic approach for controlling
pest population by using combination of three possi-
ble ways namely (i) effective use of predator popu-
lation, (ii) release of infection among the pest pop-
ulation and (iii) use of chemical or herbal pesticide.
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Our mathematical model is a predator–prey type sys-
tem with three state variables namely the susceptible
pest S, the infected pest I , and the biological predator
to the pest P . Moreover we consider that there is an al-
ternative source of food to the predator species to pro-
tect themselves when the availability of the pest pop-
ulation would be very less or negligible. It is shown
that if the growth rate of the predator due to the alter-
native source of food is greater than the natural death
rate of the predator then the predator population never
goes extinct. This ensures that it is possible to protect
the predator population by providing appropriate addi-
tional food.

It has been shown that the system (5) is always
uniformly bounded and therefore all the solutions en-
tirely lie in the positive region. We make a system-
atic analysis of the dynamics of the system by exam-
ining the nature of the system around all its six feasi-
ble equilibria. The boundary equilibrium E1(K,0,0)

is locally asymptotically stable depending on the value
of the environmental carrying capacity K , infection
rate α and the death rate of infected σ . Also it is in-
teresting to observe that the sufficient condition for
the predator free equilibrium E4(S2, I2,0) to be fea-
sible is that the boundary equilibrium E1 is unsta-
ble (see Sect. 2). Also the infection free equilibrium
E3(S1,0,P1) may be conditionally feasible as well
as locally asymptotically stable and as S1 increases
this equilibrium reduces to the boundary equilibrium
E1(K,0,0), through a possible transcritical bifurca-
tion. We have also discussed the existence and stability
criteria of the interior equilibrium E∗. It is shown that
the higher infection rate makes the interior equilibrium
unstable and the pest free equilibrium locally asymp-
totically stable. Further increase of infection rate may
make the system pest free.

From an economical point of view, E2(0,0,P0) is
the most important equilibrium since if the system (5)
goes to this equilibrium then the system becomes pest
free but the biological predator remains in the sys-
tem. It is established that if the maximum growth of
the predator due to the alternative food is greater than
the natural death rate of the predator plus a threshold
quantity then the system becomes locally asymptoti-
cally stable around the pest free equilibrium E2 and
thus the system would be pest free. Another interest-
ing observation is that the present system contains no
equilibrium of the form (0, I,P ) although the system
has both types of pest free equilibrium E2(0,0,P0)

and the infection free equilibrium E3(S1,0,P1). This
phenomenon is occurring in the system due to the facts
that infectious pests have neither reproduction power
nor recovery. Therefore if the susceptible pest goes ex-
tinct then the infectious pests also go extinct and thus
the system becomes pest free. Thus to make the sys-
tem pest free it is sufficient to make the system free
from the susceptible pest.

In this paper the additional food is assumed to be
either non reproducing prey or some food source. We
only assume that the predator is capable of reproduc-
ing by consuming either of the available food, and we
discuss about the quantity of food only when relevant
to understanding model or predict. The role of addi-
tional food is very much important in relevance to pest
control because it is not only help to protect predator
population when the pest population is not sufficient,
but also it helps to reduce pest population if it is huge
amount. It occurs since manipulating non-target prey
can influence the predator in a way that increases tar-
get predation and eventually controls the prey popula-
tions. But from the point of view of biological con-
servation of the predator, when there is a sufficient
amount of pest then additional food does not have so
much importance in the system. In these context we
do claim that the model and its prediction both are im-
portant from the biological point of view.

In agro-ecosystem though the use of pesticide is,
however, a good process to remove the pest, its ap-
plication cost and environmental lost should be taken
into account. In this point of view we form an opti-
mal control problem including all those items. As it is
expected, optimal use of pesticide control reduces the
pest as well as predator population. But it is seen that
if the amount of alternative food is increased by 40 %
then application of optimal control increases biomass
of predator populations compared to the no control
cases although the pest population decreases. Thus it
is a measure that to protect the predator population the
amount of alternative food should be increased when
the pesticide control is applied optimally (see Fig. 17).

In the present problem we include the cost for the
deadly effects of the pesticide in optimal control prob-
lem. More use of poisonous pesticides not only pol-
lutes the environment but also the causes of several
diseases like skin problems, health problems etc. But
there are several eco-friendly herbal pesticides which
should be used in place of the harmful chemical insec-
ticides. Thus there must be a proper balance between
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the chemical and herbal pesticides in order to reduce
cost and the environmental loss.

The numeric analysis deprives us of the possibility
of drawing conclusions on a general level, however,
a thorough analysis clearly indicates that the interac-
tions between pest and its predator do matter when
the provision of additional food to the predator and
use of pesticide control is considered. All the simula-
tion works in this present article are considered from
a qualitative, rather than a quantitative point of view.
However, numerous scenarios which cover the breath
of the biological feasible parameter space are con-
ducted. This study offers insight into the possible man-
agement strategies that involve manipulation of supply
level of additional food to predators.
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Appendix A: Boundedness of the system (5)

First let us assume l + n ≥ m and define a function

X = S + I + 1

l
P . (23)

The time derivative of (23) along the solution of (5) is

dX

dt
= rS

(
1 − S + ηI

K

)
− σI

(
1 − m − n

l

)
γ IP

+ d

l

(
1 − S + ηI

K

)
PI − μ

l
P − δlP .

Now for each p = min{σ, μ/l}, we have from the
above

dX

dt
+pX ≤ S

[
r

(
1− S

K

)
+p

]
+ 1

l
P (d −δP ). (24)

Similarly, if we consider l + n < m, then we take

X = S + I + 1

m − n
P.

Taking the time derivative of X and using the previ-
ous argument, we obtain the inequality (24). The max-

imum value of rS(1 − S
K

)+ pS is K(r+p)2

4r
and that of

(dP − δP 2) is d2/(4δ).

Therefore using (24) we can write

dX

dt
+ pX ≤ K(r + p)2

4r
+ d2

4lδ
.

Thus we have a constant L = K(r+p)2

4r
+ d2

4lδ
, such that

dX

dt
+ pX ≤ L. (25)

Applying the theorem of differential inequality (Birk-
hoff and Rota [53]) we obtain

0 < S(S, I,P )

≤ L

p

(
1 − e−pt

) + S
(
S(0), I (0),P (0)

)
e−pt , (26)

and for t →∝, we have

0 < X ≤ L

p
. (27)

Hence all the solutions of (5) originating in {R+
3 /0}

are confined in the region

V =
{
(S, I,P ) ∈ R+

3 : X = L

p
+ ε

}
(28)

for any ε > 0 and for t →∝.
Thus the system (5) is always uniformly bounded.

Appendix B: Feasibility, local stability and Hopf
bifurcation criteria around E∗

For the interior equilibrium E∗(S∗, I ∗,P ∗), we see
that P ∗ is the positive root of the following equation:

s1P
3 + s2P

2 + s3P + s4 = 0 (29)

where

s1 = −γ 2(dαγ + mrγ 2 − nrγ 2 + Kα2δ + rαδη
)
/α,

s2 = −γ
(−Klα2βγ + Kmα2βγ − Knα2βγ

− Kmrαγ 2 + Knrαγ 2 − lrαβγ η − 2aα2s1/γ
2

+ Kα2γμ + rαγ ημ + 3mrγ 2σ − 3nrγ 2σ

+ 2Kα2δσ + 2rαδησ − dα(Kαγ + αβη

− 3γ σ)
)
/α,

s3 = (
a2α3s1/γ

2 − σ
(−dα(2Kαγ + αβη − 3γ σ)
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+ Kα
(−2lαβγ − nαβγ + 2nrγ 2

+ mγ (αβ − 2rγ ) + 2αγμ + αδσ
)

+ r
(−2lαβγ η + 3(m − n)γ 2σ

+ αη(2γμ + δσ )
)) + aα

(
dα(2Kαγ + αβη

− 4γ σ) + Kα
(
lαβγ + nαβγ − 2nrγ 2

+ mγ (−αβ + 2rγ ) − 2αγμ − 2αδσ
)

+ r
(
lαβγ η − 2

(
2(m − n)γ 2σ

+ αη(γμ + δσ )
))))

/α,

and

s4 = (
aασ

(
Kα(lαβ + 2mrγ − 2nrγ − 2αμ)

+ 2dα(Kα − σ) + r(lαβη − 2αημ − 2mγσ

+ 2nγ σ)
) + σ 2(Kα(lαβ + mrγ − nrγ − αμ)

+ dα(Kα − σ) + r
(
lαβη − αημ

+ (−m + n)γ σ
))

+ a2α2(Kα(mrγ − nrγ + αμ) + dα(Kα − σ)

+ r
(
αημ + (−m + n)γ σ

)))
/α

and

S∗ = (
σ + γP ∗)/α,

I ∗ = aKr − ar(σ + γP ∗)/α + KrS∗ − rS∗2 − KP ∗β

(a + S∗)(Kα + rη)
.

Hence it is tough to find an explicit parametric
condition by theoretical evaluation for the feasibility
of E∗. But it is possible to obtain one critical value
αmax of α beyond which E∗ is not feasible and this
observation is verified through a numerical simulation
discussed in earlier sections.

Next we discuss the locally asymptotic stability of
the system (5) around E∗. The characteristic equation
of the system (5) around E∗ can be written as

λ3 + c1λ
2 + c2λ + c3 = 0

where

c1 = αI ∗ − r + 2rS∗

K
− P ∗S∗β

(a + S∗)2
+ P ∗β

a + S∗

− lS∗β
a + S∗ − (m − n)I ∗γ + 2P ∗δ

− d

(
1 − S∗ + I ∗η

K

)
+ μ,

c2 = S∗I ∗α2 + lrS∗β
a + S∗ − 2lrS∗2β

K(a + S∗)
− lS∗I ∗αβ

a + S∗

+ lP ∗S∗2β2

(a + S∗)3
− lP ∗S∗β2

(a + S∗)2

−
S∗β(dP ∗

K
+ lP ∗S∗β

(a+S∗)2 − lP ∗β
a+S∗ )

a + S∗ + (m − n)rI ∗γ

− 2(m − n)rS∗I ∗γ
K

+ (−m + n)I ∗2
αγ

+ (m − n)P ∗S∗I ∗βγ

(a + S∗)2
+ (−m + n)P ∗I ∗βγ

a + S∗

− 2P ∗rδ + 4P ∗rS∗δ
K

+ 2P ∗I ∗αδ − 2P ∗2S∗βδ

(a + S∗)2

+ 2P ∗2βδ

a + S∗ + I ∗γ
(

−(−m + n)P ∗γ − dP ∗η
K

)

+ dr

(
1 − S∗ + I ∗η

K

)
− 2drS∗(1 − S∗+I∗η

K
)

K

− dI ∗α
(

1 − S∗ + I ∗η
K

)

+ dP ∗S∗β(1 − S∗+I∗η
K

)

(a + S∗)2
− dP ∗β(1 − S∗+I∗η

K
)

a + S∗

− rμ + 2rS∗μ
K

+ I ∗αμ − P ∗S∗βμ

(a + S∗)2
+ P ∗βμ

a + S∗ ,

c3 = − lS∗2I ∗α2β

a + S∗ − (m − n)S∗I ∗2
α2γ

+ S∗I ∗α
(

dP ∗

K
+ lP ∗S∗β

(a + S∗)2
− lP ∗β

a + S∗

)
γ

+ 2P ∗S∗I ∗α2δ

+ S∗I ∗αβ((m − n)P ∗γ − dP ∗η
K

)

a + S∗

− rI ∗γ
(

(m − n)P ∗γ − dP ∗η
K

)

+ 2rS∗I ∗γ ((m − n)P ∗γ − dP ∗η
K

)

K

+ I ∗2
αγ

(
(m − n)P ∗γ − dP ∗η

K

)
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− P ∗S∗I ∗βγ ((m − n)P ∗γ − dP ∗η
K

)

(a + S∗)2

+ P ∗I ∗βγ ((m − n)P ∗γ − dP ∗η
K

)

a + S∗

− dS∗I ∗α2
(

1 − S∗ + I ∗η
K

)
+ S∗I ∗α2μ.

Clearly E∗ is locally asymptotically stable if c1, c3

and c1c2 −c3 are all positive. Due to the complex form
of all the ci , i = 1,2,3, it is quite unlikely to find an
explicit parametric condition for which all those con-
ditions are satisfied. But through simulation works the
result is obtained that there exists some threshold of
α, say αcr such that for 0 < α < αcr all of c1, c3 and
c1c2 − c3 are positive and as α passes through αcr then
c1c2 − c3 becomes negative. Hence it is concluded
that at 0 < α < (>)αcr, E∗ is locally asymptotically
stable (unstable) and at α = αcr, c1c2 − c3 vanishes
and so E∗ has a pair of purely imaginary eigenval-
ues for α = αcr. Further it can be easily verified that
at that critical value αcr, the system (5) undergoes a
Hopf bifurcation as the transversality conditions hold
good (details of the mathematical works are presented
in Kar et al. [8]).
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